| Features: |
| Phenethyl isothiocyanate (PEITC) is a naturally occurring small-molecule phytochemical best known for its role in cancer chemoprevention research. It belongs to the isothiocyanate class of organosulfur compounds and has the chemical formula C₉H₉NS. Source: Derived from glucosinolates in cruciferous vegetables PEITC in plants exists mainly as the glucosinolate precursor (gluconasturtiin). Upon tissue disruption (chewing, chopping), myrosinase converts gluconasturtiin → PEITC. -PEITC bioavailability from fresh, chopped microgreens is high -Co-consumption with other isothiocyanates is additive/synergistic -Peak plasma levels: ~1–3 hours post-consumption -Half-life: ~4–6 hours -Generally well tolerated up to 40 mg/day (mild GI irritation at higher dose) PEITC is best characterized for its dual role in xenobiotic metabolism: Inhibition of Phase I enzymes -Suppresses cytochrome P450 enzymes (e.g., CYP1A1, CYP2E1) -Reduces activation of pro-carcinogens -Selectively depletes GSH in cancer cells -Directly increases ROS beyond buffering capacity Key pathways in cancer cells -GSH depletion -Mitochondrial ROS amplification -ASK1/JNK apoptosis Chemo relevance -Frequently chemo-sensitizing -Opposite of NAC/GSH Induction of Phase II enzymes -Activates NRF2–KEAP1 signaling -Increases expression of detoxification and antioxidant enzymes such as: -Glutathione S-transferases (GSTs) -NAD(P)H quinone oxidoreductase 1 (NQO1) -Heme oxygenase-1 (HMOX1) In preclinical systems, PEITC has been shown to: -Deplete intracellular glutathione (GSH), increasing oxidative stress in cancer cells -Induce mitochondrial dysfunction and apoptosis -Inhibit histone deacetylases (HDACs) (context-dependent) -Suppress pro-survival signaling pathways (e.g., STAT3, NF-κB) -Target cancer stem–like cells in some models Dietary origins PEITC present in vegetables such as: -Watercress (the richest source) -Broccoli -Cabbage -Brussels sprouts -Radish Bioavailability depends on: -Food preparation -Gut microbiota (myrosinase activity if plant enzyme is inactive) watercress microgreens generally have higher PEITC (and/or its precursor gluconasturtiin) per gram than mature watercress. -The enrichment is most pronounced per unit fresh weight in the 7–14 day window. -Absolute values vary substantially with cultivar, light intensity, sulfur/nitrogen nutrition, and post-harvest handling. | Growth stage | Age | PEITC potential (mg / 100 g FW) | Relative | | --------------- | -------: | ------------------------------: | ---------------: | | **Microgreens** | 7–10 d | **3.0–6.0** | **~2–4×** mature | | **Microgreens** | 11–14 d | **2.5–5.0** | ~2–3× | | Baby leaf | 21–28 d | 1.5–3.0 | ~1–2× | | Mature leaf | 35–45+ d | 0.8–1.5 | baseline | Dry weight basis | Growth stage | PEITC potential (mg / g DW) | | --------------------- | --------------------------: | | Microgreens (7–10 d) | **1.8–3.5** | | Microgreens (11–14 d) | 1.5–3.0 | | Mature leaf | 0.6–1.2 | Expect 2–5× variability depending on: -Light spectrum (blue light ↑ glucosinolates) -Sulfur availability Practical optimization tips Lighting -12–16 h/day -150–300 µmol/m²/s PAR (typical shop LEDs at 20–30 cm distance) Soil -Peat or peat-blend preferred -Avoid over-watering (dilutes concentration) Nutrition (optional but effective) -One light watering with ¼-strength sulfate-containing fertilizer around day 4–5 can increase PEITC ~15–30% Harvest & use -Cut, rest 5–10 minutes, then consume (allows myrosinase to fully convert gluconasturtiin → PEITC) Dose: (100 g fresh microgreens ≈ 2–4 mg bioavailable PEITC) -ie below doses are not really acheivable from fresh microgreens Minimum biologically active dose (humans): ~10–15 mg PEITC/day Common efficacy range used in human trials: 20–40 mg/day Upper short-term doses studied (generally tolerated): 60 mg/day Diet-achievable with watercress microgreens: Yes, at realistic portions These doses are chemopreventive / pathway-modulating, not cytotoxic chemotherapy. | PEITC dose (mg/day) | Dominant biological effects | | ------------------: | ----------------------------------------------- | | **5–10 mg** | Phase II enzymes, mild NRF2 | | **10–20 mg** | HDAC inhibition, ROS signaling | | **20–40 mg** | Apoptosis, cell-cycle arrest, anti-inflammatory | | **40–60 mg** | Strong redox stress in cancer cells | | >60 mg | Limited data; GI irritation risk | |
