condition found tbRes List
BioAv, bioavailability: Click to Expand ⟱
Source:
Type: measurement
Bioavailability (usually in %) absorbed by the body.


Scientific Papers found: Click to Expand⟱
3537- 5-HTP,    5-Hydroxytryptophan: a clinically-effective serotonin precursor
- Review, NA, NA
*5HT↑, effective serotonin precursor
*BioAv↑, 5-HTP is well absorbed from an oral dose, with about 70 percent ending up in the bloodstream.
*BBB↑, It easily crosses the blood-brain barrier and effectively increases central nervous system (CNS) synthesis of serotonin

2558- AL,    Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment
- Review, AD, NA
*AntiCan↑, Allicin has shown anticancer, antimicrobial, antioxidant properties and also serves as an efficient therapeutic agent against cardiovascular diseases
*antiOx↑,
*cardioP↑,
*neuroP↑, present review describes allicin as an antioxidant, and neuroprotective molecule
cognitive↑, that can ameliorate the cognitive abilities in case of neurodegenerative and neuropsychological disorders.
*ROS↓, As an antioxidant, allicin fights the reactive oxygen species (ROS) by downregulation of NOX (NADPH oxidizing) enzymes, it can directly interact to reduce the cellular levels of different types of ROS produced by a variety of peroxidases.
*NOX↓,
*TLR4↓, inhibition of TLR4/MyD88/NF-κB, P38 and JNK pathways.
*NF-kB↓,
*JNK↓,
*AntiAg↑, A low concentration of allicin (0.4 mM) can inhibit the platelet aggregation up to 90%, the impact is significantly higher than of similar concentration of aspirin.
*H2S↑, Allicin decomposes rapidly and undergoes a series of reactions with glutathione resulting in the production of hydrogen sulphide (H2S).
*BP↓, H2S is a gaseous signalling molecule involved in the regulation of blood pressure.
Telomerase↓, Allicin inhibits the activity of telomerase in a dose dependent manner subsequently inhibiting the proliferation in the cancer cells
*Insulin↑, Studies have shown a significant increase in the blood insulin levels after treatment with allicin
BioAv↝, optimum temperature for the activity of alliinase is 33 °C, it operates best at pH 6.5, the enzyme is sensitive to acids [42,43] (Figure 3), enteric-coated formulations of garlic supplements are therefore recommended
*GSH↑, It helps to lower the hyperglycaemic conditions and improves the glutathione and catalase biosynthesis [37,38]
*Catalase↑,

2560- AL,    Effect of garlic on platelet aggregation in humans: a study in healthy subjects and patients with coronary artery disease
- ex-vivo, Nor, NA
*AntiAg↑, Garlic and its components are known to possess antiplatelet activity
BioAv↝, Though garlic components leave the body quickly, a slow build-up of the active ingredients may take place.
Dose↝, Each capsule contained oil equivalent to I g of raw garlic. oil extract of garlic was encapsulated. 2 capsules of garlic three times a day (i.e. 6 capsules/day) for a period of 1 month.

2663- AL,    Therapeutic Effect of Allicin on Glioblastoma
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG
BioAv↝, After processing, such as cutting, crushing, chewing, or dehydration, alliinase rapidly breaks down alliin to form allicin. Allicin is immediately decomposed to other organosulfur compounds such as diallyl sulphide (DAS), diallyl disulfide(DADS), and
TumCCA↑, The results show DATS can reduce tumor growth by inhibits cell cycle progression and promotes p53-mediated tumor suppression pathways
P53↑,
HDAC↓, The findings demonstrate that DATS can inhibit U87MG cell growth in vivo by inhibiting HDAC [10].
CSCs↓, Inhibition of cancer stem cells(CSC)
ROS↑, DATS can induce apoptosis by ROS through regulation of Bcl-2 and have anticancer effect on human glioblastoma (U87MG) and neuroblastoma (SH-SY5Y) cells
ChemoSen↑, The most interesting thing is allicin can enhance the sensitivity of TMZ-resistant cells to TMZ by inhibiting MGMT expression.
MGMT↓,

1916- AL,    Allicin Bioavailability and Bioequivalence from Garlic Supplements and Garlic Foods
- Review, Nor, NA
*BioAv↝, For enteric tablets, ABB varied from 36–104%
*eff↓, but it was reduced to 22–57% when consumed with a high-protein meal, due to slower gastric emptying.
*BioAv↝, garlic powder capsules gave 26–109%
*BioAv↝, Kwai garlic powder tablets, which have been used in a large number of clinical trials, gave 80% ABB, validating it as representing raw garlic in those trials
*eff↑, Hence, many brands of garlic supplements have been enteric-coated to prevent disintegration in the stomach
*Half-Life∅, Hence, many brands of garlic supplements have been enteric-coated to prevent disintegration in the stomach
*eff↑, all brands of normal tablets gave high allicin bioavailability
*eff↑, Hence, both low-protein and high-protein meals would provide a gastric pH ≥ 4.0 for an ample amount of time for the alliinase in disintegrated normal tablets and capsules to convert most of the alliin to allicin in the stomach.
*Dose∅, Three tablets has been the most common dose used in these trials. The N1 tablets in these trials have been consistently standardized to contain 3.9 mg alliin/tablet and to yield 1.8 mg allicin/tablet
*eff↑, The bioavailability of allicin from garlic powder supplements containing alliin and active alliinase can be as high as that from an equivalent amount of crushed raw garlic containing maximum allicin, when consumed with a meal.

297- ALA,    Insights on the Use of α-Lipoic Acid for Therapeutic Purposes
- Review, BC, SkBr3 - Review, neuroblastoma, SK-N-SH - Review, AD, NA
PDH↑, ALA is capable of activating pyruvate dehydrogenase in tumor cells.
TumCG↓, ALA also significantly inhibited tumor growth in mouse xenograft model using BCPAP and FTC-133 cells
ROS↑, ALA is able to generate ROS, which promote ALA-dependent cell death in lung cancer [75], breast cancer [76] and colon cancer
AMPK↑,
EGR4↓,
Half-Life↓, Data suggests that ALA has a short half-life and bioavailability (about 30%)
BioAv↝,
*GSH↑, Moreover, it is able to increase the glutathione levels inside the cells, that chelate and excrete a wide variety of toxins, especially toxic metals from the body
*IronCh↑, The existence of thiol groups in ALA is responsible for its metal chelating abilities [14,35].
*ROS↓, ALA exerts a direct impact in oxidative stress reduction
*antiOx↑, ALA is being referred as the universal antioxidant
*neuroP↑, ALA has neuroprotective effects on Aβ-mediated cytotoxicity
*Ach↑, ALA show anti-dementia or anti-AD properties by increasing acetylcholine (ACh) production through activation of choline acetyltransferase, which increases glucose absorption
*lipid-P↓, ALA has multiple and complex effects in this way, namely scavenging ROS, transition metal ions, increasing the levels of reduced glutathione [59,63], scavenging of lipid peroxidation products
*IL1β↓, ALA downregulated the levels of the inflammatory cytokines IL-1B and IL-6 in SK-N-BE human neuroblastoma cells
*IL6↓,
TumCP↓, ALA inhibited cell proliferation, [18F]-FDG uptake and lactate formation and increased apoptosis in neuroblastoma cell lines Kelly, SK-N-SH, Neuro-2a and in the breast cancer cell line SkBr3.
FDG↓,
Apoptosis↑,
AMPK↑, ALA suppressed thyroid cancer cell proliferation and growth through activation of AMPK and subsequent down-regulation of mTOR-S6 signaling pathway in BCPAP, HTH-83, CAL-62 and FTC-133 cells lines.
mTOR↓,
EGFR↓, ALA inhibited cell proliferation through Grb2-mediated EGFR down-regulation
TumCI↓, ALA inhibited metastatic breast cancer cells migration and invasion, partly through ERK1/2 and AKT signaling
TumCMig↓,
*memory↑, Alzheimer’s Disease: ALA led to a marked improvement in learning and memory retention
*BioAv↑, Since ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability.
*BioAv↝, ALA were found to be considerably higher in adults with mean age greater than 75 years as compared to young adults between the ages of 18 and 45 years.
*other↓, ALA treatment has been recently studied by some clinical trials to explain its efficacy in preventing miscarriage
*other↝, 1800 mg of ALA or placebo were administrated orally every day, except during the period 2 days before to 4 days after administration of each dose of platinum to avoid potential interference with platinum’s antitumor effects
*Half-Life↓, Data shows a short half-life and bioavailability of about 30% of ALA due to mechanisms involving hepatic degradation, reduced ALA solubility as well as instability in the stomach.
*BioAv↑, ALA bioavailability is greatly reduced after food intake and it has been recommended that ALA should be admitted at least 2 h after eating or if taken before; meal should be taken at least 30 min after ALA administration
*ChAT↑, ALA show anti-dementia or anti-AD properties by increasing acetylcholine (ACh) production through activation of choline acetyltransferase, which increases glucose absorption
*GlucoseCon↑,

278- ALA,    The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment
- Review, NA, NA
ROS↑, direct anticancer effect of the antioxidant ALA is manifested as an increase in intracellular ROS levels in cancer cells
NRF2↑, enhance the activity of the anti-inflammatory protein nuclear factor erythroid 2–related factor 2 (Nrf2), thereby reducing tissue damage
Inflam↓,
frataxin↑,
*BioAv↓, Oral ALA has a bioavailability of approximately 30% due to issues such as poor stability in the stomach, low solubility, and hepatic degradation.
ChemoSen↑, ALA can enhance the functionality of various other anticancer drugs, including 5-fluorouracil in colon cancer cells and cisplatin in MCF-7 breast cancer cells
Hif1a↓, it is inferred that lipoic acid may inhibit the expression of HIF-1α
eff↑, act as a synergistic agent with natural polyphenolic substances such as apigenin and genistein
FAK↓, ALA inhibits FAK activation by downregulating β1-integrin expression and reduces the levels of MMP-9 and MMP-2
ITGB1↓,
MMP2↓,
MMP9↓,
EMT↓, ALA inhibits the expression of EMT markers, including Snail, vimentin, and Zeb1
Snail↓,
Vim↓,
Zeb1↓,
P53↑, ALA also stimulates the mutant p53 protein and depletes MGMT
MGMT↓, depletes MGMT by inhibiting NF-κB signalling, thereby inducing apoptosis
Mcl-1↓,
Bcl-xL↓,
Bcl-2↓,
survivin↓,
Casp3↑,
Casp9↑,
BAX↑,
p‑Akt↓, ALA inhibits the activation of tumour stem cells by reducing Akt phosphorylation.
GSK‐3β↓, phosphorylation and inactivation of GSK3β
*antiOx↑, indirect antioxidant protection through metal chelation (ALA primarily binds Cu2+ and Zn2+, while DHLA can bind Cu2+, Zn2+, Pb2+, Hg2+, and Fe3+) and the regeneration of certain endogenous antioxidants, such as vitamin E, vitamin C, and glutathione
*ROS↓, ALA can directly quench various reactive species, including ROS, reactive nitrogen species, hydroxyl radicals (HO•), hypochlorous acid (HclO), and singlet oxygen (1O2);
selectivity↑, In normal cells, ALA acts as an antioxidant by clearing ROS. However, in cancer cells, it can exert pro-oxidative effects, inducing pathways that restrict cancer progression.
angioG↓, Combining these two hypotheses, it can be hypothesized that ALA may regulate copper and HIF-2α to limit tumor angiogenesis.
MMPs↓, ALA was shown to inhibit invasion by decreasing the mRNA levels of key matrix metalloproteinases (MMPs), specifically MMP2 and MMP9, which are crucial for the metastatic process
NF-kB↓, ALA has been shown to enhance the efficacy of the chemotherapeutic drug paclitaxel in breast and lung cancer cells by inhibiting the NF-κB signalling pathway and the functions of integrin β1/β3 [138,139]
ITGB3↓,
NADPH↓, ALA has been shown to inhibit NADPH oxidase, a key enzyme closely associated with NP, including NOX4

3443- ALA,    Molecular and Therapeutic Insights of Alpha-Lipoic Acid as a Potential Molecule for Disease Prevention
- Review, Var, NA - Review, AD, NA
*antiOx↑, antioxidant potential and free radical scavenging activity.
*ROS↓,
*IronCh↑, Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E.
*cognitive↑, α-Lipoic acid enantiomers and its reduced form have antioxidant, cognitive, cardiovascular, detoxifying, anti-aging, dietary supplement, anti-cancer, neuroprotective, antimicrobial, and anti-inflammatory properties.
*cardioP↓,
AntiCan↑,
*neuroP↑,
*Inflam↓, α-Lipoic acid can reduce inflammatory markers in patients with heart disease
*BioAv↓, bioavailability in its pure form is low (approximately 30%).
*AntiAge↑, As a dietary supplements α-lipoic acid has become a common ingredient in regular products like anti-aging supplements and multivitamin formulations
*Half-Life↓, it has a half-life (t1/2) of 30 min to 1 h.
*BioAv↝, It should be stored in a cool, dark, and dry environment, at 0 °C for short-term storage (few days to weeks) and at − 20 °C for long-term storage (few months to years).
other↝, Remarkably, neither α-lipoic acid nor dihydrolipoic acid can scavenge hydrogen peroxide, possibly the most abundant second messenger ROS, in the absence of enzymatic catalysis.
EGFR↓, α-Lipoic acid inhibits cell proliferation via the epidermal growth factor receptor (EGFR) and the protein kinase B (PKB), also known as the Akt signaling, and induces apoptosis in human breast cancer cells
Akt↓,
ROS↓, α-Lipoic acid tramps the ROS followed by arrest in the G1 phase of the cell cycle and activates p27 (kip1)-dependent cell cycle arrest via changing of the ratio of the apoptotic-related protein Bax/Bcl-2
TumCCA↑,
p27↑,
PDH↑, α-Lipoic acid drives pyruvate dehydrogenase by downregulating aerobic glycolysis and activation of apoptosis in breast cancer cells, lactate production
Glycolysis↓,
ROS↑, HT-29 human colon cancer cells; It was concluded that α-lipoic acid induces apoptosis by a pro-oxidant mechanism triggered by an escalated uptake of mitochondrial substrates in oxidizable form
*eff↑, Several studies have found that combining α-lipoic acid and omega-3 fatty acids has a synergistic effect in slowing functional and cognitive decline in Alzheimer’s disease
*memory↑, α-lipoic acid inhibits brain weight loss, downregulates oxidative tissue damage resulting in neuronal cell loss, repairs memory and motor function,
*motorD↑,
*GutMicro↑, modulates the gut microbiota without reducing the microbial diversity (

3539- ALA,    Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential
- Review, AD, NA
*ROS↓, scavenges free radicals, chelates metals, and restores intracellular glutathione levels which otherwise decline with age.
*IronCh↑, LA preferentially binds to Cu2+, Zn2+ and Pb2+, but cannot chelate Fe3+, while DHLA forms complexes with Cu2+, Zn2+, Pb2+, Hg2+ and Fe3+
*GSH↑,
*antiOx↑, LA has long been touted as an antioxidant
*NRF2↑, activate Phase II detoxification via the transcription factor Nrf2
*MMP9↓, lower expression of MMP-9 and VCAM-1 through repression of NF-kappa-B.
*VCAM-1↓,
*NF-kB↓,
*cognitive↑, it has been used to improve age-associated cardiovascular, cognitive, and neuromuscular deficits, and has been implicated as a modulator of various inflammatory signaling pathways
*Inflam↓,
*BioAv↝, LA bioavailability may be dependent on multiple carrier proteins.
*BioAv↝, observed that approximately 20-40% was absorbed [
*BBB↑, LA has been shown to cross the blood-brain barrier in a limited number of studies
*H2O2∅, Neither species is active against hydrogen peroxide
*neuroP↑, chelation of iron and copper in the brain had a positive effect in the pathobiology of Alzheimer’s Disease by lowering free radical damage
*PKCδ↑, In addition to PKCδ, LA activates Erk1/2 [92, 93], p38 MAPK [94], PI3 kinase [94], and Akt [94-97].
*ERK↑,
*MAPK↑,
*PI3K↑,
*Akt↑,
*PTEN↓, LA decreases the activities of Protein Tyrosine Phosphatase 1B [99], Protein Phosphatase 2A [95], and the phosphatase and tensin homolog PTEN
*AMPK↑, LA activates peripheral AMPK
*GLUT4↑, In skeletal muscle, LA is proposed to recruit GLUT4 from its storage site in the Golgi to the sarcolemma, so that glucose uptake is stimulated by the local increase in transporter abundance.
*GlucoseCon↑,
*BP↝, Feeding LA to hypertensive rats normalized systolic blood pressure and cytosolic free Ca2+
*eff↑, Clinically, LA administration (in combination with acetyl-L-carnitine) showed some promise as an antihypertensive therapy by decreasing systolic pressure in high blood pressure patients and subjects with the metabolic syndrome
*ICAM-1↓, decreased demyelination and spinal cord expression of adhesion molecules (ICAM-1 and VCAM-1)
*VCAM-1↓,
*Dose↝, Considering the transient cellular accumulation of LA following an oral dose, which does not exceed low micromolar levels, it is entirely possible that some of the cellular effects of LA when given at supraphysiological concentrations may be not be c

3542- ALA,    Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review
- Review, Var, NA
*antiOx↑, powerful antioxidant that regenerates other antioxidants (e.g., vitamins E and C, and reduced glutathione) and has metal-chelating activity.
*VitE↑,
*VitC↑,
*GSH↑,
*IronCh↑,
*BioAv↑, Both fat and water soluble, it is readily absorbed from the gut and crosses cellular and blood-brain membrane barriers
*BBB↑,

3545- ALA,    Potential therapeutic effects of alpha lipoic acid in memory disorders
- Review, AD, NA
*neuroP↑, potential therapeutic effects for the prevention or treatment of neurodegenerative disease
*Inflam↓, ALA is able to regulate inflammatory cell infiltration into the central nervous system and to down-regulate VCAM-1 and human monocyte adhesion to epithelial cells
*VCAM-1↓, down-regulate vascular cell adhesion molecule-1 (VCAM-1) and the human monocyte adhesion to epithelial cells
*5HT↑, ALA is able to improve the function of the dopamine, serotonin and norepinephrine neurotransmitters
*memory↑, scientific evidence shows that ALA possesses the ability to improve memory capacity in a number of experimental neurodegenerative disease models and in age-related cognitive decline in rodents
*BioAv↝, Between 27 and 34% of the oral intake is available for tissue absorption; the liver is one of the main clearance organs on account of its high absorption and storage capacity
*Half-Life↓, The plasma half-life of ALA is approximately 30 minutes. Peak urinary excretion occurs 3-6 hours after intake.
*NF-kB↓, As an inhibitor of NF-κβ, ALA has been studied in cytokine-mediated inflammation
*antiOx↑, In addition to the direct antioxidant properties of ALA, some studies have shown that both ALA and DHLA and a great capacity to chelate redox-active metals, such as copper, free iron, zinc and magnesium, albeit in different ways (
*IronCh↑, ALA is able to chelate transition metal ions and, therefore, modulate the iron- and copper-mediated oxidative stress in Alzheimer’s plaques
*ROS↓, iron and copper chelation with DHLA may explain the low level of free radical damage in the brain and the improvement in the pathobiology of Alzheimer’s Disease
*ATP↑, ALA may increase the mitochondrial synthesis of ATP in the brain of elderly rats, thereby increasing the activity of the mitochondrial enzymes
*ChAT↑, ALA may also play a role in the activation of the choline acetyltransferase enzyme (ChAT), which is essential in the anabolism of acetylcholine
*Ach↑,
*cognitive↑, One experimental study has shown that in rats that had been administered ALA there was an inversion in the cognitive dysfunction with an increase in ChAT activity in the hippocampus
*lipid-P↓, administration of ALA reduces lipid peroxidation in different areas of the brain and increases the activity of antioxidants such as ascorbate (vitamin C), α-tocopherol (vitamin E), glutathione,
*VitC↑,
*VitE↑,
*GSH↑,
*SOD↑, and also the activity of superoxide dismutase, catalase, glutathione-peroxidase, glutathione-reductase, glucose-6-P-dehydrogenase
*Catalase↑,
*GPx↑,
*Aβ↓, Both ALA and DHLA have been seen to inhibit the formation of Aβ fibrils

3549- ALA,    Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia
- Review, AD, NA
*Inflam↓, LA and ALA attenuate neuroinflammation by modulating inflammatory signaling.
*other↝, ratio of LA to ALA in typical Western diets is reportedly 8–10:1 or higher, which is rather higher than the ideal ratio of LA to ALA (1–2:1) required to reach the maximal conversion of ALA to its longer chain PUFAs
*other↝, LA and ALA are essential PUFAs that must be obtained from dietary intake because they cannot be synthesized de novo
*neuroP↑, several studies have also suggested that lower dietary intake of LA influences AA metabolism in brain and subsequently causes progressive neurodegenerative disorders
*BioAv↝, LA cannot be synthesized in the human body
*adiP↑, study suggested that LA-rich oil consumption leads to the high levels of adiponectin in the blood [114], which could stimulate mitochondrial function in the liver and skeletal muscles for energy thermogenesis
*BBB↑, Although LA can penetrate the BBB, most of the LA that enters the brain cannot be changed into AA [48,49], and 59 % of the LA that enters the brain is broken down by fatty acid β-oxidation
*Casp6↓, In neurons, LA and ALA attenuate the activation of cleaved caspase-3/-9, p-NF-Kb and the production of TNF-a, IL-6, IL-1b, and ROS by binding GPR40 and GPR120.
*Casp9↓,
*TNF-α↓,
*IL6↓,
*IL1β↓,
*ROS↓,
*NO↓, LA reduces NO production and inducible nitric oxide synthases (iNOS) protein expression in BV-2 microglia
*iNOS↓,
*COX2↓, ALA increases antioxidant enzyme activities in the brain [182] and inhibits the activation of COX-2 in AD models
*JNK↓, ALA has also been shown to suppress the activation of c-Jun N-terminal kinases (JNKs) and p-NF-kB p65 (Ser536), which is involved in inflammatory signaling
*p‑NF-kB↓,
*Aβ↓, and to inhibit Aβ aggregation and neuronal cell necrosis
*BP↓, LA also improves blood pressure, blood triglyceride and cholesterol levels, and vascular inflammation
*memory↑, One study suggested that long-term intake of ALA enhances memory function by increasing hippocampal neuronal function through activation of cAMP response element-binding protein (CREB) [192], extracellular signal-regulated kinase (ERK), and Akt signa
*cAMP↑,
*ERK↑,
*Akt↑,
cognitive?, Furthermore, ALA administration inhibits Aβ induced neuroinflammation in the cortex and hippocampus and enhances cognitive function

3550- ALA,    Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer's Disease?
- Review, AD, NA
*antiOx↑, antioxidant and anti-inflammatory properties
*Inflam↓,
*PGE2↓, α-LA has mechanisms of epigenetic regulation in genes related to the expression of various inflammatory mediators, such PGE2, COX-2, iNOS, TNF-α, IL-1β, and IL-6
*COX2↓,
*iNOS↓,
*TNF-α↓,
*IL1β↓,
*IL6↓,
*BioAv↓, α-LA has rapid uptake and low bioavailability and the metabolism is primarily hepatic
*Ach↑, α-LA increases the production of acetylcholine [30], inhibits the production of free radicals [31], and promotes the downregulation of inflammatory processes
*ROS↓,
*cognitive↑, Studies have shown that patients with mild AD who were treated with α-LA showed a slower progression of cognitive impairment
*neuroP↑, α-LA is classified as an ideal neuroprotective antioxidant because of its ability to cross the blood-brain barrier and its uniform uptake profile throughout the central and peripheral nervous systems
*BBB↑,
*Half-Life↓, α-LA presented a mean time to reach the maximum plasma concentration (tmax) of 15 minutes and a mean plasma half-life (t1/2) of 14 minutes
*BioAv↑, LA consumption is recommended 30 minutes before or 2 hours after food intake
*Casp3↓, α-LA had an effect on caspases-3 and -9, reducing the activity of these apoptosis-promoting molecules to basal levels
*Casp9↓,
*ChAT↑, α-LA increased the expression of M2 muscarinic receptors in the hippocampus and M1 and M2 in the amygdala, in addition to ChaT expression in both regions.
*cognitive↑, α-LA acts on these apoptotic signalling pathways, leading to improved cognitive function and attenuation of neurodegeneration.
*eff↑, Based on their results, the authors suggest that treatment with α-LA would be a successful neuroprotective option in AD, at least as an adjuvant to standard treatment with acetylcholinesterase inhibitors.
*cAMP↑, The increase of cAMP caused by α-LA inhibits the release of proinflammatory cytokines, such as IL-2, IFN-γ, and TNF-α.
*IL2↓,
*INF-γ↓,
*TNF-α↓,
*SIRT1↑, Protein expression encoded by SIRT1 showed higher levels after α-LA treatment, especially in liver cells.
*SOD↑, antioxidant enzymes (SOD and GSH-Px) and malondialdehyde (MDA) were analysed by ELISA after 24 h of MCAO, which showed that the enzymatic activities were recovered and MDA was reduced in the α-LA-treated groups i
*GPx↑,
*MDA↓,
*NRF2↑, The ratio of nucleus/cytoplasmic Nrf2 was higher in the α-LA group 40 mg/kg, indicating that the activation of this factor also occurred in a dose-dependent manner

3551- ALA,    Alpha lipoic acid treatment in late middle age improves cognitive function: Proteomic analysis of the protective mechanisms in the hippocampus
- in-vivo, AD, NA
*cognitive↑, ALA improves cognitive function in ageing mice.
*Apoptosis↓, ALA downregulates apoptosis, and neuroinflammatory associated proteins in ageing mice.
*Inflam↓,
*antiOx↑, Alpha lipoic acid (ALA), a powerful antioxidant, has the potential to relieve age-related cognitive impairment and neurodegenerative disease.
*BioAv↝, Alpha lipoic acid (ALA) is a sulfur-containing and both water-soluble and lipid-soluble coenzyme involved in the energy metabolism of carbohydrates, proteins and lipids
*neuroP↑, neuroprotective action of alpha lipoic acid has been demonstrated in a number of cellular or animal models of Parkinson's disease (PD), AD and amyotrophic lateral sclerosis (ALS) due to its antioxidative and anti-inflammatory properties

3546- ALA,    Cognitive and Mood Effect of Alpha-Lipoic Acid Supplementation in a Nonclinical Elder Sample: An Open-Label Pilot Study
- Study, AD, NA
*antiOx↑, (ALA), a known antioxidant compound abundant in vegetables and animal tissues, in reducing oxidative stress in the aging brain and preventing cognitive decline.
*ROS↓,
*cognitive∅, no statistically significant effects either on cognitive function, executive function, or mood were found
*lipid-P↓, ALA has been shown to reduce lipid peroxidation and increase the activity of antioxidant molecules in different areas of the brain of experimental animals
*memory↑, ALA has been suggested to improve memory by increasing the activity of choline acetyltransferase (ChAT)
*ChAT↑,
*Acetyl-CoA↑, a crucial step in the biosynthesis of acetylcholine, in the hippocampi of treated rats
*Aβ↓, ALA administration can inhibit the formation of beta-amyloid fibrils and their expansion, thus exerting a direct effect on a known mechanism involved in neurodegenerative diseases
*BioAv↑, ALA is abundantly present in vegetables and animal tissues [17], is promptly bioavailable, and has no known toxic effects on animals and human subjects
*BBB↑, ALA has been demonstrated to successfully cross the blood–brain barrier in animal models
*toxicity∅, and no collateral effects have been observed at the oral daily doses currently employed as supplements (from 50 to 2400 mg/day)

1146- AP,    Potential use of nanoformulated ascorbyl palmitate as a promising anticancer agent: First comparative assessment between nano and free forms
- in-vivo, Nor, NA
TumCCA↑, G2/M phase
Apoptosis↑,
IL6↓,
STAT3↓,
angioG↓,
TumMeta↓,
VEGF↓,
MMP9↓,
SOD↑,
Catalase↑,
GSH↓,
MDA↓,
NO↓,
*BioAv↑, nano particles

1152- Api,    Does Oral Apigenin Have Real Potential for a Therapeutic Effect in the Context of Human Gastrointestinal and Other Cancers?
- Analysis, Nor, NA
*BioAv↓, We find that oral intake of dietary materials would require heroic ingestion amounts and is not feasible. However, use of supplements of semi-purified apigenin in capsule form could reach target blood levels using amounts that are within the range cu
Half-Life∅, elimination half-life (T1/2) averaging 2.52 ± 0.56h
*BioAv↓, bioavailability is in the region of 30%
Dose∅, Blood and urine samples were taken following a meal consisting of 2g parsley/kg body weight–which was equivalent to ∼17mg of apigenin -> 28–337nmol/L at 6–10h after consumption
eff↑, Apigenin and quercetin enhance their own and each other’s bioavailability by downregulating the activity of ABC transporters
CYP1A2↓, status of apigenin as an inhibitor of CYP1A2, CYP2C9 and CYP3A4
CYP2C9↓,
CYP3A4↓,

2584- Api,  Chemo,    The versatility of apigenin: Especially as a chemopreventive agent for cancer
- Review, Var, NA
ChemoSen↑, Apigenin has also been studied for its potential as a sensitizer in cancer therapy, improving the efficacy of traditional chemotherapeutic drugs and radiotherapy
RadioS↑, Apigenin enhances radiotherapy effects by sensitizing cancer cells to radiation-induced cell death
eff↝, It works by suppressing the expression of involucrin (hINV), a hallmark of keratinocyte development. Apigenin inhibits the rise in hINV expression caused by differentiating agents
DR5↑, Apigenin also greatly upregulates the expression of death receptor 5 (DR5
selectivity↑, Surprisingly, apigenin-mediated increase of DR5 expression is missing in normal mononuclear cells from human peripheral blood and doesn't subject these cells to TRAIL-induced death.
angioG↓, Apigenin has been found to prevent angiogenesis by targeting critical signaling pathways involved in blood vessel creation.
selectivity↑, Importantly, apigenin has been demonstrated to selectively kill cancer cells while sparing normal ones
chemoP↑, This selective cytotoxicity is beneficial in cancer therapy because it reduces the negative effects frequently associated with traditional treatments like chemotherapy
MAPK↓, Apigenin's ability to suppress MAPK signaling adds to its anticancer properties.
PI3K↓, Apigenin suppresses the PI3K/Akt/mTOR pathway, which is typically dysregulated in cancer.
Akt↓,
mTOR↓,
Wnt↓, Apigenin inhibits Wnt signaling by increasing β-catenin degradation
β-catenin/ZEB1↓,
GLUT1↓, fig 3
radioP↑, while reducing radiation-induced damage to healthy tissues
BioAv↓, obstacles associated with apigenin's low bioavailability and stability

1550- Api,    Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential
- Analysis, NA, NA
*BioAv↑, apigenin-phospholipid phytosome (APLC) was developed to improve the aqueous solubility, dissolution, in vivo bioavailability, and antioxidant activity of apigenin
*antiOx↑, exhibited antioxidant potential

1537- Api,    Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer
- Review, PC, NA
TumCP↓,
TumCCA↑,
Apoptosis↑,
MMPs↓,
Akt↓,
*BioAv↑, delivery systems (nanosuspension, polymeric micelles, liposomes).
*BioAv↓, low solubility of apigenin in water (1.35 μg/mL) and its high permeability
Half-Life∅, (appearing in blood circulation after 3.9 h)
Hif1a↓, (HIF-1α) is targeted by apigenin in several cancers such as, ovarian cancer, prostate cancer, and lung cancer
GLUT1↓, GLUT-1 is blocked by apigenin (0–100 μM) under normoxic conditions
VEGF↓,
ChemoSen↑, apigenin can be applied as a chemosensitizer
ROS↑, accumulation of ROS produced were stimulated
Bcl-2↓, down-regulation of anti-apoptotic factors Bcl-2 and Bcl-xl as well as the up-regulation of apoptotic factors Bax and Bim.
Bcl-xL↓,
BAX↑,
BIM↑,

1538- Api,    Enhancing oral bioavailability using preparations of apigenin-loaded W/O/W emulsions: In vitro and in vivo evaluations
- in-vivo, Nor, NA
*BioAv↑, The peak concentrations in the apigenin suspensions and the apigenin-loaded emulsions were 43.55 lg/ml and 395.47 lg/ml, respectively, indicating an approximate ninefold enhancement of oral bioavailability.

1540- Api,    Determination of Total Apigenin in Herbs by Micellar Electrokinetic Chromatography with UV Detection
- Analysis, NA, NA
*BioAv↑, Our assay exhibits about 40-fold lower LOD in comparison with earlier published MEKC procedure

1542- Api,    Bioavailability of Apigenin from Apiin-Rich Parsley in Humans
- Human, NA, NA
*BioAv?, 2 g blanched parsley/kilogram body weight was consumed. maximum apigenin plasma concentration of 127 +/- 81 nmol/l was reached after 7.2 +/- 1.3 h maximum plasma concentrations were comparably low (0.34 umol/l)
*Half-Life?, peak at 7.2 hours

1544- Api,    The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68
- in-vitro, Nor, WRL68
*SREBF2↓, apigenin prevented SREBP-2 translocation and reduced the downstream gene HMGCR transcription
*HMGCR↓,
*Dose∅, oral dosages of 5.4 mg apigenin/kg body weight would produce a C max value of 16.5 μm in serum
*BioAv?, Given its high bioavailability, its action on cholesterol synthesis could be achievable in this administrative method

1548- Api,    A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms
- Review, Colon, NA
*BioAv↓, Apigenin is not easily absorbed orally because of its low water solubility, which is only 2.16 g/mL
*Half-Life∅, Apigenin is slowly absorbed and eliminated from the body, as evidenced by its half‐life of 91.8 h in the blood
selectivity↑, selective anticancer effects and effective cell cytotoxic activity while exhibiting negligible toxicity to ordinary cells
*toxicity↓, intentional consumption in higher doses, as the toxicity hazard is low
Wnt/(β-catenin)↓, inhibiting the Wnt/β‐catenin
P53↑,
P21↑,
PI3K↓,
Akt↓,
mTOR↓,
TumCCA↑, G2/M
TumCI↓,
TumCMig↓,
STAT3↓, apigenin can activate p53, which improves catalase and inhibits STAT3,
PKM2↓,
EMT↓, reversing increases in epithelial–mesenchymal transition (EMT)
cl‑PARP↑, apigenin increases the cleavage of poly‐(ADP‐ribose) polymerase (PARP) and rapidly enhances caspase‐3 activity,
Casp3↑,
Bax:Bcl2↑,
VEGF↓, apigenin suppresses VEGF transcription
Hif1a↓, decrease in hypoxia‐inducible factor 1‐alpha (HIF‐1α
Dose∅, effectiveness of apigenin (200 and 300 mg/kg) in treating CC was evaluated by establishing xenografts on Balb/c nude mice.
GLUT1↓, Apigenin has been found to inhibit GLUT1 activity and glucose uptake in human pancreatic cancer cells
GlucoseCon↓,

1551- Api,    Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles
- Review, NA, NA
*BioAv↑, nanocarriers such as nanocrystals, micelles, liposomes, PLGA, etc., have highlighted the significantly increased bioavailability

1554- Api,    A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota
- Review, NA, NA
*BioAv↑, apigenin-7-O-glucoside, and acylated derivatives are more water soluble than apigenin [10] and their structures have a major impact on their absorption and bioavailability, with the best bioavailability occurring when apigenin is bound to β-glycoside
*BioAv↑, organic solvents like DMSO [34] and Tween 80 [31] are used to dissolve apigenin prior to their addition to an aqueous solution to increase solubility
*BioAv↑, dietary apigenin is available for metabolism by the gut microbiota
*BioAv↓, Human gut microbiota has been found to harbor enzymes that could degrade apigenin
*eff↑, This study strongly supports that the gut microbiota plays a major role in the metabolism of dietary apigenin.

1556- Api,    Dissolution and antioxidant potential of apigenin self nanoemulsifying drug delivery system (SNEDDS) for oral delivery
- Analysis, NA, NA
*BioAv↑, apigenin was developed as SNEDDS to solve its dissolution problem and enhance oral bioavailability
*Dose∅, Smix ratio of 1:1 and concentrations of Gelucire 44/14, Tween 80, and PEG 400 in the ranges of 5–40% w/w, 30–47.5% w/w, and 30–47.5% w/w, respectively, as shown in Table 1.

1557- Api,    Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement
- in-vitro, Nor, NA
*BioAv↑, AP nanocrystals exhibited a significantly decreased tmax, a 3.6-fold higher peak plasma concentration (Cmax) and 3.4-fold higher area under the curve (AUC).

1558- Api,    Preparation, characterization and antitumor activity evaluation of apigenin nanoparticles by the liquid antisolvent precipitation technique
- in-vitro, Liver, HepG2
BioAv↑, oral bioavailability of apigenin nanoparticles was about 4.96 times higher than that of the raw apigenin
*toxicity∅, apigenin nanoparticles had no toxic effect on the organs of rats.
eff↑, higher inhibition to HepG2 cells by lower IC50 than that of raw apigenin. In addition, The IC50 values of apigenin nanoparticles and raw apigenin were separately 89.33 and 216.84 μg/mL

557- ART/DHA,    Artemisinin and Its Derivatives in Cancer Care
- Review, Var, NA
*BioAv↓, with High fat and high calorie meals
*BioAv↑, DHA dihydroartemisinin have improved bioavailability
Apoptosis↑,
EGFR↓,
CD31↓,
Ki-67↓,
P53↓,
TfR1/CD71↑,
P-gp↓, many artemisinin derivatives act as P-gp inhibitors
PD-1↝, Caution when used with mmunotherapy (PD1/PDL1 inhibitors)

2570- ART/DHA,    Discovery, mechanisms of action and combination therapy of artemisinin
- Review, Nor, NA
*BioAv↓, Because the parent drug of artemisinin is poorly soluble in water or oil, the carbonyl group of artemisinin was reduced to obtain DHA
*Half-Life↓, artemisinins also have a very short elimination half-life (∼1 h)
*toxicity↓, Artemisinin and its derivatives are generally safe and well-tolerated.
*ROS↑, Artemisinins are considered prodrugs that are activated to generate carbon-centered free radicals or reactive oxygen species (ROS).
GSH↓, earlier studies suggest that artemisinins modulate parasite oxidative stress and reduce the levels of antioxidants and glutathione (GSH) in the parasite
selectivity↑, Many publications corroborate the essence of iron-dependent bioactivation

2577- ART/DHA,    Artemisinin and its derivatives in cancer therapy: status of progress, mechanism of action, and future perspectives
- Review, Var, NA
eff↑, Artemisinin-transferrin conjugate has been shown to be more potent than artemisinin in killing cancer cells
TumCCA↑, ART has been shown to act on the G 1 phase , and DHA and ARS on the G2/M phase arrest
BioAv↑, Artemetherâ's solubility has been increased by 3- to 15-fold using pegylated lysine-based copolymeric den- dritic micelles (5-25 nm, loading 0.5-1 g/g) with prolonged release of up to 1-2 days in vitro
eff↑, ART crystals have been encapsulated with chitosan, gelatin, and alginate (766 nm) with a 90% encapsulation efficiency and improved hydrophilicity
ChemoSen↑, Combining artemisinins with chemotherapy in nano drug delivery systems can improve efficacy through higher com- bination index

2569- ART/DHA,    A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction
- Human, Nor, NA
*Half-Life↝, Artemisinin was found to induce its own metabolism with a mean induction time of 1.9 h, whereas the enzyme elimination half-life was estimated to 37.9 h.
BioAv↝, Artemisinin produces a rapid onset of enzyme induction, resulting in a decrease in its own bioavailability over time.
*Half-Life↓, Plasma artemisinin concentrations reach a peak within 2–3 h after oral intake and decline with a short half-life of 1.5–2 h
BioAv↑, Artemisinin is believed to pass through the gut membrane relatively easily [3, 4], although high oral clearance values are indicative of high first-pass metabolism of the compound, resulting in low bioavailability
*Dose↝, either a daily single dose of 500 mg oral artemisinin for 5 days, or single oral doses of 100/100/250/250/500 mg on each of the first 5 days.

3382- ART/DHA,    Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge?
- Review, Var, NA
AntiCan↑, antimalarial drug, artemisinin that has shown anticancer activities in vitro and in vivo.
toxicity↑, safety of artemisinins in long-term cancer therapy requires further investigation.
Ferroptosis↑, Artemisinins acts against cancer cells via various pathways such as inducing apoptosis (Zhu et al., 2014; Zuo et al., 2014) and ferroptosis via the generation of reactive oxygen species (ROS) (Zhu et al., 2021) and causing cell cycle arrest
ROS↑,
TumCCA↑,
BioAv↝, absolute bioavailability was estimated to be 21.6%. ART has good solubility and is not lipophilic
eff↝, ART would not distribute well to the tissues and might be more effective in treating cancers such as leukemia, hepatocellular carcinoma (HCC), or renal cell carcinoma because the liver and kidney are highly perfused organs.
Half-Life↓, Pharmacokinetic studies showed a relatively short t1/2 of artemisinins. For ART, t1/2 was 0.41 h
Ferritin↓, Figure 3
GPx4↓,
NADPH↓,
GSH↓,
BAX↑,
Cyt‑c↑,
cl‑Casp3↑,
VEGF↓, angiogenesis
IL8↓,
COX2↓,
MMP9↓,
E-cadherin↑,
MMP2↓,
NF-kB↓,
p16↑, cell cycle arrest
CDK4↓,
cycD1↓,
p62↓, autophagy
LC3II↑,
EMT↓, suppressing EMT and CSCs
CSCs↓,
Wnt↓, Depress Wnt/β-catenin signaling pathway
β-catenin/ZEB1↓,
uPA↓, Inhibit u-PA activity, protein and mRNA expression
TumAuto↑, Emerging evidence suggests that autophagy induction is one of the molecular mechanisms underlying anticancer activity of artemisinins
angioG↓, Inhibition of Angiogenesis
ChemoSen↑, Many studies also reported that the use of artemisinins sensitized cancer cells to conventional chemotherapy and exerted a synergistic effect on apoptosis, inhibition of cell growth, and a reduction of cell viability, leading to a lower IC50 value

3391- ART/DHA,    Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug
- Review, Var, NA
TumCP↓, inhibiting cancer proliferation, metastasis, and angiogenesis.
TumMeta↓,
angioG↓,
TumVol↓, reduces tumor volume and progression
BioAv↓, artemisinin has low solubility in water or oil, poor bioavailability, and a short half-life in vivo (~2.5 h)
Half-Life↓,
BioAv↑, semisynthetic derivatives of artemisinin such as artesunate, arteeter, artemether, and artemisone have been effectively used as antimalarials with good clinical efficacy and tolerability
eff↑, preloading of cancer cells with iron or iron-saturated holotransferrin (diferric transferrin) triggers artemisinin cytotoxicity
eff↓, Similarly, treatment with desferroxamine (DFO), an iron chelator, renders compounds inactive
ROS↑, ROS generation may contribute with the selective action of artemisinin on cancer cells.
selectivity↑, Tumor cells have enhanced vulnerability to ROS damage as they exhibit lower expression of antioxidant enzymes such as superoxide dismutase, catalase, and gluthatione peroxidase compared to that of normal cells
TumCCA↑, G2/M, decreased survivin
survivin↓,
BAX↑, Increased Bax, activation of caspase 3,8,9 Decreased Bc12, Cdc25B, cyclin B1, NF-κB
Casp3↓,
Casp8↑,
Casp9↑,
CDC25↓,
CycB↓,
NF-kB↓,
cycD1↓, decreased cyclin D, E, CDK2-4, E2F1 Increased Cip 1/p21, Kip 1/p27
cycE↓,
E2Fs↓,
P21↑,
p27↑,
ADP:ATP↑, Increased poly ADP-ribose polymerase Decreased MDM2
MDM2↓,
VEGF↓, Decreased VEGF
IL8↓, Decreased NF-κB DNA binding [74, 76] IL-8, COX2, MMP9
COX2↓,
MMP9↓,
ER Stress↓, ER stress, degradation of c-MYC
cMyc↓,
GRP78/BiP↑, Increased GRP78
DNAdam↑, DNA damage
AP-1↓, Decreased NF-κB, AP-1, Decreased activation of MMP2, MMP9, Decreased PKC α/Raf/ERK and JNK
MMP2↓,
PKCδ↓,
Raf↓,
ERK↓,
JNK↓,
PCNA↓, G2, decreased PCNA, cyclin B1, D1, E1 [82] CDK2-4, E2F1, DNA-PK, DNA-topo1, JNK VEGF
CDK2↓,
CDK4↓,
TOP2↓, Inhibition of topoisomerase II a
uPA↓, Decreased MMP2, transactivation of AP-1 [56, 88] NF-κB uPA promoter [88] MMP7
MMP7↓,
TIMP2↑, Increased TIMP2, Cdc42, E cadherin
Cdc42↑,
E-cadherin↑,

3387- ART/DHA,    Ferroptosis: A New Research Direction of Artemisinin and Its Derivatives in Anti-Cancer Treatment
- Review, Var, NA
BioAv↓, Artemisinin, extracted from Artemisia annua L., is a poorly water-soluble antimalarial drug
lipid-P↑, promote the accumulation of intracellular lipid peroxides to induce cancer cell ferroptosis, alleviating cancer development and resulting in strong anti-cancer effects in vitro and in vivo.
Ferroptosis↑,
Iron↑, Artemisinin and Its Derivatives Upregulate Fe2+ Levels in Cancer Cells
GPx4↓, GPX4-dependent defense system is significantly inhibited
GSH↓, , leading to a significant decrease in GSH, GPX4, and SLC7A11 protein expression
P53↑, ARTEs can upregulate p53 protein expression in multiple cancer cells
ER Stress↑, ARTEs can trigger ERS in cancer cells to activate the PERK-ATF4 pathway and upregulate GRP78 expression
PERK↑,
ATF4↑,
GRP78/BiP↑,
CHOP↑, which activates CHOP
ROS↑, promoting the accumulation of intracellular ROS, and leading to ferroptosis
NRF2↑, ARTEs can activate the nuclear factor erythroid-derived 2-like 2 (Nrf2) -γ-glutamyl-peptide pathway in cancer cells, resulting in cancer cell ferroptosis resistance

1358- Ash,    Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms
- Review, Var, NA
TumCCA↑,
Apoptosis↑,
TumAuto↑,
Ferroptosis↑,
TumCP↓,
CSCs↓,
TumMeta↓,
EMT↓,
angioG↓,
Vim↓,
HSP90↓,
annexin II↓, annexin II proteins directly bind to WA
m-FAM72A↓,
BCR-ABL↓,
Mortalin↓,
NRF2↓,
cMYB↓,
ROS↑, WA inhibits proliferation through ROS-mediated intrinsic apoptosis
ChemoSen↑, WA and cisplatin, WA produced ROS, while cisplatin caused DNA damage, suggesting that lower doses of cisplatin combined with suboptimal doses of WA could achieve the same effect
eff↑, sulforaphane and WA showed synergistic effects on epigenetic modifiers and cell proliferation in breast cancer cells
ChemoSen↑, WA and sorafenib caused G2/M arrest in anaplastic and papillary thyroid cancer cells
ChemoSen↑, combination of WA and 5-FU executed PERK axis-mediated endoplasmic reticulum (ER) stress-induced autophagy and apoptosis
eff↑, WA and carnosol also exhibit a synergistic effect on pancreatic cancer
*BioAv↓, Saurabh by Saurabh et al and Tianming et al reported oral bioavailability values 1.8% and 32.4 ± 4.8%, respectively, in male rats.
ROCK1↓, In another study, WA reduces macrophage infiltration and inhibits the expression of protein tyrosine kinase-2 (Pyk2), rho-associated kinase 1 (ROCK1), and VEGF in a hepatocellular carcinoma xenograft model, thereby suppressing tumor invasion and angi
TumCI↓,
Sp1/3/4↓, Furthermore, WA exerts potent anti-angiogenic activity in vivo.174 In the Ehrlich ascites tumor model, WA exerts its anti-angiogenic activity by reducing the binding of the transcription factor specificity protein 1 (Sp1) to VEGF
VEGF↓, n another study, WA reduces macrophage infiltration and inhibits the expression of protein tyrosine kinase-2 (Pyk2), rho-associated kinase 1 (ROCK1), and VEGF in a hepatocellular carcinoma xenograft model, thereby suppressing tumor invasion and angio
Hif1a↓, Furthermore, WA suppresses the AK4-HIF-1α signaling axis and acts as a potent antimetastatic agent in lung cancer.Citation79
EGFR↓, WA synergistically inhibited wild-type epidermal growth factor receptor (EGFR) lung cancer cell viability

3154- Ash,    Pharmacokinetics and bioequivalence of Withania somnifera (Ashwagandha) extracts – A double blind, crossover study in healthy adults
BioAv↑, The longer half-life and higher mean residence time of the higher strength extract WS-35, which contained 35% withanolide glycosides, demonstrated its enhanced oral bioavailability
BioAv↓, Singh et al. [20] tested the bioavailability of withaferin A (purity 99%) by oral (25 mg/kg) and withanoside IV (2 mg/kg) routes in Sprague Dawley rats and found its oral bioavailability to be poor (approximately 5%) despite rapid distribution after

3156- Ash,    Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug
- Review, Var, NA
MAPK↑, Figure 3
p38↑,
BAX↑,
BIM↑,
CHOP↑,
ROS↑,
DR5↑,
Apoptosis↑,
Ferroptosis↑,
GPx4↓,
BioAv↝, WA has a rapid oral absorption and reaches to peak plasma concentration of around 16.69 ± 4.02 ng/ml within 10 min after oral administration of Withania somnifera aqueous extract at dose of 1000 mg/kg, which is equivalent to 0.458 mg/kg of WA
HSP90↓, table 1 10uM) were found to inhibit the chaperone activity of HSP90
RET↓,
E6↓,
E7↓,
Akt↓,
cMET↓,
Glycolysis↓, by suppressing the glycolysis and tricarboxylic (TCA) cycle
TCA↓,
NOTCH1↓,
STAT3↓,
AP-1↓,
PI3K↓,
eIF2α↓,
HO-1↑,
TumCCA↑, WA (1--3 uM) have been reported to inhibit cell proliferation by inducing G2 and M phase cycle arrest inovarian, breast, prostate, gastric and myelodysplastic/leukemic cancer cells and osteosarcoma
CDK1↓, WA is able to decrease the cyclin-dependent kinase 1 (Cdk1) activity and prevent Cdk1/cyclin B1 complex formation, which are key steps in cell cycle progression
*hepatoP↑, A treatment (40 mg/kg) reduces acetaminophen-induced liver injury (AILI) in mouse models and decreases H 2O 2-induced glutathione (GSH) depletion and necrosis in hepatocyte
*GSH↑,
*NRF2↑, WA triggers an anti-oxidant response after acetaminophen overdose by enhancing hepatic transcription of the nuclear factor erythroid 2–related factor 2 (NRF2)-responsive gene
Wnt↓, indirectly inhibit Wnt
EMT↓, WA can also block tumor metastasis through reduced expression of epithelial mesenchymal transition (EMT) markers.
uPA↓, WA (700 nM) exert anti-meta-static activities in breast cancer cells through inhibition of the urokinase-type plasminogen activator (uPA) protease
CSCs↓, s WA (125-500 nM) suppress tumor sphere formation indicating that the self-renewal of CSC is abolished
Nanog↓, loss of these CSC-specific characteristics is reflected in the loss of typical stem cell markers such as ALDH1A, Nanog, Sox2, CD44 and CD24
SOX2↓,
CD44↓,
lactateProd↓, drop in lactate levels compared to control mice.
Iron↑, Furthermore, we found that WA elevates the levels of intracellular labile ferrous iron (Fe +2 ) through excessive activation of heme oxygenase-1 (HMOX1), which independently causes accumulation of toxic lipid radicals and ensuing ferroptosis
NF-kB↓, nhibition of NF-kB kinase signaling pathway

3166- Ash,    Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives
- Review, Var, NA
*p‑PPARγ↓, preventing the phosphorylation of peroxisome proliferator-activated receptors (PPARγ)
*cardioP↑, cardioprotective activity by AMP-activated protein kinase (AMPK) activation and suppressing mitochondrial apoptosis.
*AMPK↑,
*BioAv↝, The oral bioavailability was found to be 32.4 ± 4.8% after 5 mg/kg intravenous and 10 mg/kg oral WA administration.
*Half-Life↝, The stability studies of WA in gastric fluid, liver microsomes, and intestinal microflora solution showed similar results in male rats and humans with a half-life of 5.6 min.
*Half-Life↝, WA reduced quickly, and 27.1% left within 1 h
*Dose↑, WA showed that formulation at dose 4800 mg having equivalent to 216 mg of WA, was tolerated well without showing any dose-limiting toxicity.
*chemoP↑, Here, we discuss the chemo-preventive effects of WA on multiple organs.
IL6↓, attenuates IL-6 in inducible (MCF-7 and MDA-MB-231)
STAT3↓, WA displayed downregulation of STAT3 transcriptional activity
ROS↓, associated with reactive oxygen species (ROS) generation, resulted in apoptosis of cells. The WA treatment decreases the oxidative phosphorylation
OXPHOS↓,
PCNA↓, uppresses human breast cells’ proliferation by decreasing the proliferating cell nuclear antigen (PCNA) expression
LDH↓, WA treatment decreases the lactate dehydrogenase (LDH) expression, increases AMP protein kinase activation, and reduces adenosine triphosphate
AMPK↑,
TumCCA↑, (SKOV3 andCaOV3), WA arrest the G2/M phase cell cycle
NOTCH3↓, It downregulated the Notch-3/Akt/Bcl-2 signaling mediated cell survival, thereby causing caspase-3 stimulation, which induces apoptosis.
Akt↓,
Bcl-2↓,
Casp3↑,
Apoptosis↑,
eff↑, Withaferin-A, combined with doxorubicin, and cisplatin at suboptimal dose generates ROS and causes cell death
NF-kB↓, reduces the cytosolic and nuclear levels of NF-κB-related phospho-p65 cytokines in xenografted tumors
CSCs↓, WA can be used as a pharmaceutical agent that effectively kills cancer stem cells (CSCs).
HSP90↓, WA inhibit Hsp90 chaperone activity, disrupting Hsp90 client proteins, thus showing antiproliferative effects
PI3K↓, WA inhibited PI3K/AKT pathway.
FOXO3↑, Par-4 and FOXO3A proapoptotic proteins were increased in Pten-KO mice supplemented with WA.
β-catenin/ZEB1↓, decreased pAKT expression and the β-catenin and N-cadherin epithelial-to-mesenchymal transition markers in WA-treated tumors control
N-cadherin↓,
EMT↓,
FASN↓, WA intraperitoneal administration (0.1 mg) resulted in significant suppression of circulatory free fatty acid and fatty acid synthase expression, ATP citrate lyase,
ACLY↓,
ROS↑, WA generates ROS followed by the activation of Nrf2, HO-1, NQO1 pathways, and upregulating the expression of the c-Jun-N-terminal kinase (JNK)
NRF2↑,
HO-1↑,
NQO1↑,
JNK↑,
mTOR↓, suppressing the mTOR/STAT3 pathway
neuroP↑, neuroprotective ability of WA (50 mg/kg b.w)
*TNF-α↓, WA attenuate the levels of neuroinflammatory mediators (TNF-α, IL-1β, and IL-6)
*IL1β↓,
*IL6↓,
*IL8↓, WA decreases the pro-inflammatory cytokines (IL-6, TNFα, IL-8, IL-18)
*IL18↓,
RadioS↑, radiosensitizing combination effect of WA and hyperthermia (HT) or radiotherapy (RT)
eff↑, WA and cisplatin at suboptimal dose generates ROS and causes cell death [41]. The actions of this combination is attributed by eradicating cells, revealing markers of cancer stem cells like CD34, CD44, Oct4, CD24, and CD117

2290- Ba,    Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal Cancer
- Review, GI, NA
p‑mTOR↓, Baicalein treatment decreased the expression levels of p-mTOR, p-Akt, p-IκB and NF-κB proteins, and suppressed GC cells by inhibiting the PI3K/Akt
p‑Akt↓,
p‑IKKα↓,
NF-kB↓,
PI3K↓,
Akt↓,
ROCK1↓, Baicalin reduces HCC proliferation and metastasis by inhibiting the ROCK1/GSK-3β/β-catenin signaling pathway
GSK‐3β↓,
CycB↓, Baicalein induces S-phase arrest in gallbladder cancer cells by down-regulating Cyclin B1 and Cyclin D1 in gallbladder cancer BGC-SD and SGC996 cells while up-regulating Cyclin A
cycD1↓,
cycA1↑,
CDK4↓, Following baicalein treatment, there is a down-regulation of Ezrin, CyclinD1, and CDK4, as well as an up-regulation of p53 and p21 protein levels, thereby leading to the induction of CRC HCT116 cell cycle arrest
P53↑,
P21↑,
TumCCA↑,
MMP2↓, baicalein was able to inhibit the metastasis of gallbladder cancer cells by down-regulating ZFX, MMP-2 and MMP-9.
MMP9↓,
EMT↓, Baicalein treatment effectively inhibits the snail-induced EMT process in CRC HT29 and DLD1 cells
Hif1a↓, Baicalein inhibits VEGF by downregulating HIF-1α, a crucial regulator of angiogenesis
Shh↓, baicalein inhibits the metastasis of PC by impeding the Shh pathway
PD-L1↓, Baicalin and baicalein down-regulate PD-L1 expression induced by IFN-γ by reducing STAT3 activity
STAT3↓,
IL1β↓, baicalein therapy significantly diminishes the levels of pro-inflammatory cytokines such as interleukin-1 beta (IL-1β), IL-2, IL-6, and GM-CSF
IL2↓,
IL6↓,
PKM2↓, Baicalein, by reducing the expression levels of HIF-1A and PKM2, can inhibit the glycolysis process in ESCC cells
HDAC10↓, Baicalein treatment increases the level of miR-3178 and decreases HDAC10 expression, resulting in the inactivation of the AKT signaling pathways.
P-gp↓, baicalein reverses P-glycoprotein (P-gp)-mediated resistance in multidrug-resistant HCC (Bel7402/5-FU) cells by reducing the levels of P-gp and Bcl-xl
Bcl-xL↓,
eff↓, Baicalein combined with gemcitabine/docetaxel promotes apoptosis of PC cells by activating the caspase-3/PARP signaling pathway
BioAv↓, baicalein suffers from low water solubility and susceptibility to degradation by the digestive system
BioAv↑, Encapsulation of baicalein into liposomal bilayers exhibits a therapeutic efficacy close to 90% for PDAC

2292- Ba,  BA,    Baicalin and baicalein in modulating tumor microenvironment for cancer treatment: A comprehensive review with future perspectives
- Review, Var, NA
AntiCan↑, Baicalin and baicalein exhibit anticancer activities against multiple cancers with extremely low toxicity to normal cells.
*toxicity↓,
BioAv↝, Baicalein permeates easily through the epithelium from the gut lumen to the blood underneath due to its low molecular mass and high lipophilicity, albeit a low presence of its transporters.
BioAv↓, In contrast, baicalin has limited permeability partly due to its larger molecular mass and higher hydrophilicity [24]. The overall low water solubility of baicalin and baicalein contributes to their poor bioavailability.
*ROS↓, baicalin protected macrophages against mycoplasma gallisepticum (MG)-induced ROS production and NLRP3 inflammasome activation by upregulating autophagy and TLR2-NFκB pathway
*TLR2↓,
*NF-kB↓,
*NRF2↑, Therefore, baicalin exerts strong antioxidant activity by activating NRF2 antioxidant program.
*antiOx↑,
*Inflam↓, These data suggest that by attenuating ROS and inflammation baicalein inhibits tumor formation and metastasis.
HDAC1↓, baicalein reduced CTCLs by inhibiting HDAC1 and HDAC8 and its effect on tumor inhibition was better than traditional HDAC inhibitors
HDAC8↓,
Wnt↓, Baicalein also reduced the proliferation of acute T-lymphoblastic leukemia (TLL) Jurkat cells by inhibiting the Wnt/β-catenin signaling pathway
β-catenin/ZEB1↓,
PD-L1↓, baicalein and baicalin promoted antitumor immune response by suppressing PD-L1 expression of HCC cells, thus increasing tumor regression
Sepsis↓, Baicalein can also attenuate severe sepsis via ameliorating immune dysfunction of T lymphocytes.
NF-kB↓, downregulation of NFκB and CD74/CD44 signaling in EBV-transformed B cells
LOX1↓, baicalein is considered to be an inhibitor of lipoxygenases (LOXs)
COX2↓, inhibits the expression of NF-κB/p65 and COX-2
VEGF↑, Baicalin was shown to suppress the expression of VEGF, resulting in the inhibition of PI3K/AKT/mTOR pathway and reduction of proliferation and migration of human mesothelioma cells
PI3K↓,
Akt↓,
mTOR↓,
MMP2↓, baicalin suppressed expression of MMP-2 and MMP-9 via restriction of p38MAPK signaling, resulting in reduced breast cancer cell growth, invasion
MMP9↓,
SIRT1↑, The inhibition of MMP-2 and MMP-9 expression in NSCLC cells is mediated by activating the SIRT1/AMPK signaling pathway.
AMPK↑,

2597- Ba,    Baicalein – An Intriguing Therapeutic Phytochemical in Pancreatic Cancer
- Review, PC, NA
chemoP↑, Compounds such as baicalein, offer promise in dietary chemoprevention, as chemotherapeutic adjuvants, or as targeted therapy.
ChemoSen↑,
12LOX?, LOX-12 specific inhibitor baicalein attenuates cancer cell growth
Bcl-2↓, baicalein, human pancreatic cancer cells expressed decreased anti-apoptotic proteins Bcl-2 and Mcl-1 and increased pro-apoptotic protein bax
BAX↑,
Mcl-1↓,
ERK↓, activation of the ERK pathway in melanoma
Prx6↑, up-regulation in the expression of PRDX6 in colorectal cancer
Dose↝, concentrations at which we and others have found baicalein to be anti-proliferative in vitro are between 10μM and 100μM.
BioAv↓, it is thought that only 10% of ingested dietary polyphenols or their conjugates are found in the urine or plasma.
eff↑, It is possible that the antitumor properties of baicalein in vivo are due to baicalin as opposed to baicalein, as these compounds are inter-converted in the intestine by naturally occurring microbes

2603- Ba,    Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
TumCG↓, baicalein potently suppressed the growth and induced the apoptosis of DU145 and PC-3
Apoptosis↑,
Cav1↓, baicalein can suppress caveolin-1 and the phosphorylation of AKT and mTOR in a time- and dose-dependent manner
p‑Akt↓,
p‑mTOR↓,
Bax:Bcl2↑, revealed that the Bax/Bcl-2 ratio was increased after baicalein treatment in a dose-dependent manner
survivin↓, survivin was decreased, whereas the level of cleaved PARP was elevated.
cl‑PARP↑,
BioAv↓, Although low water solubility, fast oxidative degradation, and fast metabolism limit its pharmaceutical use in some degree, various methods have been used to overcome these issues of flavonoids

2604- Ba,  BA,    Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats
- in-vivo, Nor, NA
*BioAv↝, The relative absorption for baicalin was 65% when compared with baicalein.
*BioAv↝, indicating baicalin was absorbed more slowly and to a lesser extent than baicalein.

2605- Ba,  BA,    Potential therapeutic effects of baicalin and baicalein
- Review, Var, NA - Review, Stroke, NA - Review, IBD, NA - Review, Arthritis, NA - Review, AD, NA - Review, Park, NA
cardioP↑, cardioprotective activities.
Inflam↓, Decreasing the accumulation of inflammatory mediators and improving cognitive function
cognitive↑,
*hepatoP↑, Decreasing inflammation, reducing oxidative stress, regulating the metabolism of lipids, and decreasing fibrosis, apoptosis, and steatosis are their main hepatoprotective mechanisms
*ROS?, Reducing oxidative stress and protecting the mitochondria to inhibit apoptosis are proposed as hepatoprotective mechanisms of baicalin in NAFLD
*SOD↑, Baicalin could reduce the levels of ROS and fatty acid-induced MDA, and increase superoxide dismutase (SOD) and glutathione amounts compared to the control.
*GSH↑,
*MMP↑, Moreover, baicalin could partially restore mitochondrial morphology and increase ATP5A expression and mitochondrial membrane potential (Gao et al., 2022).
*GutMicro↑, After baicalein treatment, a remodelling in the overall structure of the gut microbiota was observed
ChemoSen↑, Besides, a combination of baicalin and doxorubicin could elevate the chemosensitivity of MCF-7 and MDA-MB-231 breast cancer cells
*TNF-α↓, Baicalin can protect cardiomyocytes from hypoxia/reoxygenation injury by elevating the SOD activity and anti-inflammatory responses through reducing TNF-α, enhancing IL-10 levels, decreasing IL-6, and inhibiting the translocation of NF-κB to the nucl
*IL10↑,
*IL6↓,
*eff↑, Studies show that baicalin and baicalein may be effective against IBD by suppressing oxidative stress and inflammation, and regulating the immune system.
*ROS↓,
*COX2↓, baicalein can improve the symptoms of ulcerative colitis by lowering the expression of pregnane X receptor (PXR), (iNOS), (COX-2), and caudal-type homeobox 2 (Cdx2), as well as the NF-κβ and STAT3
*NF-kB↓,
*STAT3↓,
*PGE2↓, Administration of baicalin (30-90 mg/kg) could decrease the levels of prostaglandin E2 (PEG2), myeloperoxidase (MPO), IL-1β, TNF-α, and the apoptosis-related genes including Bcl-2 and caspase-9
*MPO↓,
*IL1β↓,
*MMP2↓, Rheumatoid arthritis RA mouse model by supressing relevant proinflammatory cytokines such as IL-1b, IL-6, MMP-2, MMP-9, TNF-α, iNOS, and COX-2)
*MMP9↓,
*β-Amyloid↓, Alzheimer’s disease (AD) : reduce β-amyloid and trigger non-amyloidogenic amyloid precursor proteins.
*neuroP↑, For instance, administration of baicalin orally for 14 days (100 mg/kg body weight) exhibited neuroprotective effects on pathological changes and behavioral deficits of Aβ 1–42 protein-induced AD in vivo.
*Dose↝, administration of baicalin (500 mg/day, orally for 12 weeks) could improve the levels of total cholesterol, TGs, LDLC and apolipoproteins (APOs), and high-sensitivity C-reactive protein (hs-CRP) in patients with rheumatoid arthritis and coronary arte
*BioAv↝, the total absorption of baicalin depends on the activity of intestinal bacteria to convert baicalin to baicalein as the first step.
*BioAv↝, Kidneys, liver, and lungs are the main organs in which baicalin accumulates the most.
*BBB↑, Baicalin and baicalein can pass through the blood brain barrier (BBB)

2023- BBR,    Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor
- in-vitro, Colon, NA - in-vitro, Nor, YAMC
TumCD↑, Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells.
*toxicity↓, In contrast, YAMC(normal) cells were not sensitive to berberine-induced cell death. less cytotoxic effects on normal colon epithelial cells.
selectivity↑, see figure 2
ROS↑, berberine-stimulated ROS production
*ROS∅, ROS production in a concentration-dependent manner only in IMCE cells, but not in YAMC cells. In YAMC cells, berberine did not induce ROS production
MMP↓, berberine induced mitochondrial depolarization in a concentration-dependent manner in IMCE cells, but not in YAMC cells
*MMP∅, but not in YAMC cells
PARP↑, Berberine Activation of PARP
BioAv↝, absorption of berberine by YAMC is lower than that by IMCE cells

2022- BBR,  GoldNP,  Rad,    Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibition
- in-vitro, Liver, SMMC-7721 cell - in-vitro, Nor, HL7702
*toxicity↓, Berberine (Ber), an isoquinolin alkaloid with low toxicity and protective effects against radiotherapy
radioP↑,
BioAv↑, We preloaded Ber into folic acid targeting Janus gold mesoporous silica nanocarriers (FA-JGMSNs) for overcoming the poor bioavailability of Ber.
AntiTum↑, highly efficient anti-tumor effect, good biosafety
selectivity↑, as well as the effective protection of normal tissue of this nanoplatform.
eff↑, These selective distributions of Ber in cancer cells and normal cells originated from selective endocytosis as well as pH-responsive drug release, which were conducive to achieving an improved therapeutic effect of Ber.
chemoP↑, Notably, chemo/radio/photothermal therapeutics didn’t cause the amounts of deaths of HL-7702 cells, indicating an excellent biosafety of the triple-model therapy.

2021- BBR,    Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways
- Review, NA, NA
*antiOx?, Berberine has been noted as a potential therapeutic candidate for liver fibrosis due to its antioxidant and anti-inflammatory activities
*Inflam↓,
Apoptosis↑, Apoptosis induced by berberine in liver cancer cells caused cell cycle arrest at the M/G1 phase and increased the Bax expression
TumCCA↑,
BAX↑,
eff↑, mixture of curcumin and berberine effectively decreases growth in breast cancer cell lines
VEGF↓, berberine also prevented the expression of VEGF
PI3K↓, berberine plays an important role in cancer management through inhibition of the PI3K/AKT/mTOR pathway
Akt↓,
mTOR↓,
Telomerase↓, Berberine decreased the telomerase activity and level of the colorectal cancer cell line,
β-catenin/ZEB1↓, berberine and its derivatives have the ability to inhibit β-catenin/Wnt signaling in tumorigenesis
Wnt↓,
EGFR↓, berberine treatment decreased cell proliferation and epidermal growth factor receptor expression levels in the xenograft model.
AP-1↓, Berberine efficiently targets both the host and the viral factors accountable for cervical cancer development via inhibition of activating protein-1
NF-kB↓, berberine inhibited lung cancer cell growth by concurrently targeting NF-κB/COX-2, PI3K/AKT, and cytochrome-c/caspase signaling pathways
COX2↑,
NRF2↓, Berberine suppresses the Nrf2 signaling-related protein expression in HepG2 and Huh7 cells,
RadioS↑, suggesting that berberine supports radiosensitivity through suppressing the Nrf2 signaling pathway in hepatocellular carcinoma cells
STAT3↓, regulating the JAK–STAT3 signaling pathway
ERK↓, berberine prevented the metastatic potential of melanoma cells via a reduction in ERK activity, and the protein levels of cyclooxygenase-2 by a berberine-caused AMPK activation
AR↓, Berberine reduced the androgen receptor transcriptional activity
ROS↑, In a study on renal cancer, berberine raised the levels of autophagy and reactive oxygen species in human renal tubular epithelial cells derived from the normal kidney HK-2 cell line, in addition to human cell lines ACHN and 786-O cell line.
eff↑, berberine showed a greater apoptotic effect than gemcitabine in cancer cells
selectivity↑, After berberine treatment, it was noticed that berberine showed privileged selectivity towards cancer cells as compared to normal ones.
selectivity↑, expression of caspase-1 and its downstream target Interleukin-1β (IL-1β) was higher in osteosarcoma cells as compared to normal cells
BioAv↓, several studies have been undertaken to overcome the difficulties of low absorption and poor bioavailability through nanotechnology-based strategies.
DNMT1↓, In human multiple melanoma cell U266, berberine can inhibit the expression of DNMT1 and DNMT3B, which leads to hypomethylation of TP53 by altering the DNA methylation level and the p53-dependent signal pathway
cMyc↓, Moreover, berberine suppresses SLC1A5, Na+ dependent transporter expression through preventing c-Myc

1405- BBR,  Chit,    Chitosan/alginate nanogel potentiate berberine uptake and enhance oxidative stress mediated apoptotic cell death in HepG2 cells
- in-vitro, Liver, HepG2
*BioAv↑, we reported to develop a hydrophilic nanogel (NG) composed of Chitosan (Chi) and sodium alginate (Alg) using the ion gelation method for delivering Berberine hydrochloride (BBR),
ROS↑,
MMP↓,
TumCP↓,

2672- BBR,    The anti-aging mechanism of Berberine associated with metabolic control
- Review, Var, NA
*BioAv↝, The chemical compound salt form of Ber includes hydrochloride, sulfate, and phosphate with various water solubilities. For example, hydrochloride salt is less soluble in water, whereas sulfate and phosphate salts are relatively water-soluble.
*BioAv↝, Meanwhile, chloride or sulfate of Ber is commonly used as an over-the-counter (OTC), orally administered drug for clinical purposes
*BioAv↝, After oral administration, Ber is transformed into different phase I metabolites, including berberrubine, thalifendine, demethyleneberberine, and jatrorrhizine, in the liver by cytochrome P450 enzymes (CYPs)
*Half-Life↓, A rapid elimination half-life about 0.22h has been observed in plasma, whereas a slow elimination half-life about 12h in the hippocampus was observed after intravenous administration in rats.

2671- BBR,    Berberine and Its More Biologically Available Derivative, Dihydroberberine, Inhibit Mitochondrial Respiratory Complex I: A Mechanism for the Action of Berberine to Activate AMP-Activated Protein Kinase and Improve Insulin Action
- in-vivo, Diabetic, NA
*BioAv↓, After oral administration of 20 mg/kg BBR, we were unable to detect BBR in the plasma
*Half-Life↝, In contrast, dhBBR at the same oral dose was rapidly detected in the plasma (Supplementary Fig. 2), displaying a half-life (t1/2) of 3.5 ± 1.3 h and a maximum concentration (Cmax) of 2.8 ± 0.5 ng/ml
*OCR↓, BBR produced a dose-dependent inhibition of oxygen consumption in isolated muscle mitochondria with complex I–linked substrate (pyruvate),
*AMPK↑, ability of BBR to activate AMPK

2673- BBR,    Therapeutic potential and recent delivery systems of berberine: A wonder molecule
- Review, Var, NA
*BioAv↓, clinical use of berberine has been limited due to its poor intestinal absorption, low bioavailability and limited penetration.
*Half-Life↓, t1/2, Cmax and AUC observed in healthy human male volunteers after single dose administration of 300 mg orally and their values have been reported to be 0.87 ± 0.03 h, 394.7 ± 155.4 µg/L and 2799.0 ± 1128.5 µg/L respectively
*neuroP↑, neuroprotective action have been investigated determining enhanced blood brain barrier (BBB) penetrability
BBB↑,
toxicity↓, These also dole out in low cost, seldom side effects and easy availability.

2674- BBR,    Berberine: A novel therapeutic strategy for cancer
- Review, Var, NA - Review, IBD, NA
Inflam↓, anti-inflammatory, antidiabetic, antibacterial, antiparasitic, antidiarrheal, antihypertensive, hypolipidemic, and fungicide.
AntiCan↑, elaborated on the anticancer effects of BBR through the regulation of different molecular pathways such as: inducing apoptosis, autophagy, arresting cell cycle, and inhibiting metastasis and invasion.
Apoptosis↑,
TumAuto↑,
TumCCA↑,
TumMeta↓,
TumCI↓,
eff↑, BBR is shown to have beneficial effects on cancer immunotherapy.
eff↑, BBR inhibited the release of Interleukin 1 beta (IL-1β), Interferon gamma (IFN-γ), Interleukin 6 (IL-6), and Tumor Necrosis Factor-alpha (TNF-α) from LPS stimulated lymphocytes by acting as a dopamine receptor antagonist
CD4+↓, BBR inhibited the proliferation of CD4+ T cells and down-regulated TNF-α and IL-1 and thus, improved autoimmune neuropathy.
TNF-α↓,
IL1↓,
BioAv↓, On the other hand, P-Glycoprotein (P-gp), a secretive pump located in the epithelial cell membrane, restricts the oral bioavailability of a variety of medications, such as BBR. The use of P-gp inhibitors is a common and effective way to prevent this
BioAv↓, Regardless of its low bioavailability, BBR has shown great therapeutic efficacy in the treatment of a number of diseases.
other↓, BBR has been also used as an effective therapeutic agent for Inflammatory Bowel Disease (IBD) for several years
AMPK↑, inhibitory effects on inflammation by regulating different mechanisms such as 5′ Adenosine Monophosphate-Activated Protein Kinase (AMPK. Increase of AMPK
MAPK↓, Mitogen-Activated Protein Kinase (MAPK), and NF-κB signaling pathways
NF-kB↓,
IL6↓, inhibiting the expression of proinflammatory genes such as IL-1, IL-6, Monocyte Chemoattractant Protein 1 (MCP1), TNF-α, Prostaglandin E2 (PGE2), and Cyclooxygenase-2 (COX-2)
MCP1↓,
PGE2↓,
COX2↓,
*ROS↓, BBR protected PC-12 cells (normal) from oxidative damage by suppressing ROS through PI3K/AKT/mTOR signaling pathways
*antiOx↑, BBR therapy improved the antioxidant function of mice intestinal tissue by enhancing the levels of glutathione peroxidase and catalase enzymes.
*GPx↑,
*Catalase↑,
AntiTum↑, Besides, BBR leaves great antitumor effects on multiple types of cancer such as breast cancer,69 bladder cancer,70 hepatocarcinoma,71 and colon cancer.72
TumCP↓, BBR exerts its antitumor activity by inhibiting proliferation, inducing apoptosis and autophagy, and suppressing angiogenesis and metastasis
angioG↓,
Fas↑, by increasing the amounts of Fas receptor (death receptor)/FasL (Fas ligand), ROS, ATM, p53, Retinoblastoma protein (Rb), caspase-9,8,3, TNF-α, Bcl2-associated X protein (Bax), BID
FasL↑,
ROS↑,
ATM↑,
P53↑,
RB1↑,
Casp9↑,
Casp8↑,
Casp3↓,
BAX↑,
Bcl-2↓, and declining Bcl2, Bcl-X, c-IAP1 (inhibitor of apoptosis protein), X-linked inhibitor of apoptosis protein (XIAP), and Survivin levels
Bcl-xL↓,
IAP1↓,
XIAP↓,
survivin↓,
MMP2↓, Furthermore, BBR suppressed Matrix Metalloproteinase-2 (MMP-2), and MMP-9 expression.
MMP9↓,
CycB↓, Inhibition of cyclin B1, cdc2, cdc25c
CDC25↓,
CDC25↓,
Cyt‑c↑, BBR inhibited tumor cell proliferation and migration and induced mitochondria-mediated apoptosis pathway in Triple Negative Breast Cancer (TNBC) by: stimulating cytochrome c release from mitochondria to cytosol
MMP↓, decreased the mitochondrial membrane potential, and enabled cytochrome c release from mitochondria to cytosol
RenoP↑, BBR significantly reduced the destructive effects of cisplatin on the kidney by inhibiting autophagy, and exerted nephroprotective effects.
mTOR↓, U87 cell, Inhibition of m-TOR signaling
MDM2↓, Downregulation of MDM2
LC3II↑, Increase of LC3-II and beclin-1
ERK↓, BBR stimulated AMPK signaling, resulting in reduced extracellular signal–regulated kinase (ERK) activity and COX-2 expression in B16F-10 lung melanoma cells
COX2↓,
MMP3↓, reducing MMP-3 in SGC7901 GC and AGS cells
TGF-β↓, BBR suppressed the invasion and migration of prostate cancer PC-3 cells by inhibiting TGF-β-related signaling molecules which induced Epithelial-Mesenchymal Transition (EMT) such as Bone morphogenetic protein 7 (BMP7),
EMT↑,
ROCK1↓, inhibiting metastasis-associated proteins such as ROCK1, FAK, Ras Homolog Family Member A (RhoA), NF-κB and u-PA, leading to in vitro inhibition of MMP-1 and MMP-13.
FAK↓,
RAS↓,
Rho↓,
NF-kB↓,
uPA↓,
MMP1↓,
MMP13↓,
ChemoSen↑, recent studies have indicated that it can be used in combination with chemotherapy agents

2678- BBR,    Berberine as a Potential Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
*Inflam↓, BBR exerts remarkable anti-inflammatory (94–96), antiviral (97), antioxidant (98), antidiabetic (99), immunosuppressive (100), cardiovascular (101, 102), and neuroprotective (103) activities.
*antiOx↑,
*cardioP↑,
*neuroP↑,
TumCCA↑, BBR could induce G1 cycle arrest in A549 lung cancer cells by decreasing the levels of cyclin D1 and cyclin E1
cycD1↓,
cycE↓,
CDC2↓, BBR also induced G1 cycle arrest by inhibiting cyclin B1 expression and CDC2 kinase in some cancer cells
AMPK↝, BBR has been suggested to induce autophagy in glioblastoma by targeting the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR)/ULK1 pathway
mTOR↝,
Casp8↑, BBR has been revealed to stimulate apoptosis in leukemia by upregulation of caspase-8 and caspase-9
Casp9↑,
Cyt‑c↑, in skin squamous cell carcinoma A431 cells by increasing cytochrome C levels
TumCMig↓, BBR has been confirmed to inhibit cell migration and invasion by inhibiting the expression of epithelial–mesenchymal transition (EMT)
TumCI↓,
EMT↓,
MMPs↓, metastasis-related proteins, such as matrix metalloproteinases (MMPs) and E-cadherin,
E-cadherin↓,
Telomerase↓, BBR has shown antitumor effects by interacting with microRNAs (125) and inhibiting telomerase activity
*toxicity↓, Numerous studies have revealed that BBR is a safe and effective treatment for CRC
GRP78/BiP↓, Downregulates GRP78
EGFR↓, Downregulates EGFR
CDK4↓, downregulates CDK4, TERT, and TERC
COX2↓, Reduces levels of COX-2/PGE2, phosphorylation of JAK2 and STAT3, and expression of MMP-2/-9.
PGE2↓,
p‑JAK2↓,
p‑STAT3↓,
MMP2↓,
MMP9↓,
GutMicro↑, BBR can inhibit tumor growth through meditation of the intestinal flora and mucosal barrier, and generally and ultimately improve weight loss. BBR has been reported to modulate the composition of intestinal flora and significantly reduce flora divers
eff↝, BBR can regulate the activity of P-glycoprotein (P-gp), and potential drug-drug interactions (DDIs) are observed when BBR is coadministered with P-gp substrates
*BioAv↓, the efficiency of BBR is limited by its low bioavailability due to its poor absorption rate in the gut, low solubility in water, and fast metabolism. Studies have shown that the oral bioavailability of BBR is 0.68% in rats
BioAv↑, combining it with p-gp inhibitors (such as tariquidar and tetrandrine) (196, 198), and modification to berberine organic acid salts (BOAs)

2670- BBR,    Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases
- Review, Var, NA
*Inflam↓, According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity
*antiOx↑,
*Ca+2↓, Impaired cerebral arterial vasodilation can be alleviated by berberine in a diabetic rat model via down-regulation of the intracellular Ca2+ processing of VSMCs
*BioAv↓, poor oral absorption and low bioavailability
*BioAv↑, Conversion of biological small molecules into salt compounds may be a method to improve its bioavailability in vivo.
*BioAv↑, Long-chain alkylation (C5-C9) may enhance hydrophobicity, which has been shown to improve bioavailability; for example, 9-O-benzylation further enhances lipophilicity and imparts neuroprotective effect
*angioG↑, figure 2
*MAPK↓,
*AMPK↓, 100 mg/kg berberine daily for 14 days attenuated ischemia–reperfusion injury via hemodynamic improvements and inhibition of AMPK activity in both non-ischemic and ischemic areas of rat heart tissue
*NF-kB↓,
VEGF↓,
PI3K↓,
Akt↓,
MMP2↓,
Bcl-2↓,
ERK↓,

2748- BetA,    Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy
- Review, Var, NA
Bcl-2↓, Cell death stimuli activate prodeath BCL-2 family proteins that in turn permeabilize mitochondrial outer membrane, thereby resulting in the release of Cyt C
MMP↓,
Cyt‑c↑,
Casp↑, Smac (second mitochondria-derived activator of caspase)/DIABLO (direct inhibitor of apoptosis [IAP] binding protein with low pI), and AIF (apoptosis-inducing factor) into the cytoplasm (27
Diablo↑,
AIF↑,
angioG↓, BetA's inhibition of growth-factor-induced angiogenesis seems at least partially owing to modulation of mitochondrial function in endothelial cells
BioAv↓, Current methods of conventional drug delivery using oral liquids or tablets are generally inefficient, with poor biodis- tribution, low solubility, long-term toxicity, and limited drug efficacy due to partial biodegradation, swelling, and ero- sion
NF-kB↓, BetA treatment inhibits the activation of NF-kB

2762- BetA,    Targeting Effect of Betulinic Acid Liposome Modified by Hyaluronic Acid on Hepatoma Cells In Vitro
- in-vitro, Liver, HepG2
ROCK1↓, BA, BA-L, and HA-BA-L downregulated the expression of ROCK1, IP3, and RAS in HepG2 cells,
RAS↓,
*BioAv↓, However, its shortcomings, namely poor water solubility and low bioavailability of BA in vivo, limit its clinical application.
BioAv↑, Liposomes can effectively improve the bioavailability of BA. Therefore, the development of liposomal BA delivery can further enhance its efficacy.

2735- BetA,    Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications
- Review, Var, NA
mt-Apoptosis↑, BA and analogues (BAs) have been known to exhibit potential antitumor action via provoking the mitochondrial pathway of apoptosis
Casp↑, cytosolic caspase activation
p38↑, inhibition of pro-apoptotic p38, MAPK and SAP/JNK kinases [8],
MAPK↓,
JNK↓,
VEGF↓, decreased expression of pro-apoptotic proteins and vascular endothelial growth factor (VEGF)
AIF↑, BA was recognized to trigger the process of apoptosis in human metastatic melanoma cells (Me-45) by releasing apoptosis inducing factor (AIF) and cytochrome c (Cyt C) through mitochondrial membrane
Cyt‑c↑,
ROS↑, BA also stimulates the increased production of reactive oxygen species (ROS) that is considered a stress factor involved in initiating mitochondrial membrane permeabilization
Ca+2↑, Moreover, the calcium overload and thereby ATP depletion are other stress factors causing enhanced inner mitochondrial membrane permeability via nonspecific pores formation
ATP↓,
NF-kB↓, BA has also known to be involved in activation of nuclear factor kappa B (NF-κB) that is responsible for apoptosis induction in variety of cancer cells
ATF3↓, According to Zhang et al. [14], BA stimulates apoptosis through the suppression of cyclic AMP-dependent transcription factor ATF-3 and NF-κB pathways and downregulation of p53 gene.
TOP1↓, inhibition of topoisomerases
VEGF↓, ecreased expression of vascular endothelial growth (VEGF) and the anti-apoptotic protein surviving in LNCaP prostate cancer cells.
survivin↓,
Sp1/3/4↓, selective proteasome-dependent targeted degradation of transcription factors specificity proteins (Sp1, Sp3, and Sp4), which generally regulate VEGF and survivin expression and highly over-expressed in tumor conditions
MMP↓, perturbed mitochondrial membrane potential
ChemoSen↑, BA can support as sensitizer in combination therapy to enhance the anticancer effects with minimum side effects.
selectivity↑, Normal human fibroblasts [41], peripheral blood lymphoblasts [41], melanocytes [32] and astrocytes [30] were found to be resistant to BA in vitro
BioAv↓, The clinical use of BA is seriously challenging due to high hydrophobicity which subsequently causes poor bioavailability
BioAv↑, A BA-loaded oil-in-water nanoemulsion was developed using phospholipase-catalyzed modified phosphatidylcholine as emulsifier in an ultrasonicator [120].
BioAv↑, Aqueous solubility of BA may also be increased through grinding with hydrophilic polymers (polyethylene glycol, polyvinylpyrrolidone, arabinogalactan) [121,122].
BioAv↑, Subsequently, for further improvement in biocompatibility, a technique of nanotube coating was employed with four biopolymers i.e. polyethylene glycol (PEG), chitosan, tween 20 and tween 80.
BioAv↑, Similarly, BA-coated silver nanoparticles displayed an improved antiproliferative and antimigratory activity, particularly against melanoma cells (A375: murine melanoma cells)

2731- BetA,    Betulinic Acid for Glioblastoma Treatment: Reality, Challenges and Perspectives
- Review, GBM, NA - Review, Park, NA - Review, AD, NA
BBB↑, Notably, its ability to cross the blood–brain barrier addresses a significant challenge in treating neurological pathologies.
*GSH↑, BA can also dramatically reduce catalepsy and stride length, while increasing the brain’s dopamine content, glutathione activity, and catalase activity in hemiparkinsonian rats
*Catalase↑,
*motorD↑,
*neuroP↑, in Alzheimer’s disease rat models, it can improve neurobehavioral impairments . BA has exhibited great neuroprotective properties.
*cognitive↑, BA improves cognitive ability and neurotransmitter levels, and protects from brain damage by lowering reactive oxygen species (ROS) levels
*ROS↓,
*antiOx↑, enhancing brain tissue’s antioxidant capacity, and preventing the release of inflammatory cytokines
*Inflam↓,
MMP↓, BA can decrease the mitochondrial outer membrane potential (MOMP)
STAT3↓, The compound can inhibit the signal transducer and activator of transcription (STAT) 3 signaling pathways, involved in differentiation, proliferation, apoptosis, metastasis formation, angiogenesis, and metabolism, and the NF-kB signaling pathway,
NF-kB↓,
Sp1/3/4↓, BA has shown an ability to control cancer growth through the modulation of Sp transcription factors, inhibit DNA topoisomerase
TOP1↓,
EMT↓, inhibit the epithelial-to-mesenchymal transition (EMT)
Hif1a↓, BA has also been associated with an antiangiogenic response under hypoxia conditions, through the STAT3/hypoxia-inducible factor (HIF)-1α/vascular endothelial growth factor (VEGF) signaling pathway
VEGF↓,
ChemoSen↑, BA has shown great potential as an adjuvant to therapy since its use combined with standard treatment of chemotherapy and irradiation can enhance their cytotoxic effect on cancer cells
RadioS↑,
BioAv↓, Despite having great potential as a therapeutic agent, it is hard for BA to fulfill the requirements for adequate water solubility, maintaining both significant cytotoxicity and selectivity for tumor cells.

758- Bor,    Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines
- Human, NA, NA
*hs-CRP↓, Six hours supplementation showed a significant decrease on sex hormone binding globulin (SHBG), high sensitive CRP (hsCRP) and TNF-α level.
*TNF-α↓,
*SHBG↓,
*DHT↑, Dihydrotestosterone, cortisol and vitamin D was elevated.
*cortisol↑,
*VitD↑,
*BioAv↑, 11.6 mg of boron resulted in a significant increase in plasma boron concentration. Given such a fast bioavailabilit
*Inflam↓, Also, concentrations of all three inflammatory biomarkers decreased after supplementation.

764- Bor,    Effect of Tumor Microenvironment on Selective Uptake of Boric Acid in HepG2 Human Hepatoma Cells
- in-vitro, Liver, HepG2
BioAv↑, low pH and increased membrane fluidity, which are hallmarks of HCC, might further enhance BA uptake.

3504- Bor,    Boron Contents of German Mineral and Medicinal Waters and Their Bioavailability in Drosophila melanogaster and Humans
- Review, NA, NA
other↑, Overall, current data demonstrate that water in Germany varies significantly in the content of boron and that only boron-rich mineral water improves the boron status in both flies and humans.
BioAv↑, Moreover, the consumption of HB mineral water led to an increase in serum boron concentrations up to 72 ± 5.8 µg L−1 and a subsequent decline over 24 h to final circulating boron levels that were again comparable to baseline values.

2767- Bos,    The potential role of boswellic acids in cancer prevention and treatment
- Review, Var, NA
*Inflam↓, profound application as a traditional remedy for various ailments, especially inflammatory diseases including asthma, arthritis, cerebral edema, chronic pain syndrome, chronic bowel diseases, cancer
AntiCan↑,
*MAPK↑, 11-keto-BAs can stimulate Mitogen-activated protein kinases (MAPK) and mobilize the intracellular Ca(2+) that are important for the activation of human polymorphonuclear leucocytes (PMNL)
*Ca+2↝,
p‑ERK↓, AKBA prohibited the phosphorylation of extracellular signal-regulated kinase-1 and -2 (Erk-1/2) and impaired the motility of meningioma cells stimulated with platelet-derived growth factor BB
TumCI↓,
cycD1↓, In the case of colon cancer, BA treatment on HCT-116 cells led to a decrease in cyclin D, cyclin E, and Cyclin-dependent kinases such as CDK2 and CDK4, along with significant reduction in phosphorylated Rb (pRb)
cycE↓,
CDK2↓,
CDK4↓,
p‑RB1↓,
*NF-kB↓, convey inhibition of NF-kappaB and subsequent down-regulation of TNF-alpha expression in activated human monocytes
*TNF-α↓,
NF-kB↓, PC-3 prostate cancer cells in vitro and in vivo by inhibiting constitutively activated NF-kappaB signaling by intercepting the activity of IkappaB kinase (IKK
IKKα↓,
MCP1↓, LPS-challenged ApoE-/- mice via inhibition of NF-κB and down regulation of MCP-1, MCP-3, IL-1alpha, MIP-2, VEGF, and TF
IL1α↓,
MIP2↓,
VEGF↓,
Tf↓,
COX2↓, pancreatic cancer cell lines, AKBA inhibited the constitutive expression of NF-kB and caused suppression of NF-kB regulated genes such as COX-2, MMP-9, CXCR4, and VEGF
MMP9↓,
CXCR4↓,
VEGF↓,
eff↑, AKBA and aspirin revealed that AKBA has higher potential via modulation of the Wnt/β-catenin pathway, and NF-kB/COX-2 pathway in adenomatous polyps
PPARα↓, AKBA is also responsible for down-regulation of PPAR-alpha and C/EBP-alpha in a dose and temporal dependent manner in mature adipocytes, ultimately leading to pparlipolysis
lipid-P?,
STAT3↓, activation of STAT-3 in human MM cells could be inhibited by AKBA
TOP1↓, (PKBA; a semisynthetic analogue of 11-keto-β-boswellic acid), had been reported to influence the activity of topoisomerase I & II,
TOP2↑,
5HT↓, (5-LO), responsible for catalyzing the synthesis of leukotrienes from arachidonic acid and human leucocyte elastase (HLE), and serine proteases involved in several inflammatory processes, is considered to be a potent molecular target of BA derivative
p‑PDGFR-BB↓, BA up-regulates SHP-1 with subsequent dephosphorylation of PDGFR-β and downregulation of PDGF-dependent signaling after PDGF stimulation, thereby exerting an anti-proliferative effect on HSCs hepatic stellate cells
PDGF↓,
AR↓, AKBA targets different receptors that include androgen receptor (AR), death receptor 5 (DR5), and vascular endothelial growth factor receptor 2 (VEGFR2), and leads to the inhibition of proliferation of prostate cancer cells
DR5↑, induced expression of DR4 and DR5.
angioG↓, via apoptosis induction and suppression of angiogenesis
DR4↑,
Casp3↑, AKBA resulted in activation of caspase-3 and caspase-8, and initiation of poly (ADP) ribose polymerase (PARP) cleavage.
Casp8↑,
cl‑PARP↑,
eff↑, AKBA was preincubated with LY294002 or wortmannin (inhibitors of PI3K), it caused a significant enhancement of apoptosis in HT-29 cells
chemoP↑, chemopreventive response of AKBA was estimated against intestinal adenomatous polyposis through the inhibition of the Wnt/β-catenin and NF-κB/cyclooxygenase-2 signaling pathway
Wnt↓,
β-catenin/ZEB1↓,
ascitic↓, AKBA by the suppression of ascites,
Let-7↑, AKBA could up-regulate the expression of let-7 and miR-200
miR-200b↑,
eff↑, anti-tumorigenic effects of curcumin and AKBA on the regulation of specific cancer-related miRNAs in colorectal cancer cells, and confirmed their protective action
MMP1↓, . It can inhibit the expression of MMP-1, MMP-2, and MMP-9 mRNAs along with secretions of TNF-α and IL-1β in THP-1 cells.
MMP2↓,
eff↑, combined administration of metformin, an anti-diabetic drug, and boswellic acid nanoparticles exhibited significant synergism through the inhibition of MiaPaCa-2 pancreatic cancer cell proliferation
BioAv↓, BA as a therapeutic drug is its poor bioavailability
BioAv↑, administration of BSE-018 concomitantly with a high-fat meal led to several-fold increased areas under the plasma concentration-time curves as well as peak concentrations of beta-boswellic acid (betaBA)
Half-Life↓, drug needs to be given orally at the interval of six hours due to its calculated half- life, which was around 6 hrs.
toxicity↓, BSE has been found to be a safe drug without any adverse side reactions, and is well tolerated on oral administration.
Dose↑, Boswellia serrata extract to the maximum amount of 4200 mg/day is not toxic and it is safe to use though it shows poor bioavailability
BioAv↑, Approaches like lecithin delivery form (Phytosome®), nanoparticle delivery systems like liposomes, emulsions, solid lipid nanoparticles, nanostructured lipid carriers, micelles and poly (lactic-co-glycolic acid) nanoparticles
ChemoSen↑, Like any other natural products BA can also be effective as chemosensitizer

2772- Bos,    Mechanistic role of boswellic acids in Alzheimer’s disease: Emphasis on anti-inflammatory properties
- Review, AD, NA
*neuroP↑, (AKBA) that possess potent anti-inflammatory and neuroprotective properties in AD
*Inflam↓,
*AChE↓, inhibiting the acetylcholinesterase (AChE) activity in the cholinergic pathway and improve choline levels
*Choline↑,
*NRF2↑, BAs modulate key molecular targets and signalling pathways like 5-lipoxygenase/cyclooxygenase, Nrf2, NF-kB, cholinergic, amyloid-beta (Aβ), and neurofibrillary tangles formation (NFTs) that are involved in AD
*NF-kB↑,
*BBB↑, AKBA has efficiently abled to cross the blood brain barrier (BBB)
*BioAv↑, bioavailability of AKBA was significantly higher in case of sublingual route when compared to intranasal administration, as demonstrated by area under curves (AUCs) analysis
*Half-Life↓, half-life of the drug was about six hours and peak plasma levels of the drug reach 30 hrs after oral administration of 333 mg of BSE.
*Dose↝, drug needs to be administered at a dosing interval of 6 hrs
*PGE2↓, BAs possessed anti-inflammatory activity by inhibiting microsomal prostaglandin E2 synthase-1 (mPGES1)
*ROS↓, prevented oxidative stress-induced neuronal damage and cognitive impairment because of the antioxidant, anti-inflammatory and anti-glutamatergic effects
*cognitive↑,
*antiOx↑,
5LO↓, AKBA significantly reduced pro-inflammatory mediators such as 5-LOX, TNF-α, IL-6 levels and improve cognition
*TNF-α↓,
*IL6↓,
*HO-1↑, AKBA shows neuroprotective effects against ischaemic injury via nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) cascade activation

1419- Bos,    Enhanced Bioavailability of Boswellic Acid by Piper longum: A Computational and Pharmacokinetic Study
- in-vivo, Nor, NA
*BioAv↑, Piper longum extract at 2.5 and 10 mg/kg, increased the bioavailability of Boswellic acid

1646- CA,    Caffeic acid: a brief overview of its presence, metabolism, and bioactivity
- Review, Nor, NA
*BioAv↓, egins in the stomach where a very small amount of it is passively absorbed. Followed by the action of microbial esterases in the colon, the caffeic acid is cleaved in free form and absorbed by the intestinal mucosa (most 95%)
ROS⇅, antioxidant and pro-oxidant properties
selectivity↑, exhibits pro-oxidative properties in cancer cells that are associated with oxidative DNA (deoxyribonucleic acid) damage
other∅, caffeic acid phenethyl ester, the main representative component of propolis
VEGF↓,
MMP2↓,
MMP9↓,

2015- CAP,  CUR,  urea,    Anti-cancer Activity of Sustained Release Capsaicin Formulations
- Review, Var, NA
AntiCan↑, Several convergent studies show that capsaicin displays robust cancer activity, suppressing the growth, angiogenesis and metastasis of several human cancers.
TumCG↓,
angioG↓,
TumMeta↓,
BioAv↓, clinical applications of capsaicin as a viable anti-cancer drug have remained problematic due to its poor bioavailability and aqueous solubility properties
BioAv↓, capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, nausea and diarrhea and vomiting
BioAv↑, All these hurdles may be circumvented by encapsulation of capsaicin in sustained release drug delivery systems.
selectivity↑, Most importantly, these long-acting capsaicin formulations selectively kill cancer cells and have minimal growth-suppressive activity on normal cells.
EPR↑, The EPR effect is a mechanism by which high–molecular drug delivery systems (typically prodrugs, liposomes, nanoparticles, and macromolecular drugs) tend to accumulate in tumor tissue much more than they do in normal tissues
eff↓, The efficiency of such extravasation is maximum when the size of the liposomes less than 200 nm The CAP-CUR-GLY-GAL-LIPO were spherical in shape with a narrow range of size distribution ranging from 135–155nm
ChemoSen↑, The chemosensitization and anti-tumor activity of capsaicin involves multiple molecular pathways
Dose∅, oral, Intravenous (IV), and Intraperitoneal (IP) options
Half-Life∅, oral metabolized in 105mins, T1/2in blood=25mins.
eff↑, presence of urea (as a carrier) increased the aqueous solubility of capsaicin by 3.6-fold compared to pure capsaicin

2781- CHr,  PBG,    Chrysin a promising anticancer agent: recent perspectives
- Review, Var, NA
PI3K↓, It can block Phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling in different animals against various cancers
Akt↓,
mTOR↓,
MMP9↑, Chrysin strongly suppresses Matrix metalloproteinase-9 (MMP-9), Urokinase plasminogen activator (uPA) and Vascular endothelial growth factor (VEGF), i.e. factors that can cause cancer
uPA↓,
VEGF↓,
AR↓, Chrysin has the ability to suppress the androgen receptor (AR), a protein necessary for prostate cancer development and metastasis
Casp↑, starts the caspase cascade and blocks protein synthesis to kill lung cancer cells
TumMeta↓, Chrysin significantly decreased lung cancer metastasis i
TumCCA↑, Chrysin induces apoptosis and stops colon cancer cells in the G2/M cell cycle phase
angioG↓, Chrysin prevents tumor growth and cancer spread by blocking blood vessel expansion
BioAv↓, Chrysin’s solubility, accessibility and bioavailability may limit its medical use.
*hepatoP↑, As chrysin reduced oxidative stress and lipid peroxidation in rat liver cells exposed to a toxic chemical agent.
*neuroP↑, Protecting the brain against oxidative stress (GPx) may be aided by increasing levels of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx).
*SOD↑,
*GPx↑,
*ROS↓, A decrease in oxidative stress and an increase in antioxidant capacity may result from chrysin’s anti-inflammatory properties
*Inflam↓,
*Catalase↑, Supplementation with chrysin increased the activity of antioxidant enzymes like SOD and catalase and reduced the levels of oxidative stress markers like malondialdehyde (MDA) in the colon tissue of the rats.
*MDA↓, Antioxidant enzyme activity (SOD, CAT) and oxidative stress marker (MDA) levels were both enhanced by chrysin supplementation in mouse liver tissue
ROS↓, reduction of reactive oxygen species (ROS) and oxidative stress markers in the cancer cells further indicated the antioxidant activity of chrysin
BBB↑, After crossing the blood-brain barrier, it has been shown to accumulate there
Half-Life↓, The half-life of chrysin in rats is predicted to be close to 2 hours.
BioAv↑, Taking chrysin with food may increase the effectiveness of the supplement: increased by a factor of 1.8 when taken with a high-fat meal
ROS↑, In contrast to 5-FU/oxaliplatin, chrysin increases the production of reactive oxygen species (ROS), which in turn causes autophagy by stopping Akt and mTOR from doing their jobs
eff↑, mixture of chrysin and cisplatin caused the SCC-25 and CAL-27 cell lines to make more oxygen free radicals. After treatment with chrysin, cisplatin, or both, the amount of reactive oxygen species (ROS) was found to have gone up.
ROS↑, When reactive oxygen species (ROS) and calcium levels in the cytoplasm rise because of chrysin, OC cells die.
ROS↑, chrysin is the cause of death in both types of prostate cancer cells. It does this by depolarizing mitochondrial membrane potential (MMP), making reactive oxygen species (ROS), and starting lipid peroxidation.
lipid-P↑,
ER Stress↑, when chrysin is present in DU145 and PC-3 cells, the expression of a group of proteins that control ER stress goes up
NOTCH1↑, Chrysin increased the production of Notch 1 and hairy/enhancer of split 1 at the protein and mRNA levels, which stopped cells from dividing
NRF2↓, Not only did chrysin stop Nrf2 and the genes it controls from working, but it also caused MCF-7 breast cancer cells to die via apoptosis.
p‑FAK↓, After 48 hours of treatment with chrysin at amounts between 5 and 15 millimoles, p-FAK and RhoA were greatly lowered
Rho↓,
PCNA↓, Lung histology and immunoblotting studies of PCNA, COX-2, and NF-B showed that adding chrysin stopped the production of these proteins and maintained the balance of cells
COX2↓,
NF-kB↓,
PDK1↓, After the chrysin was injected, the genes PDK1, PDK3, and GLUT1 that are involved in glycolysis had less expression
PDK3↑,
GLUT1↓,
Glycolysis↓, chrysin stops glycolysis
mt-ATP↓, chrysin inhibits complex II and ATPases in the mitochondria of cancer cells
Ki-67↓, the amounts of Ki-67, which is a sign of growth, and c-Myc in the tumor tissues went down
cMyc↓,
ROCK1↓, (ROCK1), transgelin 2 (TAGLN2), and FCH and Mu domain containing endocytic adaptor 2 (FCHO2) were much lower.
TOP1↓, DNA topoisomerases and histone deacetylase were inhibited, along with the synthesis of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and (IL-1 beta), while the activity of protective signaling pathways was increased
TNF-α↓,
IL1β↓,
CycB↓, Chrysin suppressed cyclin B1 and CDK2 production in order to stop cancerous growth.
CDK2↓,
EMT↓, chrysin treatment can also stop EMT
STAT3↓, chrysin block the STAT3 and NF-B pathways, but it also greatly reduced PD-L1 production both in vivo and in vitro.
PD-L1↓,
IL2↑, chrysin increases both the rate of T cell growth and the amount of IL-2

2780- CHr,    Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic Review
- Review, Var, NA
*antiOx↑, antioxidant (13), anti-inflammatory (14), antibacterial (15), anti-hypertensive (16), anti-allergic (17), vasodilator (18),
Inflam↓,
*hepatoP↑, anti-diabetic (19), anti-anxiety (10), anti-viral (20), anti-estrogen (21), liver protective (22), anti-aging (23), anti-seizure (24), and anti-cancer effects (25)
AntiCan↑,
Cyt‑c↑, (1) facilitating the release of cytochrome C from the mitochondria,
Casp3↑, (2) activating caspase-3 and inhibiting the activity of the XIAP molecule,
XIAP↓,
p‑Akt↓, (3) reducing AKT phosphorylation and triggering the PI3K pathway and induction of apoptosis
PI3K↑,
Apoptosis↑,
COX2↓, chrysin interacts weakly with COX-1 binding site whereas displayed a remarkable interaction with COX-2.
FAK↓, ESCC cells: resultant blockage of the FAK/AKT signaling pathways
AMPK↑, A549: activation of AMPK by chrysin contributes to Akt suppression
STAT3↑, 4T1cell: inhibited STAT3 activation
MMP↓, Chrysin induces apoptosis through the intrinsic mitochondrial pathway that disrupts mitochondrial membrane potential (MMP) and increases DNA fragmentation.
DNAdam↑,
BAX↑, produces pro-apoptotic proteins, including Bax and Bak, and activates caspase-9 and caspase-3 in various cancer cells
Bak↑,
Casp9↑,
p38↑, chrysin can inhibit tumor growth by activating P38 MAPK and stopping the cell cycle
MAPK↑,
TumCCA↑,
ChemoSen↑, beneficial in inhibiting chemotherapy resistance of cancer cells
HDAC8↓, chrysin suppresses tumorigenesis by inhibiting histone deacetylase 8 (HDAC8)
Wnt↓, chrysin can attenuate Wnt and NF-κB signaling pathways
NF-kB↓,
angioG↓, chrysin can inhibit angiogenesis and inducing apoptosis in HTh7 cells, 4T1 mice, and MDA-MB-231 cells
BioAv↓, low bioavailability of flavonoids such as chrysin

2782- CHr,    Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives
- Review, Var, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, antioxidant, anti-inflammatory, hepatoprotective, neuroprotective
*Inflam↓, inhibitory effect of chrysin on inflammation and oxidative stress is also important in Parkinson’s disease
*hepatoP↑,
*neuroP↑,
*BioAv↓, Accumulating data demonstrates that poor absorption, rapid metabolism, and systemic elimination are responsible for poor bioavailability of chrysin in humans that, subsequently, restrict its therapeutic effects
*cardioP↑, cardioprotective [69], lipid-lowering effect [70]
*lipidLev↓,
*RenoP↑, Renoprotective
*TNF-α↓, chrysin reduces levels of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2).
*IL2↓,
*PI3K↓, induction of the PI3K/Akt signaling pathway by chrysin contributes to a reduction in oxidative stress and inflammation during cerebral I/R injury
*Akt↓,
*ROS↓,
*cognitive↑, Chrysin (25, 50, and 100 mg/kg) improves cognitive capacity, inflammation, and apoptosis to ameliorate traumatic brain injury
eff↑, chrysin and silibinin is beneficial in suppressing breast cancer malignancy via decreasing cancer proliferation
cycD1↓, chrysin and silibinin induced cell cycle arrest via down-regulation of cyclin D1 and hTERT
hTERT↓,
VEGF↓, Administration of chrysin is associated with the disruption of hypoxia-induced VEGF gene expression
p‑STAT3↓, chrysin is capable of reducing STAT3 phosphorylation in hypoxic conditions without affecting the HIF-1α protein level.
TumMeta↓, chrysin is a potent agent in suppressing metastasis and proliferation of breast cancer cells during hypoxic conditions
TumCP↓,
eff↑, combination therapy of breast cancer cells using chrysin and metformin exerts a synergistic effect and is more efficient compared to chrysin alone
eff↑, combination of quercetin and chrysin reduced levels of pro-inflammatory factors, such as IL-1β, Il-6, TNF-α, and IL-10, via NF-κB down-regulation.
IL1β↓,
IL6↓,
NF-kB↓,
ROS↑, after chrysin administration, an increase occurs in levels of ROS that, subsequently, impairs the integrity of the mitochondrial membrane, leading to cytochrome C release and apoptosis induction
MMP↓,
Cyt‑c↑,
Apoptosis↑,
ER Stress↑, in addition to mitochondria, ER can also participate in apoptosis
Ca+2↑, Upon chrysin administration, an increase occurs in levels of ROS and cytoplasmic Ca2+ that mediate apoptosis induction in OC cells
TET1↑, In MKN45 cells, chrysin promotes the expression of TET1
Let-7↑, Chrysin is capable of promoting the expression of miR-9 and Let-7a as onco-suppressor factors in cancer to inhibit the proliferation of GC cells
Twist↓, Down-regulation of NF-κB, and subsequent decrease in Twist/EMT are mediated by chrysin administration, negatively affecting cervical cancer metastasis
EMT↓,
TumCCA↑, nduction of cell cycle arrest and apoptosis via up-regulation of caspase-3, caspase-9, and Bax are mediated by chrysin
Casp3↑,
Casp9↑,
BAX↑,
HK2↓, Chrysin administration (15, 30, and 60 mM) reduces the expression of HK-2 in hepatocellular carcinoma (HCC) cells to impair glucose uptake and lactate production.
GlucoseCon↓,
lactateProd↓,
Glycolysis↓, In addition to glycolysis metabolism impairment, the inhibitory effect of chrysin on HK-2 leads to apoptosis
SHP1↑, upstream modulator of STAT3 known as SHP-1 is up-regulated by chrysin
N-cadherin↓, Furthermore, N-cadherin and E-cadherin are respectively down-regulated and up-regulated upon chrysin administration in inhibiting melanoma invasion
E-cadherin↑,
UPR↑, chrysin substantially diminishes survival by ER stress induction via stimulating UPR, PERK, ATF4, and elF2α
PERK↑,
ATF4↑,
eIF2α↑,
RadioS↑, Irradiation combined with chrysin exerts a synergistic effect
NOTCH1↑, Irradiation combined with chrysin exerts a synergistic effect
NRF2↓, in reducing Nrf2 expression, chrysin down-regulates the expression of ERK and PI3K/Akt pathways—leading to an increase in the efficiency of doxorubicin in chemotherapy
BioAv↑, chrysin at the tumor site by polymeric nanoparticles leads to enhanced anti-tumor activity, due to enhanced cellular uptake
eff↑, Chrysin- and curcumin-loaded nanoparticles significantly promote the expression of TIMP-1 and TIMP-2 to exert a reduction in melanoma invasion

2784- CHr,    Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review)
- Review, Var, NA
Apoptosis↑, apoptosis, disrupting the cell cycle and inhibiting migration without generating toxicity or undesired side‑effects in normal cells
TumCMig↓,
*toxicity↝, toxic at higher doses and the recommended dose for chrysin is <3 g/day
ChemoSen↑, chrysin also inhibits multi‑drug resistant proteins and is effective in combination therapy
*BioAv↓, extremely low bioavailability in humans due to rapid quick metabolism, removal and restricted assimilation. The bioavailability of chrysin when taken orally has been estimated to be between 0.003 to 0.02%
Dose↝, safe and effective in various studies where volunteers have taken oral doses ranging from 300 to 625 mg without experiencing any documented effect
neuroP↑, Chrysin has been shown to exert neuroprotective effects via a variety of mechanisms, such as gamma-aminobutyric acid mimetic properties, monoamine oxidase inhibition, antioxidant, anti-inflammatory and anti-apoptotic activities
*P450↓, Chrysin inhibits cytochrome P450 2E1, alcohol dehydrogenase and xanthine oxidase at various dosages (20 and 40 mg/kg body weight) and protects Wistar rats against oxidative stress
*ROS↓,
*HDL↑, ncreased the levels of high-density lipoprotein cholesterol, glutathione S-transferase, superoxide dismutase and catalase
*GSTs↑,
*SOD↑,
*Catalase↑,
*MAPK↓, inactivate the MAPK/JNK pathway and suppress the NF-κB pathways, and at the same time upregulate the expression of PTEN, and activate the VEGF/AKT pathway
*NF-kB↓,
*PTEN↑,
*VEGF↑,
ROS↑, chrysin treatment in ovarian cancer led to the augmented generation of reactive oxygen species, a decrease in MMP and an increase in cytoplasmic Ca2+,
MMP↓,
Ca+2↑,
selectivity↑, It has been found that chrysin has no cytotoxic effect on normal cells, such as fibroblasts
PCNA↓, Chrysin likewise downregulates proliferating cell nuclear antigen (PCNA) expression in cervical carcinoma cells
Twist↓, Chrysin decreases the expression of TWIST 1 and NF-κB and thus suppresses epithelial-mesenchymal transition (EMT) in HeLa cells
EMT↓,
CDKN1C↑, Chrysin administration led to the upregulation of CDKN1 at the transcript and protein leve
p‑STAT3↑, Chrysin decreased the viability of 4T1 breast cancer cells by suppressing hypoxia-induced phosphorylation of STAT3
MMP2↓, chrysin-loaded PGLA/PEG nanoparticles modulated TIMPS and MMP2 and 9, and PI3K expression in a mouse 4T1 breast tumor model
MMP9↓,
eff↑, Chrysin used alone and as an adjuvant with metformin has been found to downregulate cyclin D and hTERT expression in the breast cancer cell line
cycD1↓,
hTERT↓,
CLDN1↓, CLDN1 and CLDN11 expression have been found to be higher in human lung squamous cell carcinoma. Treatment with chrysin treatment reduces both the mRNA and protein expression of these claudin genes
TumVol↓, Treatment with chrysin treatment (1.3 mg/kg body weight) significantly decreases tumor volume, resulting in a 52.6% increase in mouse survival
OS↑,
COX2↓, Chrysin restores the cellular equilibrium of cells subjected to benzopyrene by downregulating the expression of elevated proteins, such as PCNA, NF-κB and COX-2
eff↑, quercetin and chrysin together decreased the levels of pro-inflammatory molecules, such as IL-6, -1 and -10, and the levels of TNF via the NF-κB pathway.
CDK2↓, Chrysin has been shown to inhibit squamous cell carcinoma via the modulation of Rb and by decreasing the expression of CDK2 and CDK4
CDK4↓,
selectivity↑, chrysin selectively exhibits toxicity and induces the self-programed death of human uveal melanoma cells (M17 and SP6.5) without having any effect on normal cells
TumCCA↑, halting the cell cycle at the G2/M or G1/S phases
E-cadherin↑, upregulation of E-cadherin and the downregulation of cadherin
HK2↓, Chrysin decreased expression of HK-2 in mitochondria, and the interaction between HK-2 and VDAC 2 was disrupted,
HDAC↓, Chrysin, a HDAC inhibitor, caused cytotoxicity, and also inhibited migration and invasion.

2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, suppressed pro-inflammatory cytokine expression and histamine release, downregulated nuclear factor kappa B (NF-kB), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS)
*COX2↓,
*iNOS↓,
angioG↓, upregulated apoptotic pathways [28], inhibited angiogenesis [29] and metastasis formation
TOP1↓, suppressed DNA topoisomerases [31] and histone deacetylase [32], downregulated tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β)
HDAC↓,
TNF-α↓,
IL1β↓,
cardioP↑, promoted protective signaling pathways in the heart [34], kidney [35] and brain [8], decreased cholesterol level
RenoP↑,
neuroP↑,
LDL↓,
BioAv↑, bioavailability of chrysin in the oral route of administration was appraised to be 0.003–0.02% [55], the maximum plasma concentration—12–64 nM
eff↑, Chrysin alone and potentially in combination with metformin decreased cyclin D1 and hTERT gene expression in the T47D breast cancer cell line
cycD1↓,
hTERT↓,
MMP-10↓, Chrysin pretreatment inhibited MMP-10 and Akt signaling pathways
Akt↓,
STAT3↓, Chrysin declined hypoxic survival, inhibited activation of STAT3, and reduced VEGF expression in hypoxic cancer cells
VEGF↓,
EGFR↓, chrysin to inhibit EGFR was reported in a breast cancer stem cell model [
Snail↓, chrysin downregulated MMP-10, reduced snail, slug, and vimentin expressions increased E-cadherin expression, and inhibited Akt signaling pathway in TNBC cells, proposing that chrysin possessed a reversal activity on EMT
Slug↓,
Vim↓,
E-cadherin↑,
eff↑, Fabrication of chrysin-attached to silver and gold nanoparticles crossbred reduced graphene oxide nanocomposites led to augmentation of the generation of ROS-induced apoptosis in breast cancer
TET1↑, Chrysin induced augmentation in TET1
ROS↑, Pretreatment with chrysin induced ROS formation, and consecutively, inhibited Akt phosphorylation and mTOR.
mTOR↓,
PPARα↓, Chrysin inhibited mRNA expression of PPARα
ER Stress↑, ROS production by chrysin was the critical mediator behind induction of ER stress, leading to JNK phosphorylation, intracellular Ca2+ release, and activation of the mitochondrial apoptosis pathway
Ca+2↑,
ERK↓, reduced protein expression of p-ERK/ERK
MMP↑, Chrysin pretreatment led to an increase in mitochondrial ROS creation, swelling in isolated mitochondria from hepatocytes, collapse in MMP, and release cytochrome c.
Cyt‑c↑,
Casp3↑, Chrysin could elevate caspase-3 activity in the HCC rats group
HK2↓, chrysin declined HK-2 combined with VDAC-1 on mitochondria
NRF2↓, chrysin inhibited the Nrf2 expression and its downstream genes comprising AKR1B10, HO-1, and MRP5 by quenching ERK and PI3K-Akt pathway
HO-1↓,
MMP2↓, Chrysin pretreatment also downregulated MMP2, MMP9, fibronectin, and snail expression
MMP9↓,
Fibronectin↓,
GRP78/BiP↑, chrysin induced GRP78 overexpression, spliced XBP-1, and eIF2-α phosphorylation
XBP-1↓,
p‑eIF2α↑,
*AST↓, Chrysin administration significantly reduced AST, ALT, ALP, LDH and γGT serum activities
ALAT↓,
ALP↓,
LDH↓,
COX2↑, chrysin attenuated COX-2 and NFkB p65 expression, and Bcl-xL and β-arrestin levels
Bcl-xL↓,
IL6↓, Reduction in IL-6 and TNF-α and augmentation in caspases-9 and 3 were observed due to chrysin supplementation.
PGE2↓, Chrysin induced entire suppression NF-kB, COX-2, PG-E2, iNOS as well.
iNOS↓,
DNAdam↑, Chrysin induced apoptosis of cells by causing DNA fragmentation and increasing the proportions of DU145 and PC-3 cells
UPR↑, Also, it induced ER stress via activation of UPR proteins comprising PERK, eIF2α, and GRP78 in DU145 and PC-3 cells.
Hif1a↓, Chrysin increased the ubiquitination and degradation of HIF-1α by increasing its prolyl hydroxylation
EMT↓, chrysin was effective in HeLa cell by inhibiting EMT and CSLC properties, NF-κBp65, and Twist1 expression
Twist↓,
lipid-P↑, Chrysin disrupted intracellular homeostasis by altering MMP, cytosolic Ca (2+) levels, ROS generation, and lipid peroxidation, which plays a role in the death of choriocarcinoma cells.
CLDN1↓, Chrysin decreased CLDN1 and CLDN11 expression in human lung SCC
PDK1↓, Chrysin alleviated p-Akt and inhibited PDK1 and Akt
IL10↓, Chrysin inhibited cytokines release, TNF-α, IL-1β, IL-10, and IL-6 induced by Ni in A549 cells.
TLR4↓, Chrysin suppressed TLR4 and Myd88 mRNA and protein expression.
NOTCH1↑, Chrysin inhibited tumor growth in ATC both in vitro and in vivo through inducing Notch1
PARP↑, Pretreating cells with chrysin increased cleaved PARP, cleaved caspase-3, and declined cyclin D1, Mcl-1, and XIAP.
Mcl-1↓,
XIAP↓,

2787- CHr,    Network pharmacology unveils the intricate molecular landscape of Chrysin in breast cancer therapeutics
- Analysis, Var, MCF-7
TumCP↓, implicated in cell proliferation, angiogenesis, invasion, and metastasis
angioG↓,
TumCI↓,
TumMeta↓,
TP53↑, Chrysin exhibited strong binding interactions with several key hub proteins, notably TP53, AKT1, and CASP3, suggesting its capacity to inhibit tumorigenesis in breast cancer
Akt↓,
Casp3↑,
tumCV↓, dose-dependent reduction in cell viability was observed, with an IC50 value of 67.43 and 22.55 µM for 24 and 48 h
TNF-α↓, chrysin binds strongly to TNF-α, potentially inhibiting its function.
BioAv↑, Improved bioavailability of chrysin via its interaction with HSA could enhance its therapeutic efficacy, a factor that could be further explored in future pharmacokinetic studies
BioAv↑, Albumin’s ability to bind and transport Chrysin could influence the bioavailability of the flavonoid, potentially enhancing its therapeutic effects.
AKT1↓, chrysin effectively inhibits AKT1,

2788- CHr,    Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action
- Review, Var, NA
*neuroP↑, Chrysin mitigates neurotoxicity, neuroinflammation, and oxidative stress.
*Inflam↓,
*ROS↓,
NF-kB↓, Chrysin treatment maintains the antioxidant armory and suppresses the activation of redox-active transcription factor NF-kB
*PCNA↓, Chrysin supplementation downregulated the expression of PCNA, COX-2, and NF-kB
*COX2↓,
ChemoSen↑, Chrysin is effective in attenuating cisplatin-induced expression of both COX-2 and iNOS
Hif1a↓, DU145: Chrysin suppressed the expression of HIF-1a of tumor cells in vitro and inhibited tumor cell-induced angiogenesis in vivo
angioG↓,
*chemoP↑, Chrysin as an effective chemopreventive agent having the capability to obstruct DEN initiated and Fe-NTA promoted renal cancer in the rat model
PDGF↓, Chrysin functionally suppresses PDGF-induced proliferation and migration in VSMCs
*memory↑, Chrysin is effective in attenuating memory impairment, oxidative stress, acting as an antiaging agent
*RenoP↑, protected the kidney from damage
*PPARα↑, Chrysin significantly inhibits AGE-RAGE mediated oxidative stress and inflammation through PPAR-g activation
*lipidLev↓, Chrysin was able to decrease plasma lipids concentration because of its antioxidant properties
*hepatoP↑, Chrysin shows promising hepatoprotective and antihyperlipidemic effects, which are evidenced by the decreased levels of triglycerides, free fatty acids, total cholesterol, phospholipids, low-density lipoprotein-C, and very low-density lipoprotein
*cardioP⇅, Chrysin significantly ameliorated myocardial damage
*BioAv↓, despite its therapeutic potential, the bioavailability of chrysin and probably other flavonoids in humans is extremely low, mainly due to poor absorption, rapid metabolism, and rapid systemic elimination.

2790- CHr,    Chrysin: Pharmacological and therapeutic properties
- Review, Var, NA
*hepatoP↑, graphical abstract
*neuroP↓,
*ROS↓,
*cardioP↑,
*Inflam↓,
eff↑, suppression of hTERT and cyclin D1 gene expression in T47D breast cancer cell lines is due to the combined effect of metformin and chrysin
hTERT↓,
cycD1↓,
MMP9↓, nanoparticle-based chrysin in C57B16 mice bearing B16F10 melanoma tumors was markedly presented reductions in the levels of MMP-9, MMP-2, and TERT genes, whereas it enhanced TIMP-2 andTIMP-1 genes expression
MMP2↓,
TIMP1↑,
TIMP2↑,
BioAv↑, nano-encapsulation of chrysin and curcumin improved the delivery of these phytochemicals that significantly inhibited the growth of cancer cells, while it decreased the hTERT gene expression via increased solubility and bioavailability
HK2↓, chrysin treatment restrained tumor growth in HCC xenograft models and significantly reduced HK-2 expression in tumor tissue
ROS↑, showing a significant increase in intracellular reactive oxygen species (ROS), cytotoxicity, mitochondrial membrane potential (MMP) collapse, caspase-3 activation, ADP/ATP ratio, and ultimately apoptosis
MMP↓,
Casp3↑,
ADP:ATP↑,
Apoptosis↑,
ER Stress↑, Likewise, chrysin encouraged endoplasmic reticulum (ER) stress via stimulation of unfolded protein response (UPR
UPR↑,
GRP78/BiP↝, (eIF2α), PRKR-like ER kinase (PERK) and 78 kDa glucose-regulated protein (GRP78).
eff↑, silibinin and chrysin synergistically inhibited growth of T47D BCC and downregulated the hTERT and cyclin D1 level
Ca+2↑, Primarily, increased ROS and cytoplasmic Ca 2+ levels alongside induction of cell death and loss of MMP are involved in inhibition of ovarian cancer through chrysin.

1602- Cu,    A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy†
- in-vitro, BC, MCF-7 - in-vitro, BC, 4T1 - in-vitro, Lung, A549 - in-vitro, Liver, HepG2
eff↑, enhanced chemodynamic cancer therapy
GSH↓, glutathione (GSH) depletion properties
H2O2↑, overexpressed H2O2
ROS↑, highly cytotoxic hydroxyl radicals (˙OH) that kill cancer cells
*BioAv↑, complex is quickly taken up by cancer cells and distributed in multiple organelles including mitochondria and the nucleus
selectivity↑, toxicity toward normal cells is significantly lower than that toward cancer cells due to the limited expression of H2O2
TumCCA↑, arrest the cell cycle of the G0/G1 phase
Apoptosis↑, inducing apoptosis rather than necrosis
Fenton↑, Cu+-involved reaction can occur with a highest reaction rate (1x10E4 M-1 s-1) in weakly acidic, which is about 160-fold increase over that of Fe2+
*toxicity?, C50 value of CuL-Cuphen to normal cells COS-7 was about 6.3uM.

2308- CUR,    Counteracting Action of Curcumin on High Glucose-Induced Chemoresistance in Hepatic Carcinoma Cells
- in-vitro, Liver, HepG2
GlucoseCon↓, Curcumin obviated the hyperglycemia-induced modulations like elevated glucose consumption, lactate production, and extracellular acidification, and diminished nitric oxide and reactive oxygen species (ROS) production
lactateProd↓,
ECAR↓,
NO↓,
ROS↑, Curcumin favors the ROS production in HepG2 cells in normal as well as hyperglycemic conditions. ROS production was detected in cancer cells treated with curcumin, or doxorubicin, or their combinations in NG or HG medium for 24 h
HK2↓, HKII, PFK1, GAPDH, PKM2, LDH-A, IDH3A, and FASN. Metabolite transporters and receptors (GLUT-1, MCT-1, MCT-4, and HCAR-1) were also found upregulated in high glucose exposed HepG2 cells. Curcumin inhibited the elevated expression of these enzymes, tr
PFK1↓,
GAPDH↓,
PKM2↓,
LDHA↓,
FASN↓,
GLUT1↓, Curcumin treatment was able to significantly decrease the expression of GLUT1, HKII, and HIF-1α in HepG2 cells either incubated in NG or HG medium.
MCT1↓,
MCT4↓,
HCAR1↓,
SDH↑, Curcumin also uplifted the SDH expression, which was inhibited in high glucose condition
ChemoSen↑, Curcumin Prevents High Glucose-Induced Chemoresistance
ROS↑, Treatment of cells with doxorubicin in presence of curcumin was found to cooperatively augment the ROS level in cells of both NG and HG groups.
BioAv↑, Curcumin Favors Drug Accumulation in Cancer Cells
P53↑, An increased expression of p53 in curcumin-treated cells can be suggestive of susceptibility towards cytotoxic action of anticancer drugs
NF-kB↓, curcumin has therapeutic benefits in hyperglycemia-associated pathological manifestations and through NF-κB inhibition
pH↑, Curcumin treatment was found to resist the lowering of pH of culture supernatant both in NG as well in HG medium.

2305- CUR,    Mitochondrial targeting nano-curcumin for attenuation on PKM2 and FASN
- in-vitro, BC, MCF-7
BioAv↑, This nano-curcumin can readily enter mitochondrion in MCF-7 cancer cells.
PKM2↓, expression of both pyruvate kinase M2 and fatty acid synthase in the MCF-7 cancer cells were noticeably inhibited by CUR@DNA-FeS2-DA
FASN↓,
Glycolysis↓,

2817- CUR,    Neuroprotection by curcumin: A review on brain delivery strategies
- Review, Nor, NA
*BioAv↝, blood–brain barrier (BBB) is the major obstacle for the delivery of curcumin into the brain, limiting its therapeutic potential.
neuroP↑, Although it appears to possess important neuroprotective properties, the utility of curcumin is limited because of its poor brain bioavailability owing to poor absorption and stability at physiological pH, high rate of metabolism, rapid systemic elim

2816- CUR,    NEUROPROTECTIVE EFFECTS OF CURCUMIN
- Review, AD, NA - Review, Park, NA
*neuroP↑, Curcumin has an outstanding safety profile and a number of pleiotropic actions with potential for neuroprotective efficacy, including anti-inflammatory, antioxidant, and anti-protein-aggregate activities.
*Inflam↓,
*antiOx↑,
*BioAv↓, despite concerns about poor oral bioavailability, curcumin has at least 10 known neuroprotective action
*AP-1↓, Curcumin inhibition of AP-1 and NF-κB-mediated transcription occurs at relatively low (<100 nM) doses and might be due to inhibition of histone acetylase (HAT) or activation of histone deacetylase (HDAC) activity
*NF-kB↓,
*HATs↓,
*HDAC↑,
Dose↑, At high doses (>3 µM) that are relevant to colon cancer but unlikely achievable with oral delivery in plasma and tissues outside of the gut, curcumin can act as an alkylating agent,10 a phase II enzyme inducer,11 and stimulate antioxidant response el
*ROS↓, We also found that curcmin reduced oxidative damage, inflammation, and cognitive deficits in rats receiving CNS infusions of toxic Aβ
*cognitive↑,
*Aβ↓, dose-dependently blocked Aβ aggregation at submicromolar concentrations

2814- CUR,    Curcumin in Cancer and Inflammation: An In-Depth Exploration of Molecular Interactions, Therapeutic Potentials, and the Role in Disease Management
- Review, Var, NA
*BioAv↓, curcumin’s practical application in medicine is hindered by its limited bioavailability. low solubility in water and rapid breakdown in the body
*Inflam↓, anti-inflammatory, antioxidant, and potential anticancer abilities
*antiOx↑,
AntiCan↑,
CK2↓, Curcumin exhibited an IC50 of 2.38 ± 0.15 μM against CK2α
GSK‐3β↓, roles of GSK3β and how they are suppressed by curcumin
EGFR↓, roles of EGFR and how it is inhibited by the curcumin analog, 3a
TOP1↓, unwinding of DNA supercoils by Topo I and Topo II and their inhibition by cyclocurcumin
TOP2↓,
NF-kB↓, The activation of NF-kB signaling and the inhibition of NF-kB’s activity are portrayed in Figure 5.
COX2↓, curcumin itself interacts with COX-2 and potentially inhibits its function
CRP↓, ole of CRP in inducing inflammation and its inhibition by curcumin are depicted in Figure 6.

2809- CUR,    Comparative absorption of curcumin formulations
- in-vivo, Nor, NA
BioAv↑, co-administration of curcumin with an extract obtained from the black pepper has been shown to increase the absorption (AUC) of curcumin by 1.5-fold.
BioAv↑, Whereas, a complex of curcumin with phospholipids increased absorption by 3.4-fold
BioAv↑, and a formulation of curcumin with a micellar surfactant (polysorbate) has been shown to increase the absorption of curcumin in mice 9.0-fold
BioAv↑, A micro emulsion system of curcumin, which consists of Capryol 90 (oil), Cremophor RH40 (surfactant), and Transcutol P aqueous solution (co-surfactant) has been shown to increase the relative absorption in rats by 22.6-fold
BioAv↑, Polylactic-co-glycolic acid (PLGA) and PLGA-polyethylene glycol (PEG) (PLGA-PEG) blend nanoparticles increased curcumin absorption by 15.6- and 55.4-fold, respectively, compared to an aqueous suspension of curcumin in rats
BioAv↓, curcumin are limited by its poor solubility, low absorption from the gut, rapid metabolism and rapid systemic elimination.
Half-Life↝, Our data indicated that the curcumin half-life was estimated to be 6-7 hours

2688- CUR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Var, NA - Review, AD, NA
*ROS↓, CUR reduced the production of ROS
*SOD↑, CUR also upregulated the expression of superoxide dismutase (SOD) genes
p16↑, The effects of CUR on gene expression in cancer-associated fibroblasts obtained from breast cancer patients has been examined. CUR increased the expression of the p16INK4A and other tumor suppressor proteins
JAK2↓, CUR decreased the activity of the JAK2/STAT3 pathway
STAT3↓,
CXCL12↓, and many molecules involved in cellular growth and metastasis including: stromal cell-derived factor-1 (SDF-1), IL-6, MMP2, MMP9 and TGF-beta
IL6↓,
MMP2↓,
MMP9↓,
TGF-β↓,
α-SMA↓, These effects reduced the levels of alpha-smooth muscle actin (alpha-SMA) which was attributed to decreased migration and invasion of the cells.
LAMs↓, CUR suppressed Lamin B1 and
DNAdam↑, induced DNA damage-independent senescence in proliferating but not quiescent breast stromal fibroblasts in a p16INK4A-dependent manner.
*memory↑, CUR has recently been shown to suppress memory decline by suppressing beta-site amyloid precursor protein cleaving enzyme 1 (BACE1= Beta-secretase 1, an important gene in AD) expression which is implicated in beta-amyoid pathology in 5xFAD transgenic
*cognitive↑, CUR was found to decrease adiposity and improve cognitive function in a similar fashion as CR in 15-month-old mice.
*Inflam↓, The effects of CUR and CR were positively linked with anti-inflammatory or antioxidant actions
*antiOx↓,
*NO↑, CUR treatment increased nNOS expression, acidity and NO concentration
*MDA↓, CUR treatment resulted in decreased levels of MDA
*ROS↓, CUR treatment was determined to cause reduction of ROS in the AMD-RPEs and protected the cells from H2O2-induced cell death by reduction of ROS levels.
DNMT1↓, CUR has been shown to downregulate the expression of DNA methyl transferase I (DNMT1)
ROS↑, induction of ROS and caspase-3-mediated apoptosis
Casp3↑,
Apoptosis↑,
miR-21↓, CUR was determined to decrease both miR-21 and anti-apoptotic protein expression.
LC3II↓, CUR also induced proteins associated with cell death such as LC3-II and other proteins in U251 cells
ChemoSen↑, The combined CUR and temozolomide treatment resulted in enhanced toxicity in U-87 glioblastoma cells.
NF-kB↓, suppression of NF-kappaB activity
CSCs↓, Dendrosomal curcumin increased the expression of miR-145 and decreased the expression of stemness genes including: NANOG, OCT4A, OCT4B1, and SOX2 [113]
Nanog↓,
OCT4↓,
SOX2↓,
eff↑, A synergistic interaction was observed when emodin and CUR were combined in terms of inhibition of cell growth, survival and invasion.
Sp1/3/4↓, CUR inducing ROS which results in suppression of specificity protein expression (SP1, SP3 and SP4) as well as miR-27a.
miR-27a-3p↓,
ZBTB10↑, downregulation of miR-27a by CUR, increased expression of ZBTB10 occurred
SOX9?, This resulted in decreased SOX9 expression.
ChemoSen↑, CUR used in combination with cisplatin resulted in a synergistic cytotoxic effect, while the effects were additive or sub-additive in combination with doxorubicin
VEGF↓, Some of the effects of CUR treatment are inhibition of NF-κB activity and downstream effector proteins, including: VEGF, MMP-9, XIAP, BCL-2 and Cyclin-D1.
XIAP↓,
Bcl-2↓,
cycD1↓,
BioAv↑, Piperine is an alkaloid found in the seeds of black pepper (Piper nigrum) and is known to enhance the bioavailability of several therapeutic agents, including CUR
Hif1a↓, CUR inhibits HIF-1 in certain HCC cell lines and in vivo studies with tumor xenografts. CUR also inhibited EMT by suppressing HIF-1alpha activity in HepG2 cells
EMT↓,
BioAv↓, CUR has a poor solubility in aqueous enviroment, and consequently it has a low bioavailability and therefore low concentrations at the target sites.
PTEN↑, CUR treatment has been shown to result in activation of PTEN, which is a target of miR-21.
VEGF↓, CUR treatment resulted in a decrease of VEGF and activated Akt.
Akt↑,
EZH2↓, CUR also suppressed EZH2 expression by induction of miR-let 7c and miR-101.
NOTCH1↓, The expression of NOTCH1 was inhibited upon EZH2 suppression [
TP53↑, CUR has been shown to activate the TP53/miR-192-5p/miR-215/XIAP pathway in NSCLC.
NQO1↑, CUR can also induce the demethylation of the nuclear factor erythroid-2 (NF-E2) related factor-2 (NRT2) gene which in turn activates (NQO1), heme oxygenase-1 (HO1) and an antioxidant stress pathway which can prevent growth in mouse TRAMP-C1 prostate
HO-1↑,

3576- CUR,    Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's Disease
- Review, AD, NA
*Inflam↓, known to have protective effects, including anti-inflammatory, antioxidant, anti-arthritis, pro-healing, and boosting memory cognitive functions.
*antiOx↑,
*memory↑,
*Aβ↓, curcumin prevents Aβ aggregation and crosses the blood-brain barrier,
*BBB↑,
*cognitive↑, curcumin ameliorates cognitive decline and improves synaptic functions in mouse models of AD
*tau↓, curcumin's effect on inhibition of A and tau,copper binding ability, cholesterol lowering ability, anti-inflammatory and modulation of microglia, acetylcholinesterase (AChE) inhibition, antioxidant properties,
*LDL↓,
*AChE↓,
*IL1β↓, Curcumin reduced the levels of oxidized proteins and IL1B in the brains of APP mice
*IronCh↑, Curcumin binds to redox-active metals, iron and copper
*neuroP↑, Curcumin, a neuroprotective agent, has poor brain bioavailability.
*BioAv↝,
*PI3K↑, They found that curcumin significantly upregulates phosphatidylinositol 3-kinase (PI3K), Akt, nuclear factor E2-related factor-2 (Nrf2), heme oxygenase 1, and ferritin expression
*Akt↑,
*NRF2↑,
*HO-1↑,
*Ferritin↑,
*HO-2↓, and that it significantly downregulates heme oxygenase 2, ROS, and A40/42 expression.
*ROS↓,
*Ach↑, significant increase in brain ACh, glutathione, paraoxenase, and BCL2 levels with respect to untreated group associated with significant decrease in brain AChE activity,
*GSH↑,
*Bcl-2↑,
*ChAT↑, nvestigation revealed that the selected treatments caused marked increase in ChAT positive cells.

3574- CUR,    The effect of curcumin (turmeric) on Alzheimer's disease: An overview
- Review, AD, NA
*antiOx↑, Curcumin as an antioxidant, anti-inflammatory and lipophilic action improves the cognitive functions in patients with AD
*Inflam↓,
*lipid-P↓,
*cognitive↑,
*memory↑, overall memory in patients with AD has improved.
*Aβ↓, curcumin may help the macrophages to clear the amyloid plaques found in Alzheimer's disease.
*COX2↓, Curcumin is found to inhibit cyclooxygenase (COX-2),
*ROS↓, The reduction of the release of ROS by stimulated neutrophils, inhibition of AP-1 and NF-Kappa B inhibit the activation of the pro-inflammatory cytokines TNF (tumor necrosis factor)-alpha and IL (interleukin)-1 beta
*AP-1↓,
*NF-kB↓,
*TNF-α↓,
*IL1β↓,
*SOD↑, It also increased the activity of superoxide dismutase, sodium-potassium ATPase that normally decreased with aging.
*GSH↑, followed by a significant elevation in oxidized glutathione content.
*HO-1↑, curcumin induces hemoxygenase activity.
*IronCh↑, curcumin effectively binds to copper, zinc and iron.
*BioAv↓, Curcumin has poor bioavailability. Because curcumin readily conjugated in the intestine and liver to form curcumin glucuronides.
*Half-Life↝, , serum curcumin concentrations peaked one to two hours after an oral dose
*Dose↝, Peak serum concentrations were 0.5, 0.6 and 1.8 micromoles/L at doses of 4, 6 and 8 g/day respectively.
*BBB↑, Curcumin crosses the blood brain barrier and is detected in CSF
*BioAv↑, Absorption appears to be better with food.
*toxicity∅, A phase 1 human trial with 25 subjects using up to 8000 mg of curcumin per day for three months found no toxicity from curcumin.
*eff↑, Co-supplementation with 20 mg of piperine (extracted from black pepper) significantly increase the bioavailablity of curcumin by 2000%

2654- CUR,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, ROS induction has been implicated as one of the mechanisms of the anticancer activity of curcumin and its derivatives in various cancers
Catalase↓, Curcumin induces ROS by inhibiting the activity of various ROS-related metabolic enzymes, such as CAT, SOD1, glyoxalase 1, and NAD(P)H dehydrogenase [quinone] 1 [146,149]
SOD1↓,
GLO-I↓,
NADPH↓,
TumCCA↑, ROS accumulation further mediates G1 or G2/M cell cycle arrest [146,147,150,154], senescence [146], and apoptosis.
Apoptosis↑,
Akt↓, downregulation of AKT phosphorylation [145
ER Stress↑, endoplasmic reticulum stress (namely through the PERK–ATF4–CHOP axis)
JNK↑, activation of the JNK pathway [151],
STAT3↓, and inhibition of STAT3 [155].
BioAv↑, Additionally, the combination of curcumin and piperine, a pro-oxidative phytochemical that drastically increases the bioavailability of curcumin in humans

1608- EA,    Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity
- in-vitro, Cerv, HeLa - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, HUVECs
eff↑, Hull blackberry fruits into five growth periods according to color and determined the EA content in the fruits in each period. The EA content in the green fruit stage was the highest at 5.67 mg/g FW
Dose∅, EA inhibited HeLa cells with an IC50 of 35 μg/mL
*BioAv↑, EA is not sensitive to high temperatures and is not highly soluble in many solvents.
selectivity↑, selectivity index varied from 7.4 for Hela to about 1 for A549
TumCP↓, EA reduced the proliferation of human cervical cancer HeLa, SiHa, and C33A cells in a dose- and time-dependent manner, and the inhibitory effect was significantly more pronounced in HeLa cells than in SiHa and C33A cells
Casp↑, EA reduced the proliferation of human cervical cancer HeLa, SiHa, and C33A cells in a dose- and time-dependent manner, and the inhibitory effect was significantly more pronounced in HeLa cells than in SiHa and C33A cells
PTEN↑,
TSC1↑,
mTOR⇅,
Akt↓, AKT, PDK1 expression were down-regulated
PDK1↓,
E6↓, mRNA levels of E6/E7 were determined to decrease gradually with the increase in EA incubation time and concentration
E7↓,
DNAdam↑, When DNA damage is introduced into cells from exogenous or endogenous sources there is an increase in the amount of intracellular reactive oxygen species (ROS)
ROS↑,
*BioAv↓, EA cannot be exploited for in vivo therapeutic applications in the current situation because of its poor water solubility and accordingly low bioavailability.
*BioEnh↑, As Lei [52] reported that EA in pomegranate leaf is rapidly absorbed and distributed as well as eliminated in rats
*Half-Life∅, blood concentration peaked at 0.5 h with Cmax = 7.29 μg/mL, and the drug concentration decreased to half of the original after 57 min of administration

1611- EA,    Targeting Myeloperoxidase Activity and Neutrophil ROS Production to Modulate Redox Process: Effect of Ellagic Acid and Analogues
- in-vitro, Mal, NA
*BioAv↓, ellagic acid is widely studied due to its antioxidant and parasite-inhibiting properties. However, its low oral bioavailability remains a concern
eff↑, very effective inhibitor of Plasmodium falciparum, showing an in vitro activity ranging from 100 to 300 nM
*BioAv↓, ellagic acid remains its very low oral bioavailability (<30% in mice), which impedes its use as an oral antimalarial drug and was partially linked to its low hydrosolubility.
ROS↑, when in contact with the parasite environment, could become pro-oxidant and efficient

1615- EA,    Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum l.) polyphenols after ingestion of a standardized extract in healthy human volunteers
- Human, Nor, NA
*BioAv∅, 800 mg of extract. Results indicate that ellagic acid (EA) from the extract is bioavailable, with an observed C(max) of 33 ng/mL at t(max) of 1 h.
*ROS∅, whereas the generation of reactive oxygen species (ROS) was not affected

1605- EA,    Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence
- Review, Var, NA
*BioAv↓, Within the gastrointestinal tract, EA has restricted bioavailability, primarily due to its hydrophobic nature and very low water solubility.
antiOx↓, strong antioxidant properties [12,13], anti-inflammatory effects
Inflam↓,
TumCP↓, numerous studies indicate that EA possesses properties that can inhibit cell proliferation
TumCCA↑, achieved this by causing cell cycle arrest at the G1 phase
cycD1↓, reduction of cyclin D1 and E levels, as well as to the upregulation of p53 and p21 proteins
cycE↓,
P53↑,
P21↑,
COX2↓, notable reduction in the protein expression of COX-2 and NF-κB as a result of this treatment
NF-kB↓,
Akt↑, suppressing Akt and Notch signaling pathways
NOTCH↓,
CDK2↓,
CDK6↓,
JAK↓, suppression of the JAK/STAT3 pathway
STAT3↓,
EGFR↓, decreased expression of epidermal growth factor receptor (EGFR)
p‑ERK↓, downregulated the expression of phosphorylated ERK1/2, AKT, and STAT3
p‑Akt↓,
p‑STAT3↓,
TGF-β↓, downregulation of the TGF-β/Smad3
SMAD3↓,
CDK6↓, EA demonstrated the capacity to bind to CDK6 and effectively inhibit its activity
Wnt/(β-catenin)↓, ability of EA to inhibit phosphorylation of EGFR
Myc↓, Myc, cyclin D1, and survivin, exhibited decreased levels
survivin↓,
CDK8↓, diminished CDK8 level
PKCδ↓, EA has demonstrated a notable downregulatory impact on the expression of classical isoenzymes of the PKC family (PKCα, PKCβ, and PKCγ).
tumCV↓, EA decreased cell viability
RadioS↑, further intensified when EA was combined with gamma irradiation.
eff↑, EA additionally potentiated the impact of quercetin in promoting the phosphorylation of p53 at Ser 15 and increasing p21 protein levels in the human leukemia cell line (MOLT-4)
MDM2↓, finding points to the ability of reduced MDM2 levels
XIAP↓, downregulation of X-linked inhibitor of apoptosis protein (XIAP).
p‑RB1↓, EA exerted a decrease in phosphorylation of pRB
PTEN↑, EA enhances the protein phosphatase activity of PTEN in melanoma cells (B16F10)
p‑FAK↓, reduced phosphorylation of focal adhesion kinase (FAK)
Bax:Bcl2↑, EA significantly increases the Bax/Bcl-2 rati
Bcl-xL↓, downregulates Bcl-xL and Mcl-1
Mcl-1↓,
PUMA↑, EA also increases the expression of Bcl-2 inhibitory proapoptotic proteins PUMA and Noxa in prostate cancer cells
NOXA↑,
MMP↓, addition to the reduction in MMP, the release of cytochrome c into the cytosol occurs in pancreatic cancer cells
Cyt‑c↑,
ROS↑, induction of ROS production
Ca+2↝, changes in intracellular calcium concentration, leading to increased levels of EndoG, Smac/DIABLO, AIF, cytochrome c, and APAF1 in the cytosol
Endoglin↑,
Diablo↑,
AIF↑,
iNOS↓, decreased expression of Bcl-2, NF-кB, and iNOS were observed after exposure to EA at concentrations of 15 and 30 µg/mL
Casp9↑, increase in caspase 9 activity in EA-treated pancreatic cancer cells PANC-1
Casp3↑, EA-induced caspase 3 activation and PARP cleavage in a dose-dependent manner (10–100 µmol/L)
cl‑PARP↑,
RadioS↑, EA sensitizes and reduces the resistance of breast cancer MCF-7 cells to apoptosis induced by γ-radiation
Hif1a↓, EA reduced the expression of HIF-1α
HO-1↓, EA significantly reduced the levels of two isoforms of this enzyme, HO-1, and HO-2, and increased the levels of sEH (Soluble epoxide hydrolase) in LnCap
HO-2↓,
SIRT1↓, EA-induced apoptosis was associated with reduced expression of HuR and Sirt1
selectivity↑, A significant advantage of EA as a potential chemopreventive, anti-tumor, or adjuvant therapeutic agent in cancer treatment is its relative selectivity
Dose∅, EA significantly reduced the viability of cancer cells at a concentration of 10 µmol/L, while in healthy cells, this effect was observed only at a concentration of 200 µmol/L
NHE1↓, EA had the capacity to regulate cytosolic pH by downregulating the expression of the Na+/H+ exchanger (NHE1)
Glycolysis↓, led to intracellular acidification with subsequent impairment of glycolysis
GlucoseCon↓, associated with a decrease in the cellular uptake of glucose
lactateProd↓, notable reduction in lactate levels in supernatant
PDK1?, inhibit pyruvate dehydrogenase kinase (PDK) -bind and inhibit PDK3
PDK1?,
ECAR↝, EA has been shown to influence extracellular acidosis
COX1↓, downregulation of cancer-related genes, including COX1, COX2, snail, twist1, and c-Myc.
Snail↓,
Twist↓,
cMyc↓,
Telomerase↓, EA, might dose-dependently inhibit telomerase activity
angioG↓, EA may inhibit angiogenesis
MMP2↓, EA demonstrated a notable reduction in the secretion of matrix metalloproteinase (MMP)-2 and MMP-9.
MMP9↓,
VEGF↓, At lower concentrations (10 and 20 μM), EA led to a substantial increase in VEGF levels. However, at higher doses (40 and 100 μM), a notable reduction in VEGF
Dose↝, At lower concentrations (10 and 20 μM), EA led to a substantial increase in VEGF levels. However, at higher doses (40 and 100 μM), a notable reduction in VEGF
PD-L1↓, EA downregulated the expression of the immune checkpoint PD-L1 in tumor cells
eff↑, EA might potentially enhance the efficacy of anti-PD-L1 treatment
SIRT6↑, EA exhibited statistically significant upregulation of sirtuin 6 at the protein level in Caco2 cells
DNAdam↓, increase in DNA damage

648- EGCG,    Bioavailability of Epigallocatechin Gallate Administered With Different Nutritional Strategies in Healthy Volunteers
- Human, Nor, NA
*BioAv↑, green tea extract should be ingested alone after overnight fasting to optimize the gastrointestinal absorption of the EGCG.

647- EGCG,    Food Inhibits the Oral Bioavailability of the Major Green Tea Antioxidant Epigallocatechin Gallate in Humans
- Human, Nor, NA
*BioAv↑, taking EGCG capsules without food was better; the AUC was 2.7 and 3.9 times higher than when EGCG capsules were taken with a light breakfast

646- EGCG,  PI,    Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice
- in-vivo, Nor, NA
*BioAv↑, area under the curve (AUC) by 1.3-fold compared to mice treated with EGCG only

644- EGCG,  Citrate,    Simple Approach to Enhance Green Tea Epigallocatechin Gallate Stability in Aqueous Solutions and Bioavailability: Experimental and Theoretical Characterizations
- Analysis, Nor, NA
*BioAv↑,

675- EGCG,    When Natural Compounds Meet Nanotechnology: Nature-Inspired Nanomedicines for Cancer Immunotherapy
- Review, Var, NA
*BioAv↑, (NPs)-based delivery strategies

1516- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*Dose∅, A pharmacokinetic study in healthy individuals receiving single doses of EGCGrevealed that plasma concentrations exceeded 1 μM only with doses of >1 g
Half-Life∅, peak levels observed between 1.3 and 2.2 h (and a half-life (t1/2z) of 1.9 to 4.6 h)
BioAv∅, oral bioavailability of 20.3% relative to intravenous admistration
BBB↑, EGCG can cross the blood–brain barrier, allowing it to reach the brain
toxicity∅, Isbrucher et al. found no evidence of genotoxicity in rats following oral administration of EGCG at doses of 500, 1000, or 2000 mg/kg, or intravenous injections of 10, 25, or 50 mg/kg/day.
eff↓, interaction with the folate transporter has been reported, leading to reduced bioavailability of folic acid
Apoptosis↑,
Casp3↑,
Cyt‑c↑, cytochrome c release
cl‑PARP↑,
DNMTs↓,
Telomerase↓,
angioG↓,
Hif1a↓,
NF-kB↓,
MMPs↓,
BAX↑,
Bak↑,
Bcl-2↓,
Bcl-xL↓,
P53↑,
PTEN↑,
IGF-1↓,
H3↓,
HDAC1↓,
*LDH↓, reduces LDL cholesterol, decreases oxidative stress by neutralizing ROS
*ROS↓,

2994- EGCG,    Nano-Engineered Epigallocatechin Gallate (EGCG) Delivery Systems: Overcoming Bioavailability Barriers to Unlock Clinical Potential in Cancer Therapy
- Review, Var, NA
BioAv↓, Despite its therapeutic promise, clinical application is constrained by rapid metabolism, poor bioavailability, and inconsistent biodistribution.
NF-kB↓, EGCG modulates oncogenic pathways via NF-κB suppression, caspase activation, and MMP-9 downregulation, demonstrating efficacy across diverse cancer types.
Casp↑,
MMP9↑,
Sp1/3/4↑, marked decrease in Sp1 activity

3201- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*AntiCan↑, EGCG’s therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes
*cardioP↑,
*neuroP↑,
*BioAv↝, Factors such as fasting, storage conditions, albumin levels, vitamin C, fish oil, and piperine have been shown to affect plasma concentrations and the overall bioavailability of EGCG
*BioAv↓, Conversely, bioavailability is reduced by processes such as air oxidation, sulfation, glucuronidation, gastrointestinal degradation, and interactions with Ca2+, Mg2+, and trace metals,
*BioAv↓, EGCG’s oral bioavailability is generally low, with marked differences observed across species, for example, bioavailability rates of 26.5% in CF-1 mice and just 1.6% in Sprague Dawley rats
*Dose↝, plasma concentrations exceeded 1 μM only when doses of 1 g or higher were administered.
*Half-Life↝, Specifically, a dose of 1600 mg yielded a Cmax of 3392 ng/mL (range: 130–3392 ng/mL), with peak levels observed between 1.3 and 2.2 h, AUC (0–∞) values ranging from 442 to 10,368 ng·h/mL, and a half-life (t1/2z) of 1.9 to 4.6 h.
*BioAv↑, Studies on the distribution of EGCG have revealed that, despite its limited absorption, it is rapidly disseminated throughout the body or quickly converted into metabolites
*BBB↑, Additionally, EGCG can cross the blood–brain barrier, allowing it to reach the brain
*hepatoP↓, Several studies have documented liver damage linked to green tea consumption [48,49,50,51,52,53].
*other↓, EGCG has also been shown to inhibit the intestinal absorption of non-heme iron in a dose-dependent manner in a controlled clinical trial
*Inflam↓, EGCG has been widely recognized for its anti-inflammatory effects
*NF-kB↓, EGCG has been shown to suppress NF-κB activation, inhibit its nuclear translocation, and block AP-1 activity
*AP-1↓,
*iNOS↓, downregulation of pro-inflammatory enzymes like iNOS and COX-2 and scavenging of ROS/RNS, including nitric oxide and peroxynitrite
*COX2↓,
*ROS↓,
*RNS↓,
*IL8↓, EGCG has been shown to suppress airway inflammation by reducing IL-8 release, a cytokine involved in neutrophil aggregation and ROS production.
*JAK↓, EGCG blocks the JAK1/2 signaling pathway
*PDGFR-BB↓, downregulate PDGFR and IGF-1R gene expression
*IGF-1R↓,
*MMP2↓, reduce MMP-2 mRNA expression
*P53↓, downregulation of the p53-p21 signaling pathway and the enhanced expression of Nrf2
*NRF2↑,
*TNF-α↓, 25 to 100 μM reduced the levels of TNF-α, IL-6, and ROS while enhancing the expression of E2F2 and superoxide dismutases (SOD1 and SOD2), enzymes vital for cellular antioxidant defense.
*IL6↓,
*E2Fs↑,
*SOD1↑,
*SOD2↑,
Casp3↑, EGCG has been shown to activate key apoptotic pathways, such as caspase-3 activation, cytochrome c release, and PARP cleavage, in various cell models, including PC12 cells exposed to oxidative stress
Cyt‑c↑,
PARP↑,
DNMTs↓, (1) the inhibition of DNA hypermethylation by blocking DNA methyltransferase (DNMT)
Telomerase↓, (2) the repression of telomerase activity;
Hif1a↓, (3) the suppression of angiogenesis via the inhibition of HIF-1α and NF-κB;
MMPs↓, (4) the prevention of cellular metastasis by inhibiting matrix metalloproteinases (MMPs);
BAX↑, (5) the promotion of apoptosis through the activation of pro-apoptotic proteins like BAX and BAK
Bak↑,
Bcl-2↓, while downregulating anti-apoptotic proteins like BCL-2 and BCL-XL;
Bcl-xL↓,
P53↑, (6) the upregulation of tumor suppressor genes such as p53 and PTEN;
PTEN↑,
TumCP↓, (7) the inhibition of inflammation and proliferation via NF-κB suppression;
MAPK↓, (8) anti-proliferative activity through the modulation of MAPK and IGF1R pathways
HGF/c-Met↓, EGCG inhibits hepatocyte growth factor (HGF), which is involved in tumor migration and invasion
TIMP1↑, EGCG has also been shown to influence the expression of tissue inhibitors of metalloproteinases (TIMPs) and MMPs, which are involved in tumorigenesis
HDAC↓, nhibition of UVB-induced DNA hypomethylation and modulation of DNMT and histone deacetylase (HDAC) activities
MMP9↓, inhibiting MMPs such as MMP-2 and MMP-9
uPA↓, EGCG may block urokinase-like plasminogen activator (uPA), a protease involved in cancer progression
GlutMet↓, EGCG can exert antitumor effects by inhibiting glycolytic enzymes, reducing glucose metabolism, and further suppressing cancer-cell growth
ChemoSen↑, EGCG’s combination with standard chemotherapy drugs may enhance their efficacy through additive or synergistic effects, while also mitigating chemotherapy-related side effects
chemoP↑,

1324- EMD,    Is Emodin with Anticancer Effects Completely Innocent? Two Sides of the Coin
- Review, Var, NA
*toxicity↑, however, it is known that emodin, which shows toxicity to cancer cells, may cause kidney toxicity, hepatotoxicity, and reproductive toxicity especially at high doses and long-term use.
*BioAv↓, poor oral bioavailability
Akt↓,
ERK↓,
ROS↑, pretreatment of cells with ascorbic acid prevented the induction of ROS by emodin and inhibited the upregulation of p53
MMP↓,
Bcl-2↓,
BAX↑,
TumCCA↑, increasing the percentage of both S and G2/M phase cells

1656- FA,    Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling
- Review, Var, NA
tyrosinase↓,
CK2↓,
TumCP↓,
TumCMig↓,
FGF↓,
FGFR1↓,
PI3K↓,
Akt↓,
VEGF↓,
FGFR1↓,
FGFR2↓,
PDGF↓,
ALAT↓,
AST↓,
TumCCA↑, G0/G1 phase arrest
CDK2↓,
CDK4↓,
CDK6↓,
BAX↓,
Bcl-2↓,
MMP2↓,
MMP9↓,
P53↑,
PARP↑,
PUMA↑,
NOXA↑,
Casp3↑,
Casp9↑,
TIMP1↑,
lipid-P↑,
mtDam↑,
EMT↓,
Vim↓,
E-cadherin↓,
p‑STAT3↓,
COX2↓,
CDC25↓,
RadioS↑,
ROS↑,
DNAdam↑,
γH2AX↑,
PTEN↑,
LC3II↓,
Beclin-1↓,
SOD↓,
Catalase↓,
GPx↓,
Fas↑,
*BioAv↓, ferulic acid stability and limited solubility in aqueous media continue to be key obstacles to its bioavailability, preclinical efficacy, and clinical use.
cMyc↓,
Beclin-1↑, ferulic acid by elevating the levels of the apoptosis and autophagy biomarkers, including beclin-1, Light chain (LC3-I/LC3-II), PTEN-induced putative kinase 1 (PINK-1), and Parkin
LC3‑Ⅱ/LC3‑Ⅰ↓,

1654- FA,    Molecular mechanism of ferulic acid and its derivatives in tumor progression
- Review, Var, NA
AntiCan↑, FA has anti-inflammatory, analgesic, anti-radiation, and immune-enhancing effects and also shows anticancer activity,
Inflam↓,
RadioS↑,
ROS↑, FA can cause mitochondrial apoptosis by inducing the generation of intracellular reactive oxygen species (ROS)
Apoptosis↑,
TumCCA↑, G0/G1 phase
TumCMig↑, inducing autophagy; inhibiting cell migration, invasion, and angiogenesis
TumCI↓,
angioG↓,
ChemoSen↑, synergistically improving the efficacy of chemotherapy drugs and reducing adverse reactions.
ChemoSideEff↓,
P53↑, FA could increase the expression level of p53 in MIA PaCa-2 pancreatic cancer cells
cycD1↓, while reducing the expression levels of cyclin D1 and cyclin-dependent kinase (CDK) 4/6.
CDK4↓,
CDK6↓,
TumW↓, FA treatment was found to reduce tumor weight in a dose-dependent manner, increase miR-34a expression, downregulate Bcl-2 protein expression, and upregulate caspase-3 protein expression
miR-34a↑,
Bcl-2↓,
Casp3↑,
BAX↑,
β-catenin/ZEB1↓, isoferulic acid dose-dependently downregulated the expression of β-catenin and MYC proto-oncogene (c-Myc), inducing apoptosis
cMyc↓,
Bax:Bcl2↑, FXS-3 can inhibit the activity of A549 cells by upregulating the Bax/Bcl-2 ratio
SOD↓, After treatment with FA, Cao et al. [40] observed an increase in ROS production and a decrease in superoxide dismutase activity and glutathione content in EC-1 and TE-4 oesophageal cancer cells
GSH↓,
LDH↓, FA could promote the release of lactate dehydrogenase (LDH)
ERK↑, A can activate the ERK1/2 pathway
eff↑, conjugated zinc oxide nanoparticles with FA (ZnONPs-FA) to act on hepatoma Huh-7 and HepG2 cells. The results showed that ZnONPs-FA could induce oxidative DNA damage and apoptosis by inducing ROS production.
JAK2↓, by inhibiting the JAK2/STAT6 immune signaling pathway
STAT6↓,
NF-kB↓, thus inhibiting the activation of NF-κB
PYCR1↓, FA can target PYCR1 and inhibit its enzyme activity in a concentration-dependent manner.
PI3K↓, FA inhibits the activation of the PI3K/AKT pathway
Akt↓,
mTOR↓, FA could significantly reduce the expression level of mTOR mRNA and Ki-67 protein in A549 lung cancer graft tissue
Ki-67↓,
VEGF↓,
FGFR1↓, FA is a novel FGFR1 inhibitor
EMT↓, FA can inhibit EMT
CAIX↓, selectively inhibit CAIX
LC3II↑, Autophagy vacuoles and increased LC3-II and p62 autophagy proteins were observed after treatment with this compound
p62↑,
PKM2↓, FA could inhibit the expression of PKM2 and block aerobic glycolysis
Glycolysis↓,
*BioAv↓, FA has poor solubility in water and a poor ability to pass through biological barriers [118]; therefore, the extent to which it is metabolized in vivo after oral administration is largely unknown

2494- Fenb,    Oral Fenbendazole for Cancer Therapy in Humans and Animals
- Review, Var, NA
Glycolysis↓, fenbendazole and its promising anticancer biological activities, such as inhibiting glycolysis, down-regulating glucose uptake, inducing oxidative stress, and enhancing apoptosis in published experimental studies.
GlucoseCon↓,
ROS↑,
Apoptosis↑,
BioAv↓, Due to its poor absorption by oral administration, fenbendazole is particularly effective for targeting intestinal parasites
eff↑, Tippens began self-administering 222 mg fenbendazole orally, along with vitamin E supplements, CBD oil, and bioavailable curcumin. After three months of self-administration, a PET scan revealed no detectable cancer cells in his body.
toxicity↓, In rodents, its lethal dose (LD50) exceeded 10 g/kg, which is 1,000 times the therapeutic level
BioAv↑, vehicles for increasing the bioavailability of oral fenbendazole, it would be worthwhile to focus on dimethyl sulfoxide (DMSO), Salicylic acid, and methyl-β-cyclodextrin.
BioAv↑, Another method to improve the solubility of fenbendazole would be to complex it with methyl-β-cyclodextrin at a 1:1 ratio.
hepatoP↓, In both cases, despite the hepatotoxicity, patients’ liver function recovered rapidly upon discontinuing fenbendazole.
eff↑, combining fenbendazole with glycolysis inhibitors and hepatoprotective pharmaceutical or nutraceutical agents can lead to synergic therapeutic activity while reducing potential liver toxicity.

2854- FIS,    New Perspectives for Fisetin
- Review, Var, NA - Review, Stroke, NA
Inflam↓, anti-inflammatory, chemopreventive, chemotherapeutic
ChemoSen↑,
chemoP↑,
eff↑, fisetin significantly impairs carcinoma cell growth in the presence of ascorbic acid, which results in a 61% inhibition of cell growth, in 72 h; the treatment with ascorbic acid alone had no effect on cellular proliferation (Kandaswami et al., 1993)
memory↑, enhancement of the long-term memory, antidepressant effects, inhibition of ischemic reperfusion injury and amelioration of behavioral deficits following a stroke
neuroP↑,
*Dose↑, Mayo Clinic has recently designed and begun a clinical trial aimed at the “Alleviation by Fisetin of Frailty, Inflammation, and Related Measures in Older Adults” (AFFIRM-LITE) with fisetin orally in doses up to 20 mg/kg of patient body weight
BioAv↓, In view of poor solubility (10.45 μg/mL), relatively low oral bioavailability (44%) and rapid metabolism,
BBB↑, fisetin in combination with other epigenetically active molecules which are able to cross the blood-aqueous and blood-retina barriers exhibit synergistic beneficial effects.

2861- FIS,    The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress
- Review, Nor, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS
*ROS↓, The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders.
*neuroP↑,
*NO↑, inhibits NO production.
BioAv↝, oral bioavailability of fisetin was reported 7.8 and 31.7% for oral doses of 100 and 200 mg/kg, respectively
*BBB↑, BBB permeability, fisetin can also affect hippocampal synaptic plasticity indirectly through the peripheral system
*toxicity↑, Furthermore, it did not show signs of toxicity at doses up to 2 g/kg in an acute toxicity study with no toxicity in the histopathological analysis of the heart, lungs, kidneys, liver, stomach, intestines, spleen and reproductive organs
*eff↑, potential benefits against neurological health complications and neurodegenerative diseases like AD, PD. HD, ALS, vascular dementia, schizophrenia, stroke, depression, diabetic neuropathy and traumatic brain injury
*GSH↑, direct antioxidant activity in addition to increasing intracellular antioxidants such as glutathione
*SOD↑, fig 2
*Aβ↓,
*12LOX↓,
*COX2↓,
*Catalase↑, Fisetin treatment prevented behavioral deficits, increased brain antioxidant, superoxide dismutase, catalase, reduced glutathione, and BDNF
*Inflam↓, decreased serum homocysteine, and pro-inflammatory biomarkers (TNF-α, IL-6), lipid peroxidation
*TNF-α↓,
*IL6↑,
*lipid-P↓,
NF-kB↓, suppressed the up-regulation of NF-κB, and IDO-1 genes expression, and decreased the rise of IL-1β levels.
IL1β↓,
NRF2↑, fisetin treatment also restored the downregulation of Nrf-2, HO-1, and ChAT genes expression and BDNF levels in the hippocampus, suggesting its protective effect against oxidative stress
HO-1↑,
GSTs↑, Fisetin also restored the AlCl3-induced reduction in the levels of SOD, CAT, GST, and GSH in a study that analysed the effect of this compound on AlCl3-induced reactive gliosis and neuronal inflammation in the brain of mice
cognitive↑, Fisetin improves neurodegenerative disease-associated dementia, cognitive functions and behavioral abnormalities along with increasing age

2824- FIS,    Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics
- Review, Var, NA
*antiOx↑, Fisetin is one such naturally derived flavone that offers numerous pharmacological benefits, i.e., antioxidant, anti-inflammatory, antiangiogenic, and anticancer properties.
*Inflam↓,
angioG↓,
BioAv↓, poor bioavailability associated with its extreme hydrophobicity hampers its clinical utility
BioAv↑, The issues related to fisetin delivery can be addressed by adapting to the developmental aspects of nanomedicines, such as formulating it into lipid or polymer-based systems, including nanocochleates and liposomes
TumCP↓, fisetin also inhibits tumor proliferation by repressing tumor mass multiplication, invasion, migration, and autophagy.
TumCI↓,
TumCMig↓,
*neuroP↑, figure 2
EMT↓, It affects the cell cycle and thereby cell proliferation, microtubule assembly, cell migration and invasion, epithelial to mesenchymal transition (EMT), and cell death
ROS↑, cell death caused by fisetin is possibly due to the induction of apoptosis by fisetin or other signaling molecules and reactive oxygen species (ROS)
selectivity↑, Without influencing the growth of normal cells, fisetin has the capability to hinder the formation of colonies and inhibit the multiplication of cancer cells.
EGFR↓, fisetin restricts the multiplication of EGFR 2-overexpressing SK-BR-3 breast tumor masses
NF-kB↓, fisetin inhibits cancer metastasis by reducing the expressions of nuclear factor-kB (NF-kB)-modulated metastatic proteins in a variety of tumor cell types, including vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP)
VEGF↓,
MMP9↓,
MMP↓, rupturing the plasma membrane, depolarizing mitochondria, cleaving PARP, and activating caspase-7, -8, and -9.
cl‑PARP↑,
Casp7↑,
Casp8↑,
Casp9↑,
*ROS↓, Fisetin is a bioactive flavonol molecule that can easily penetrate the cell membrane due to its hydrophobic nature [51,52], reducing the generation of inflammatory cytokines and reactive oxygen species (ROS) in microglial cells, (normal cells)
uPA↓, Perhaps fisetin lowers angiogenesis, consequently suppressing tumor multiplication by urokinase plasminogen activator (uPA) inhibition
MMP1↓, powerful matrix metalloproteinase (MMP)-1 inhibitor
Wnt↓, Fisetin works on several cellular pathways, such as Wnt, Akt-PI3K, and ERK, as an inhibitor
Akt↓,
PI3K↓,
ERK↓,
Half-Life↝, Fisetin exhibits a very short terminal half-life of approximately 3 hrs in its free form. This half-life is found to be less than that of its metabolites

2830- FIS,    Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent
- Review, Var, NA
TumCG↓, suppressing cell growth, triggering programmed cell death, reducing the formation of new blood vessels, protecting against oxidative stress, and inhibiting cell migration.
angioG↓,
*ROS↓,
TumCMig↓,
VEGF↓, including vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), PI3K/Akt/mTOR, and Nrf2/HO-1.
MAPK↑, including the activation of MAPK. activation of MAPK is crucial for mediating cancer cell proliferation, apoptosis, and invasion
NF-kB↓, ability of fisetin to suppress NF-κB activity has been demonstrated in various diseases
PI3K↓, fisetin has been shown to inhibit the metastasis of PC3 prostate cancer cells by reducing the activity of the PI3K/AKT
Akt↓,
mTOR↓, Fisetin has been shown to be effective against PI3K expression, AKT phosphorylation, and mTOR activation in various cancer cells,
NRF2↑, effects of fisetin on the activation of Nrf2 and upregulation of HO-1 have been demonstrated in various diseases
HO-1↑,
ROS↓, Liver cancer Resist proliferation, migration and invasion, induce apoptosis, attenuate ROS and inflammation
Inflam↓,
ER Stress↑, Oral cancer Induce apoptosis and autophagy, promote ER stress and ROS, suppress proliferation
ROS↑, Multiple studies have demonstrated that fisetin has the ability to induce apoptosis in cancer cells, and various mechanisms are involved, including the activation of MAPK, NF-κB, p53, and the generation of reactive oxygen species (ROS)
TumCP↓,
ChemoSen↑, Breast cancer Promote apoptosis and invasion and metastasis, enhance chemotherapeutic effects
PTEN↑,
P53↑, activation of MAPK, NF-κB, p53,
Casp3↑,
Casp8↑,
Casp9↑,
COX2↓, fisetin inhibits COX2 expression
Wnt↓, regulating a number of important angiogenesis-related factors in cancer cells, such as VEGF, MMP2/9, eNOS, wingless and Wnt-signaling.
EGFR↓,
Mcl-1↓,
survivin↓, fisetin interferes with NF-κB signaling, resulting in the reduction of survivin, TRAF1, Bcl-xl, Bcl-2, and IAP1/2 levels, ultimately inhibiting apoptosis
IAP1↓,
IAP2↓,
PGE2↓, fisetin inhibits COX2 expression, leading to the down-regulation of PGE2 secretion and inactivation of β-catenin, thereby inducing apoptosis
β-catenin/ZEB1↓,
DR5↑, fisetin markedly induces apoptosis in renal carcinoma through increased expression of DR5, which is regulated by p53.
MMP2↓, fisetin has been shown to inhibit the metastasis of PC3 prostate cancer cells by reducing the activity of the PI3K/AKT and JNK pathways, resulting in the suppression of MMP-2 and MMP-9 expression
MMP9↓,
FAK↓, fisetin can inhibit cell migration and reduce focal adhesion kinase (FAK) phosphorylation levels
uPA↓, fisetin significantly suppresses the invasion of U-2 cells by decreasing the expression of NF-κB, urokinase-type plasminogen activator (uPA), FAK, and MMP-2/9
EMT↓, Fisetin has been shown to have the ability to reverse EMT, thereby inhibiting the invasion and migration of cancer cells
ERK↓, fisetin has the ability to suppress ERK1/2 activation and activate JNK/p38 pathways
JNK↑,
p38↑,
PKCδ↓, fisetin reduces the expression of MMP-9 by inhibiting PKCα/ROS/ERK1/2 and p38 MAPK activation
BioAv↓, low water solubility of fisetin poses a significant challenge for its administration, which can limit its biological effects
BioAv↑, Compared to free fisetin, fisetin nanoemulsion has demonstrated a 3.9-fold increase in the generation of reactive oxygen species (ROS) and induction of apoptosis, highlighting its enhanced efficacy
BioAv↑, Liposomal encapsulation has shown potential in enhancing the anticancer therapeutic effects of fisetin

2843- FIS,    Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential
- Review, Var, NA
NRF2↑, fisetin increased the protein level and accumulation Nrf2 and down regulated the protein levels of Keap1
Keap1↓,
ChemoSen↑, In vitro studies showed that fisetin and quercetin could also act against chemotherapeutic resistance in several cancers
BioAv↓, Fisetin has low aqueous solubility and bioavailability
Cyt‑c↑, release of cytochrome c from mitochondria, caspase-3 and caspase-9 mRNA and protein expression, and B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X (Bax) levels, were found to be regulated in the fisetin-treated cancer cell line
Casp3↑,
Casp9↑,
BAX↑,
tumCV↓, fisetin at 5–80 µM significantly reduced the viability of A431 human epidermoid carcinoma cells by the release of cytochrome c,
Mcl-1↓, reducing the anti-apoptotic protein expression of Bcl-2, Bcl-xL, and Mcl-1 along with elevation of pro-apoptotic protein expression (Bax, Bak, and Bad) and caspase cleavage and poly-ADP-ribose polymerase (PARP) protein
cl‑PARP↑,
IGF-1↓, fisetin promoted caspase-8 and cytochrome c expression, possibly by impeding the aberrant activation of insulin growth factor receptor 1 and Akt
Akt↓,
CDK6↓, fisetin binds with CDK6, which in turn blocks its activity with an inhibitory concentration (IC50) at a concentration of 0.85 μM
TumCCA↑, fisetin is identified as a regulator of cell cycle checkpoints, leading to cell arrest through CDK inhibition in HL60 cells and astrocyte cells over the G0/G1, S, and G2/M phases
P53?, exhibiting elevated levels of p53
cycD1↓, 10–60 μM fisetin concentration, prostate cancer cells PC3, LNCaP, and CWR22Ry1 had decreased cellular viability and decreased levels of D1, D2, and E cyclins and their activating partners CDK2, and CDKs 4/ 6,
cycE↓,
CDK2↓, decreased levels of D1, D2, and E cyclins and their activating partners CDK2, and CDKs 4/ 6,
CDK4↓,
CDK6↓,
MMP2↓, fisetin displayed tumor inhibitory effects by blocking MMP-2 and MMP-9 at mRNA and protein levels in prostate PC-3 cells
MMP9↓,
MMP1↓, Similarly, fisetin can also inhibit MMP-1, MMP-9, MMP-7, MMP-3, and MMP-14 gene expression linked with ECM remodeling in human umbilical vascular endothelial cells (HUVECs) and HT-1080 fibrosarcoma cells [9
MMP7↓,
MMP3↓,
VEGF↓, fisetin in a concentration-dependent manner (10–50 μM concentration) significantly inhibited regular serum, growth-enhancing supplement, and vascular endothelial growth factor (VEGF)
PI3K↓, fisetin inhibited PI3K expression and phosphorylation of Akt
mTOR↓, fisetin treatment activated the apoptotic process through inhibiting both PI3K and mammalian target of rapamycin (mTOR) signaling pathways
COX2↓, fisetin resulted in activation of apoptosis and inhibition of COX-2 and the Wnt/EGFR/NF-kB pathway
Wnt↓,
EGFR↓,
NF-kB↓,
ERK↓, Fisetin is one of the flavonoids that has been found to suppress ERK1/2 signaling in human gastric (SGC7901), hepatic (HepG2), colorectal (Caco-2)
ROS↑, fisetin induced ROS generation and suppressed ERK through its phosphorylation
angioG↓, fisetin-induced anti-angiogenesis led to reduced VEGF and epidermal growth factor receptor (EGFR) expression
TNF-α↓, Fisetin suppressed IL-1β-mediated expression of inducible nitric oxide synthase, nitric oxide, interleukin-6, tumor necrotic factor-α, prostaglandin E2, cyclooxygenase-2 (iNOS, NO, IL-6, TNF-α, PGE2, and COX-2),
PGE2↓,
iNOS↓,
NO↓,
IL6↓,
HSP70/HSPA5↝, fisetin-mediated inhibition of cellular proliferation by HSP70 and HSP27 regulation
HSP27↝,

2642- Flav,  QC,  Api,  KaempF,  MCT  In Vitro–In Vivo Study of the Impact of Excipient Emulsions on the Bioavailability and Antioxidant Activity of Flavonoids: Influence of the Carrier Oil Type
- in-vitro, Nor, NA - in-vivo, Nor, NA
*BioAv↑, Overall, the bioavailability and antioxidant activity of flavonoids increased when they were coingested with excipient emulsions.
*eff↝, However, in vivo pharmacokinetic experiments showed that the flavonoid concentrations in rat serum were comparable for all carrier oils
BioEnh↑, MCT is the bioenhancer for the Flavonoids (which have low soluability in water)

1773- GA,    Impact of Gallic Acid on Gut Health: Focus on the Gut Microbiome, Immune Response, and Mechanisms of Action
- Review, Var, NA
antiOx↑, GA has many biological properties, including antioxidant, anticancer, anti-inflammatory, and antimicrobial properties.
AntiCan↑,
Inflam↑,
GutMicro↑, GA and its derivatives not only enhance gut microbiome (GM) activities, but also modulate immune responses
BioAv↝, polyphenols have high instability to light, heat, and pH due to the existence of multiple hydroxyl groups
BioAv↓, the poor solubility characteristics limit their wide application in the fields of food products and supplements
BioAv↑, Fortunately, the developing colloidal delivery systems could significantly improve its bioavailability, which brings large possibility for application in human.
TumMeta↓, gastric adenocarcinoma cell metastasis was inhibited by GA,

947- GA,    Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells
- in-vitro, Ovarian, OVCAR-3 - in-vitro, Melanoma, A2780S - in-vitro, Nor, IOSE364 - Human, NA, NA
TumCG↓,
VEGF↓,
angioG↓,
p‑Akt↓,
Hif1a↓,
PTEN↑,
BioAv↑, ~8–10 μM of GA was detected in the serum of healthy volunteers, after oral intake of a combination of a dietary herbal supplement and 800 mg GA
*toxicity↓, GA did not have a significant inhibitory effect on the normal cell line

927- GEN,  PacT,    Bioenhancers from mother nature and their applicability in modern medicine
- Review, Nor, NA
*BioAv↑,

1414- HCA,    Bioefficacy of a novel calcium-potassium salt of (-)-hydroxycitric acid
- Human, Nor, NA
*BioAv↑, Typically, HCA used in dietary weight loss supplement is bound to calcium, which results in a poorly soluble (<50%) and less bioavailable form. Conversely, the structural characteristics of a novel Ca2+/K+ bound (-)-HCA salt (HCA-SX or Super CitriMax

1638- HCAs,    Anticancer potential of hydroxycinnamic acids: mechanisms, bioavailability, and therapeutic applications
- Review, Nor, NA
*BioAv↓, Hydroxycinnamic acids are sensitive compounds to the environment in the gastrointestinal track. They may interact with the components in the digestion system or can be affected by pH differences
Inflam↓, Hydroxycinnamic acids (p-coumaric, CAPE, chlorogenic, caffeic, and ferulic acids) exhibit anti-inflammatory activity both in vitro and in vivo
COX2↓, caffeic acid targets COX-2 and its product prostaglan-din E2
TumCCA↑, These phenolics can cause cell cycle arrest at various phases, including G1, S, S-G2, and G2.
ChemoSen↑, sensitize cancer cells to chemotherapy and radiation therapy.
RadioS↑,
selectivity↑, HCAs exhibit selective toxicity, with a higher propensity to induce cell death in cancerous cells compared to normal cells.
ROS↑, 100uM(CA) and 10mM(metforin) cervical Cancer, also 100uM@24hr in A549cells
DNAdam↑,
antiOx↑, Hydroxy-cinnamic acids have an antioxidant effect by suppressing reactive oxygen/nitrogen species (ROS/RNS) and superoxide dismutases (SODs) production
SOD↑,
Catalase↑,
GPx↑,
GSH↑,
NRF2↑,
NF-kB↓, In the promotion stage, these compounds possess anti-inflammatory effects, particularly by inhibit-ing nuclear factor kappa B (NF-kB)
Cyc↓,
CDK1↑, CDKs
P21↑,
p27↑,
P53↑,
VEGF↓,
MAPK↓,

1643- HCAs,    Mechanisms involved in the anticancer effects of sinapic acid
- Review, Var, NA
*BioAv↓, Studies have shown that SA is poorly soluble in water, but soluble in carbitol and freely soluble in DMSO
*toxicity↓, SA is found to be generally non-toxic
Dose∅, oral administration of SA up to 80 mg/kg body weight reduced the number of aberrant crypt foci up to 34.55%
ROS⇅, Other than its potent antioxidant function, SA also possesses pro-oxidant effect that has been identified to affect the redox state of tumor cells
ROS↑, SA at higher concentrations acts as a potent pro-oxidant agent, resulting in increased generation of free radicals. (50 and 75 μM) increased ROS accumulation
Igs↑, SA administration markedly improved the levels of IgG and IgA in
TumCCA↑, SA induced G2/M phase cell cycle arrest
TumAuto↑, autophagy inducing effect of SA has been reported by Zhao et al. (2021) in HepG2 and SMMC-7721 cells
eff↑, Beclin, Atg 5 increased and expression of p62 decreased in SA along with cisplatin treated HepG2 and SMMC-7721 cells
angioG↓, SA has been demonstrated to inhibit angiogenesis, cell invasion and metastasis in cancer cells
TumCI↓,
TumMeta↓,
EMT↓, SA (10 mM) treated cells showed decreased protein expression of EMT related proteins such as vimentin, MMP-9, MMP-2, and Snail and increased expression of E-cadherin in PANC-1 and SW1990 cell lines.
Vim↓,
MMP9↓,
MMP2↓,
Snail↓,
E-cadherin↑,
p‑Akt↓, SA treatment downregulated phosphorylated AKT and Gsk-3β in PANC-1 and SW1990 prostate cancer cell lines.
GSK‐3β↓,
TumCP↓, SA can inhibit cell proliferation in prostate cancer
ChemoSen↑, SA acts in collaboration with other chemotherapeutic agents to improve treatment sensitivity

2079- HNK,    Honokiol Microemulsion Causes Stage-Dependent Toxicity Via Dual Roles in Oxidation-Reduction and Apoptosis through FoxO Signaling Pathway
- in-vitro, Nor, PC12
*toxicity↝, Our previous studies have already demonstrated that a high dose of the honokiol microemulsion (0.6 μg/mL) induces developmental toxicity in rats and zebrafish by inducing oxidative stress.
*ROS↓, In zebrafish, low doses of honokiol microemulsion (0.15, 0.21 μg/mL) significantly decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the mRNA expression of bcl-2.
*ROS↑, In contrast, high dose (0.6 μg/mL) increased the levels of ROS and MDA, decreased activities and mRNA expression of superoxide dismutase (SOD) and catalase (CAT), and increased mRNA expression of bax, c-jnk, p53 and bim.
*Dose⇅, In rat pheochromocytoma cells (PC12 cells), low doses of the honokiol microemulsion (1, 5, 10 µM) exerted a protective effect against H2O2-induced oxidative damage while high doses (≥20 µM) induced oxidative stress, which further confirms the dual ef
*BioAv↑, highly lipophilic property of honokiol allows it to readily cross the blood-brain barrier and blood-cerebrospinal fluid barrier with high bioavailability.
*BioAv↓, However, this property also limits its clinical usage due to low oral bioavailability and difficulty in intravenous administration.
*ROS⇅, levels of ROS and MDA were significantly decreased at a concentration of 0.21 μg/mL and increased at a concentration of 0.6 μg/mL in both 24 and 96 hpf embryos
*SOD↓, The activity of SOD showed only a slight reduction at 20 µM but was significantly reduced at 40 and 80 μM
*toxicity↑, According to the human rat equivalent dosage conversion, the potential toxic dose in humans may be 320 µg/kg/d

2082- HNK,    Revealing the role of honokiol in human glioma cells by RNA-seq analysis
- in-vitro, GBM, U87MG - in-vitro, GBM, U251
AntiCan↑, In summary, studies have demonstrated that honokiol has multiple anticancer effects
TumCP↑, honokiol suppresses cell proliferation, and promotes autophagy and apoptosis
TumAuto↑,
Apoptosis↑,
*BioAv↑, honokiol could improve bioavailability in nerve tissue through passing the blood-brain barrie
*neuroP↑, honokiol has neuroprotective effects.
*NF-kB↑, honokiol could reduce cytokine production and stimulate glial nuclear factor kappa B (NFκB) to eliminate the inflammatory response during cerebral ischemia-reperfusion activity
MAPK↑, honokiol activated cells MAPK signaling pathway in human glioma cells
GPx4↑, The results showed that the ferroptosis-associated protein GPX4 was suppressed in honokiol-treated cells compared to control cells.
Tf↑, Ferroptosis-associated protein TF was upregulated in both honokiol-treated cell lines compared to the control
BAX↑, BAX was increased, and the expression of Bcl-2 was suppressed in both honokiol-treated cells, indicating that honokiol induced apoptosis in the human glioma cell lines U87-MG and U251-MG.
Bcl-2↓,
antiOx↑, Researchers have found that the antioxidant capacity of honokiol is 1000 times greater than that of vitamin E
Hif1a↓, reduce HIF-1α protein levels and suppress hypoxia-related signaling pathways
Ferroptosis↑, Honokiol activated ferroptosis in human glioma cells

2894- HNK,    Pharmacological features, health benefits and clinical implications of honokiol
- Review, Var, NA - Review, AD, NA
*BioAv↓, HNK showed poor aqueous solubility due to phenolic hydroxyl groups forming intramolecular hydrogen bonds and poor solubility in water (
*neuroP↑, HNK has the accessibility to reach the neuronal tissue by crossing the BBB and showing neuroprotective effects
*BBB↑,
*ROS↓, fig 2
*Keap1↑,
*NRF2↑,
*Casp3↓,
*SIRT3↑,
*Rho↓,
*ERK↓,
*NF-kB↓,
angioG↓,
RAS↓,
PI3K↓,
Akt↓,
mTOR↓,
*memory↑, oral administration of HNK (1 mg/kg) in senescence-accelerated mice prevents age-related memory and learning deficits
*Aβ↓, in Alzheimer’s disease, HNK significantly reduces neurotoxicity of aggregated Ab
*PPARγ↑, Furthermore, the expression of PPARc and PGC1a was increased by HNK, suggesting its beneficial impact on energy metabolism
*PGC-1α↑,
NF-kB↓, activation of NFjB was suppressed by HNK via suppression of nuclear translocation and phosphorylation of the p65 subunit and further instigated apoptosis by enhancing TNF-a
Hif1a↓, HNK has anti-oxidative properties and can downregulate the HIF-1a protein, inhibiting hypoxia- related signaling pathways
VEGF↓, renal cancer, via decreasing the vascular endothelial growth factor (VEGF) and heme-oxygenase-1 (HO-1)
HO-1↓,
Foxm1↓, HNK interaction with the FOXM1 oncogenic transcription factor inhibits cancer cells
p27↑, HNK treatment upregulates the expression of CDK inhibitor p27 and p21, whereas it downregulates the expression of CDK2/4/6 and cyclin D1/2
P21↑,
CDK2↓,
CDK4↓,
CDK6↓,
cycD1↓,
Twist↓, HNK averted the invasion of urinary bladder cancer cells by downregulating the steroid receptor coactivator, Twist1 and Matrix metalloproteinase-2
MMP2↓,
Rho↑, By activating the RhoA, ROCK and MLC signaling, HNK inhibits the migration of highly metastatic renal cell carcinoma
ROCK1↑,
TumCMig↓,
cFLIP↓, HNK can be used to suppress c-FLIP, the apoptosis inhibitor.
BMPs↑, HNK treatment increases the expression of BMP7 protein
OCR↑, HNK might increase the oxygen consumption rate while decreasing the extracellular acidification rate in breast cancer cells.
ECAR↓,
*AntiAg↑, It also suppresses the platelet aggregation
*cardioP↑, HNK is an attractive cardioprotective agent because of its strong antioxidative properties
*antiOx↑,
*ROS↓, HNK treatment reduced cellular ROS production and decreased mitochondrial damage in neonatal rat cardiomyocytes exposed to hypoxia/reoxygenation
P-gp↓, The expres- sion of P-gp at mRNA and protein levels is reduced in HNK treatment on human MDR and MCF-7/ADR breast cancer cell lines

2885- HNK,    Honokiol: a novel natural agent for cancer prevention and therapy
NF-kB↓, Honokiol targets multiple signaling pathways including nuclear factor kappa B (NF-κB), signal transducers and activator of transcription 3 (STAT3), epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (m-TOR)
STAT3↓,
EGFR↓,
mTOR↓,
BioAv↝, honokiol has revealed a desirable spectrum of bioavailability after intravenous administration in animal models, thus making it a suitable agent for clinical trials
Inflam↓, inflammation, proliferation, angiogenesis, invasion and metastasis.
TumCP↓,
angioG↓,
TumCI↓,
TumMeta↓,
cSrc↓, STAT3 inhibition by honokiol has also been correlated with the repression of upstream protein tyrosine kinases c-Src, JAK1 and JAK2
JAK1↓,
JAK2↓,
ERK↓, by inhibiting ERK and Akt pathways (31) or by upregulation of PTEN
Akt↓,
PTEN↑,
ChemoSen↑, Chemopreventive/ chemotherapeutic effects of honokiol in various malignancies: preclinical studies
chemoP↑,
COX2↓, honokiol was found to inhibit UVB-induced expression of cyclooxygenase-2, prostaglandin E2, proliferating cell nuclear antigen and pro-inflammatory cytokines, such as TNF-α, interleukin (IL)-1β and IL-6 in the skin
PGE2↓,
TNF-α↓,
IL1β↓,
IL6↓,
Casp3↑, release of caspases-3, -8 and -9as well as poly (ADP-ribose) polymerase (PARP) cleavage and p53 activation upon honokiol treatment that led to DNA fragmentation
Casp8↑,
Casp9↑,
cl‑PARP↑,
DNAdam↑,
Cyt‑c↑, translocation of cytochrome c to cytosol in human melanoma cell lines
RadioS↑, liposomal honokiol for 24 h showed a higher radiation enhancement ratio (~ two-fold) as compared to the radiation alone,
RAS↓, Honokiol also caused suppression of Ras activation
BBB↑, honokiol could effectively cross BBB and BCSFB and inhibit brain tumor growth
BioAv↓, Due to the concerns about poor aqueous solubility, liposomal formulations of honokiol have been developed and tested for their pharmacokinetics
Half-Life↝, In another comparative study, plasma honokiol concentrations was maintained above 30 and 10 μg/mL for 24 and 48 hours, respectively, in liposomal honokiol-treated mice, whereas it fell quickly (less than 5 μg/mL) by 12 hours in free honokiol-treated
Half-Life↝, free honokiol has poor GIT absorption, bio-transformed in liver to mono-glucuronide honokiol and sulphated mono-hydroxyhonokiol, ~ 50% is secreted in bile, ~ 60-65% plasma protein bound with elimination half life of (t1/2) of 49.05 – 56.24 minutes.
toxicity↓, These studies suggest that honokiol either alone or as a part of magnolia bark extract does not induce toxicity in animal models and thus could be clinically safe

2886- HNK,    Liposomal honokiol inhibits non-small cell lung cancer progression and enhances PD-1 blockade via suppressing M2 macrophages polarization
- in-vitro, Lung, A549 - in-vitro, Lung, H460 - in-vivo, NA, NA
eff↑, Lipo-HNK, with enhanced solubility and bioavailability, demonstrated potent cytotoxicity against NSCLC cell lines.
BioAv↑,
eff↑, Lipo-HNK exhibited synergistic anti-cancer effects when combined with anti-PD-1 therapy
PI3K↓, inhibiting the PI3K/Akt
Akt↓,

2864- HNK,    Honokiol: A Review of Its Anticancer Potential and Mechanisms
- Review, Var, NA
TumCCA↑, induction of G0/G1 and G2/M cell cycle arrest
CDK2↓, (via the regulation of cyclin-dependent kinase (CDK) and cyclin proteins),
EMT↓, epithelial–mesenchymal transition inhibition via the downregulation of mesenchymal markers
MMPs↓, honokiol possesses the capability to supress cell migration and invasion via the downregulation of several matrix-metalloproteinases
AMPK↑, (activation of 5′ AMP-activated protein kinase (AMPK) and KISS1/KISS1R signalling)
TumCI↓, inhibiting cell migration, invasion, and metastasis, as well as inducing anti-angiogenesis activity (via the down-regulation of vascular endothelial growth factor (VEGFR) and vascular endothelial growth factor (VEGF)
TumCMig↓,
TumMeta↓,
VEGFR2↓,
*antiOx↑, diverse biological activities, including anti-arrhythmic, anti-inflammatory, anti-oxidative, anti-depressant, anti-thrombocytic, and anxiolytic activities
*Inflam↓,
*BBB↑, Due to its ability to cross the blood–brain barrier
*neuroP↑, beneficial towards neuronal protection through various mechanism, such as the preservation of Na+/K+ ATPase, phosphorylation of pro-survival factors, preservation of mitochondria, prevention of glucose, reactive oxgen species (ROS), and inflammatory
*ROS↓,
Dose↝, Generally, the concentrations used for the in vitro studies are between 0–150 μM
selectivity↑, Interestingly, honokiol has been shown to exhibit minimal cytotoxicity against on normal cell lines, including human fibroblast FB-1, FB-2, Hs68, and NIH-3T3 cells
Casp3↑, ↑ Caspase-3 & caspase-9
Casp9↑,
NOTCH1↓, Inhibition of Notch signalling: ↓ Notch1 & Jagged-1;
cycD1↓, ↓ cyclin D1 & c-Myc;
cMyc↓,
P21?, ↑ p21WAF1 protein
DR5↑, ↑ DR5 & cleaved PARP
cl‑PARP↑,
P53↑, ↑ phosphorylated p53 & p53
Mcl-1↑, ↓ Mcl-1 protein
p65↓, ↓ p65; ↓ NF-κB
NF-kB↓,
ROS↑, ↑ JNK activation ,Increase ROS activity:
JNK↑,
NRF2↑, ↑ Nrf2 & c-Jun protein activation
cJun↑,
EF-1α↓, ↓ EFGR; ↓ MAPK/PI3K pathway activity
MAPK↓,
PI3K↓,
mTORC1↓, ↓ mTORC1 function; ↑ LKB1 & cytosolic localisation
CSCs↓, Inhibit stem-like characteristics: ↓ Oct4, Nanog & Sox4 protein; ↓ STAT3;
OCT4↓,
Nanog↓,
SOX4↓,
STAT3↓,
CDK4↓, ↓ Cdk2, Cdk4 & p-pRbSer780;
p‑RB1↓,
PGE2↓, ↓ PGE2 production ↓ COX-2 ↑ β-catenin
COX2↓,
β-catenin/ZEB1↑,
IKKα↓, ↓ IKKα
HDAC↓, ↓ class I HDAC proteins; ↓ HDAC activity;
HATs↑, ↑ histone acetyltransferase (HAT) activity; ↑ histone H3 & H4
H3↑,
H4↑,
LC3II↑, ↑ LC3-II
c-Raf↓, ↓ c-RAF
SIRT3↑, ↑ Sirt3 mRNA & protein; ↓ Hif-1α protein
Hif1a↓,
ER Stress↑, ↑ ER stress signalling pathway activation; ↑ GRP78,
GRP78/BiP↑,
cl‑CHOP↑, ↑ cleaved caspase-9 & CHOP;
MMP↓, mitochondrial depolarization
PCNA↓, ↓ cyclin B1, cyclin D1, cyclin D2 & PCNA;
Zeb1↓, ↓ ZEB2 Inhibit
NOTCH3↓, ↓ Notch3/Hes1 pathway
CD133↓, ↓ CD133 & Nestin protein
Nestin↓,
ATG5↑, ↑ Atg7 protein activation; ↑ Atg5;
ATG7↑,
survivin↓, ↓ Mcl-1 & survivin protein
ChemoSen↑, honokiol potentiated the apoptotic effect of both doxorubicin and paclitaxel against human liver cancer HepG2 cells.
SOX2↓, Honokiol was shown to downregulate the expression of Oct4, Nanog, and Sox2 which were known to be expressed in osteosarcoma, breast carcinoma and germ cell tumours
OS↑, Lipo-HNK was also shown to prolong survival and induce intra-tumoral apoptosis in vivo.
P-gp↓, Honokiol was shown to downregulate the expression of P-gp at mRNA and protein levels in MCF-7/ADR, a human breast MDR cancer cell line
Half-Life↓, For i.v. administration, it has been found that there was a rapid rate of distribution followed by a slower rate of elimination (elimination half-life t1/2 = 49.22 min and 56.2 min for 5 mg or 10 mg of honokiol, respectively
Half-Life↝, male and female dogs was assessed. The elimination half-life (t1/2 in hours) was found to be 20.13 (female), 9.27 (female), 7.06 (male), 4.70 (male), and 1.89 (male) after administration of doses of 8.8, 19.8, 3.9, 44.4, and 66.7 mg/kg, respectively.
eff↑, Apart from that, epigallocatechin-3-gallate functionalized chitin loaded with honokiol nanoparticles (CE-HK NP), developed by Tang et al. [224], inhibit HepG2
BioAv↓, extensive biotransformation of honokiol may contribute to its low bioavailability.

2865- HNK,    Liposomal Honokiol induces ROS-mediated apoptosis via regulation of ERK/p38-MAPK signaling and autophagic inhibition in human medulloblastoma
- in-vitro, MB, DAOY - vitro+vivo, NA, NA
BioAv↓, poor water solubility of HNK results in its low bioavailability, thus limiting its wide use in clinical cancer treatments
BioAv↓, Liposomes can overcome this limitation, and liposomal HNK (Lip-HNK) has promising clinical applications in this aspect
TumCP↓, increased Lip-HNK concentration could inhibit the proliferation of DAOY and D283 cells, without exerting effects on the growth of non-tumor cells
selectivity↑,
P53↑, P53 and P21 proteins (inhibiting cell cycle progression) was increased
P21↑,
CDK4↓, Lip-HNK also downregulated the expression of CDK4 and cyclin D1
cycD1↓,
mtDam↑, Lip-HNK caused apoptosis and death, which, in turn, led to the failure of mitochondrial membrane function
ROS↑, Lip-HNK induced ROS production, which, as hypothesized, was blocked by the ROS scavenger NAC
eff↓, Lip-HNK induced ROS production, which, as hypothesized, was blocked by the ROS scavenger NAC
Casp3↑, caspase-3 sectioned and the Bax protein level increased by Lip-HNK
BAX↑,
LC3II↑, LC3BII protein in the Lip-HNK-treated group was noticeably elevated
Beclin-1↑, Beclin-1 (BECN), Atg7 proteins, and LC3BII were dramatically upregulated in the Lip-HNK-treated cells
ATG7↑,
p62↑, Lip-HNK treatment remarkably increased p62 expression, which was dose-dependent
eff↑, Lip-HNK treatment (20 mg/kg) drastically inhibited tumor growth. The combined treatment of Lip-HNK, Chloroquine , and Carboplatin showed more superior antitumor effects
ChemoSen↑, Lip-HNK alone or combined with chemotherapy (Carboplatin or Etoposide) causes significant regression of orthotopic xenografts
*toxicity↓, We also found that Lip-HNK did not damage the liver and kidney

2866- HNK,    Honokiol and its analogues as anticancer compounds: Current mechanistic insights and structure-activity relationship
- Review, Var, NA
EMT↓, Honokiol regulates oncogenic pathways, inhibits EMT, and prevents metastasis.
TumMeta↓,
BioAv↑, The hydrophobicity of honokiol enables its rapid dissolution in lipids
BBB↑, crossing of physiological barriers, including the blood-brain barrier and cerebrospinal fluid

2180- itraC,    Repurposing Drugs in Oncology (ReDO)—itraconazole as an anti-cancer agent
- Review, Var, NA
Dose↝, generally it is used in the range 100 mg–600 mg daily, for between one to 30 days.
toxicity↝, ITZ is generally well-tolerated, though caution is advised with patients at high risk of heart failure or impaired hepatic function
BioAv↑, Bioavailability of ITZ is maximised by taking with food for the encapsulated form, or on an empty stomach for the oral solution.
Half-Life↝, produces an average peak plasma concentration of 239 ng/mL (0.34μM) within 4.5 hours
BioAv↑, mean absolute bioavailability is around 55%, and as a highly lipophilic molecule ITZ has a high affinity for tissues, achieving concentrations two to ten times higher than those in plasma
Dose↝, recommended, therefore, that for long-term treatment patients be regularly monitored for plasma levels
HH↓, identified ITZ as an inhibitor of the Hedgehog pathway at a clinically relevant concentration of 800 nM
TumAuto↑, Induction of autophagy is shown to be related to inhibition of the AKT-mTOR pathway, possibly related to ITZ-induced changes in cholesterol trafficking.
Akt↓,
mTOR↓,
angioG↓, Anti-angiogenic
MDR1↓, Reversal of multi-drug resistance
TumCP↓, ITZ inhibited proliferation, with an IC50 of 0.16 μM
eff↑, Combination therapy with cisplatin was superior to cisplatin monotherapy to a statistically significant extent (P ≤ 0.001 compared to ITZ or cisplatin alone) resulting in over 95% growth inhibition but no tumour regression.

1796- LEC,    A comprehensive review on pleiotropic effects and therapeutic potential of soy lecithin
- Review, NA, NA
BioAv↑, soy lecithin is best suited to be used as a major pharmacological excipient, and it is broadly used in drug delivery systems.
antiOx↑, significant role in medicine as it is an antioxidant
LDL↓, maintains cholesterol levels
memory↑, crucial neurotransmitters involved in memory recall and storage

1795- LEC,  Chit,    Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifene
- in-vivo, Nor, NA
eff↑, The optimal soy lecithin to chitosan ratio was 20:1 to obtain nanoparticles with particle size of 208 ± 3 nm, a ζ-potential of 36 ± 2 mV and an entrapment efficiency of 73 ± 3%
BioAv↑, significant improvement (~4.2 folds) in the oral bioavailability of the drug when loaded into nanoparticles.

1794- LEC,    Effects of abomasal infusion of soybean or sunflower lecithin on nutrient digestibility and milk production in lactating dairy cows
- in-vivo, NA, NA
BioAv↑, The fatty acid (FA) and phospholipid composition of dietary lecithin may influence FA digestibility and milk production in cattle.
other↑, In conclusion, the abomasal infusion of SFL improved milk production and milk FA composition, indicating potential benefits for dairy cow nutrition and milk quality.

2916- LT,    Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies
- Review, Var, NA - Review, AD, NA - Review, Park, NA
proCasp9↓, , by inactivating proteins; such as procaspase‐9, CDC2 and cyclin B or upregulation of caspase‐9 and caspase‐3, cytochrome C, cyclin A, CDK2, and APAF‐1, in turn inducing cell cycle
CDC2↓,
CycB↓,
Casp9↑,
Casp3↑,
Cyt‑c↑,
cycA1↑,
CDK2↓, inhibit CDK2 activity
APAF1↑,
TumCCA↑,
P53↑, enhances phosphorylation of p53 and expression level of p53‐targeted downstream gene.
BAX↑, Increasing BAX protein expression; decreasing VEGF and Bcl‐2 expression it can initiate cell cycle arrest and apoptosis.
VEGF↓,
Bcl-2↓,
Apoptosis↑,
p‑Akt↓, reduce expression levels of p‐Akt, p‐EGFR, p‐Erk1/2, and p‐STAT3.
p‑EGFR↓,
p‑ERK↓,
p‑STAT3↓,
cardioP↑, Luteolin plays positive role against cardiovascular disorders by improving cardiac function
Catalase↓, It can reduce activity levels of catalase, superoxide dismutase, and GS4
SOD↓,
*BioAv↓, bioavailability of luteolin is very low. Due to the momentous first pass effect, only 4.10% was found to be available from dosage of 50 mg/kg intake of luteolin
*antiOx↓, luteolin classically exhibits antioxidant features
*ROS↓, The antioxidant potential of luteolin and its glycosides is mainly due to scavenging activity against reactive oxygen species (ROS) and nitrogen species
*NO↓,
*GSTs↑, Luteolin may also have a role in protection and enhancement of endogenous antioxidants such as glutathione‐S‐transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT)
*GSR↑,
*SOD↑,
*Catalase↑,
*lipid-P↓, Luteolin supplementation significantly suppressed the lipid peroxidation
PI3K↓, inhibits PI3K/Akt signaling pathway to induce apoptosis
Akt↓,
CDK2↓, inhibit CDK2 activity
BNIP3↑, upregulation of BNIP3 gene
hTERT↓, Suppress hTERT in MDA‐MB‐231 breast cancer cel
DR5↑, Boost DR5 expression
Beclin-1↑, Activate beclin 1
TNF-α↓, Block TNF‐α, NF‐κB, IL‐1, IL‐6,
NF-kB↓,
IL1↓,
IL6↓,
EMT↓, Suppress EMT essentially notable in cancer metastasis
FAK↓, Block EGFR‐signaling pathway and FAK activity
E-cadherin↑, increasing E‐cadherin expression by inhibiting mdm2
MDM2↓,
NOTCH↓, Inhibit NOTCH signaling
MAPK↑, Activate MAPK to inhibit tumor growt
Vim↓, downregulation of vimentin, N‐cadherin, Snail, and induction of E‐cadherin expressions
N-cadherin↓,
Snail↓,
MMP2↓, negatively regulated MMP2 and TWIST1
Twist↓,
MMP9↓, Inhibit matrix metalloproteinase‐9 expressions;
ROS↑, Induce apoptosis, reactive oxygen development, promotion of mitochondrial autophagy, loss of mitochondrial membrane potential
MMP↓,
*AChE↓, Reduce AchE activity to slow down inception of Alzheimer's disease‐like symptoms
*MMP↑, Reverse mitochondrial membrane potential dissipation
*Aβ↓, Inhibit Aβ25‐35
*neuroP↑, reduces neuronal apoptosis; inhibits Aβ generation
Trx1↑, luteolin against human bladder cancer cell line T24 was due to induction cell‐cycle arrest at G2/M, downregulation of p‐S6, suppression of cell survival, upregulation of p21 and TRX1, reduction in ROS levels.
ROS↓,
*NRF2↑, Luteolin reduced renal injury by inhibiting XO activity, modulating uric acid transporters, as well as activating Nrf2 HO‐1/NQO1 antioxidant pathways and renal SIRT1/6 cascade.
NRF2↓, Luteolin exerted anticancer effects in HT29 cells as it inhibits nuclear factor‐erythroid‐2‐related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway
*BBB↑, Luteolin can be used to treat brain cancer due to ability of this molecule to easily cross the blood–brain barrier
ChemoSen↑, In ovarian cancer cells, luteolin chemosensitizes the cells through repressing the epithelial‐mesenchymal transition markers
GutMicro↑, Luteolin was also observed to modulate gut microbiota which reduce the number of tumors in case of colorectal cancer by enhancing the number of health‐related microbiota and reduced the microbiota related to inflammation

2919- LT,    Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence
- Review, Var, NA
RadioS↑, it can be used as an adjuvant to radio-chemotherapy and helps to ameliorate cancer complications
ChemoSen↑,
chemoP↑,
*lipid-P↓, ↓LPO, ↑CAT, ↑SOD, ↑GPx, ↑GST, ↑GSH, ↓TNF-α, ↓IL-1β, ↓Caspase-3, ↑IL-10
*Catalase↑,
*SOD↑,
*GPx↑,
*GSTs↑,
*GSH↑,
*TNF-α↓,
*IL1β↓,
*Casp3↓,
*IL10↑,
NRF2↓, Lung cancer model ↓Nrf2, ↓HO-1, ↓NQO1, ↓GSH
HO-1↓,
NQO1↓,
GSH↓,
MET↓, Lung cancer model ↓MET, ↓p-MET, ↓p-Akt, ↓HGF
p‑MET↓,
p‑Akt↓,
HGF/c-Met↓,
NF-kB↓, Lung cancer model ↓NF-κB, ↓Bcl-XL, ↓MnSOD, ↑Caspase-8, ↑Caspase-3, ↑PARP
Bcl-2↓,
SOD2↓,
Casp8↑,
Casp3↑,
PARP↑,
MAPK↓, LLC-induced BCP mouse