| 4955- | PEITC, | Phenethyl isothiocyanate-induced cytoskeletal changes and cell death in lung cancer cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 4918- | PEITC, | Nutritional Sources and Anticancer Potential of Phenethyl Isothiocyanate: Molecular Mechanisms and Therapeutic Insights |
| - | Review, | Var, | NA |
| 4944- | PEITC, | Phenethyl isothiocyanate induces DNA damage-associated G2/M arrest and subsequent apoptosis in oral cancer cells with varying p53 mutations |
| - | in-vitro, | Oral, | NA |
| - | in-vitro, | Pca, | DU145 |
| 4946- | PEITC, | Phenethyl Isothiocyanate Inhibits Oxidative Phosphorylation to Trigger Reactive Oxygen Species-mediated Death of Human Prostate Cancer Cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 |
| 4947- | PEITC, | Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G0/G1 Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death |
| - | in-vitro, | Oral, | HSC3 |
| 4948- | PEITC, | Sensory acceptable equivalent doses of β-phenylethyl isothiocyanate (PEITC) induce cell cycle arrest and retard the growth of p53 mutated oral cancer in vitro and in vivo |
| - | vitro+vivo, | Oral, | CAL27 | - | vitro+vivo, | Oral, | FaDu | - | vitro+vivo, | Oral, | SCC4 | - | vitro+vivo, | Oral, | SCC9 |
| 4949- | PEITC, | Phenethyl Isothiocyanate Exposure Promotes Oxidative Stress and Suppresses Sp1 Transcription Factor in Cancer Stem Cells |
| - | in-vitro, | Cerv, | HeLa |
| 4950- | PEITC, | Phenethyl isothiocyanate-induced apoptosis in PC-3 human prostate cancer cells is mediated by reactive oxygen species-dependent disruption of the mitochondrial membrane potential |
| - | vitro+vivo, | Pca, | PC3 |
| 4951- | PEITC, | ROS accumulation by PEITC selectively kills ovarian cancer cells via UPR-mediated apoptosis |
| - | in-vitro, | Ovarian, | PA1 | - | in-vitro, | Ovarian, | SKOV3 |
| 4952- | PEITC, | Cancer-preventive effect of phenethyl isothiocyanate through tumor microenvironment regulation in a colorectal cancer stem cell xenograft model |
| - | in-vitro, | CRC, | HCT116 |
| 4953- | PEITC, | PEITC: a natural compound effective in killing primary leukemia cells and overcoming drug resistance |
| - | in-vitro, | CLL, | NA |
| 4954- | PEITC, | Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate |
| - | vitro+vivo, | Ovarian, | SKOV3 |
| 4943- | PEITC, | Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation |
| - | in-vitro, | Ovarian, | OVCAR-3 |
| 4956- | PEITC, | Inhibition of cancer growth in vitro and in vivo by a novel ROS-modulating agent with ability to eliminate stem-like cancer cells |
| - | vitro+vivo, | Lung, | A549 |
| 4957- | PEITC, | Phenethyl Isothiocyanate (PEITC) from Cruciferous Vegetables Targets Human Cancer Stem-Like Cells |
| - | vitro+vivo, | Cerv, | HeLa |
| 4958- | PEITC, | Cancer-preventive effect of phenethyl isothiocyanate through tumor microenvironment regulation in a colorectal cancer stem cell xenograft model |
| - | vitro+vivo, | CRC, | NA |
| 4959- | PEITC, | Phenethyl isothiocyanate hampers growth and progression of HER2-positive breast and ovarian carcinoma by targeting their stem cell compartment |
| - | in-vitro, | Ovarian, | NA |
| 4960- | PEITC, | Phenethyl isothiocyanate upregulates death receptors 4 and 5 and inhibits proliferation in human cancer stem-like cells |
| - | in-vivo, | Cerv, | HeLa |
| 4961- | PEITC, | Phenethyl isothiocyanate suppresses cancer stem cell properties in vitro and in a xenograft model |
| - | vitro+vivo, | CRC, | HCT116 |
| 4962- | PEITC, | Ba, | PSO, | Targeting Breast Cancer Stem Cells |
| - | Review, | BC, | NA |
| 4963- | PEITC, | Sensory Acceptable Equivalent Doses of β - Phenylethyl isothiocyanate (PEITC) Induce Cell Cycle Arrest and Retard Growth of p53 Mutated Oral Cancer In Vitro and In Vivo |
| - | vitro+vivo, | Oral, | CAL27 | - | vitro+vivo, | Oral, | FaDu | - | vitro+vivo, | Oral, | SCC4 | - | vitro+vivo, | Oral, | SCC9 |
| 4964- | PEITC, | Irreversible Inhibition of Glutathione S-Transferase by Phenethyl Isothiocyanate (PEITC), a Dietary Cancer Chemopreventive Phytochemical |
| - | in-vitro, | Var, | NA |
| 5014- | PEITC, | Xan, | Combination of xanthohumol and phenethyl isothiocyanate inhibits NF-κB and activates Nrf2 in pancreatic cancer cells |
| - | in-vitro, | PC, | NA |
| 5016- | PEITC, | Phenethyl Isothiocyanate (PEITC) interaction with Keap1 activates the Nrf2 pathway and inhibits lipid accumulation in adipocytes |
| - | in-vitro, | Nor, | NA |
| 4930- | PEITC, | Targeted anti-cancer therapy: Co-delivery of VEGF siRNA and Phenethyl isothiocyanate (PEITC) via cRGD-modified lipid nanoparticles for enhanced anti-angiogenic efficacy |
| - | vitro+vivo, | Lung, | A549 |
| 4919- | PEITC, | Natural compound PEITC inhibits gain of function of p53 mutants in cancer cells by switching YAP-binding partners between p53 and p73 |
| - | in-vitro, | Var, | NA |
| 4920- | PEITC, | Cisplatin, | PEITC restores chemosensitivity in cisplatin-resistant non-small cell lung cancer by targeting c-Myc/miR-424-5p |
| - | vitro+vivo, | NSCLC, | A549 |
| 4921- | PEITC, | The Potential Use of Phenethyl Isothiocyanate for Cancer Prevention |
| - | Review, | Var, | NA |
| 4922- | PEITC, | Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms |
| - | Review, | Var, | NA |
| 4923- | PEITC, | Quantitative chemical proteomics reveals that phenethyl isothiocyanate covalently targets BID to promote apoptosis |
| - | Study, | Var, | NA |
| - | Trial, | Oral, | NA |
| 4925- | PEITC, | PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells |
| - | in-vitro, | OS, | NA |
| 4926- | PEITC, | PEITC inhibits the invasion and migration of colorectal cancer cells by blocking TGF-β-induced EMT |
| - | in-vitro, | CRC, | SW48 |
| 4927- | PEITC, | Targeting ferroptosis in osteosarcoma |
| - | Review, | OS, | NA |
| 4928- | PEITC, | Dietary phytochemical PEITC restricts tumor development via modulation of epigenetic writers and erasers |
| - | vitro+vivo, | Colon, | SW-620 |
| 4929- | PEITC, | PacT, | Phenethyl isothiocyanate and paclitaxel synergistically enhanced apoptosis and alpha-tubulin hyperacetylation in breast cancer cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 4942- | PEITC, | Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G(0)/G(1) Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death |
| - | in-vitro, | Oral, | HSC3 |
| 4931- | PEITC, | Phenethyl isothiocyanate (PEITC) suppresses prostate cancer cell invasion epigenetically through regulating microRNA-194 |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 |
| 4932- | PEITC, | Pharmacokinetics and Pharmacodynamics of Phenethyl Isothiocyanate: Implications in Breast Cancer Prevention |
| - | Review, | BC, | NA |
| 4933- | PEITC, | Phenethyl isothiocyanate inhibits metastasis potential of non-small cell lung cancer cells through FTO mediated TLE1 m6A modification |
| - | vitro+vivo, | Lung, | H1299 | - | vitro+vivo, | SCC, | H226 |
| 4934- | PEITC, | Differential induction of apoptosis in human breast cancer cell lines by phenethyl isothiocyanate, a glutathione depleting agent |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 4935- | PEITC, | Phenethyl Isothiocyanate Suppresses Inhibitor of Apoptosis Family Protein Expression in Prostate Cancer Cells in Culture and In Vivo |
| - | in-vivo, | Pca, | LNCaP | - | in-vivo, | Pca, | PC3 |
| 4936- | PEITC, | PEITC treatment suppresses myeloid derived tumor suppressor cells to inhibit breast tumor growth |
| - | in-vivo, | BC, | MDA-MB-231 |
| 4937- | PEITC, | PEITC: Functional Compound for Primary and Tertiary Chemoprevention of Cancer |
| 4938- | PEITC, | Clinical Trial of 2-Phenethyl Isothiocyanate as an Inhibitor of Metabolic Activation of a Tobacco-Specific Lung Carcinogen in Cigarette Smokers |
| - | Trial, | Nor, | NA |
| 4939- | PEITC, | Phenethyl Isothiocyanate Inhibits Angiogenesis In vitro and Ex vivo |
| - | in-vitro, | Pca, | PC3 | - | ex-vivo, | Nor, | HUVECs |
| 4940- | PEITC, | Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G 0/G 1 Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death |
| - | in-vitro, | Oral, | HSC3 |
| 4941- | PEITC, | PEITC: A resounding molecule averts metastasis in breast cancer cells in vitro by regulating PKCδ/Aurora A interplay |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 5015- | Xan, | PEITC, | Comparison of the Impact of Xanthohumol and Phenethyl Isothiocyanate and Their Combination on Nrf2 and NF-κB Pathways in HepG2 Cells In Vitro and Tumor Burden In Vivo |
| - | in-vitro, | HCC, | HepG2 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:388 Target#:% State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid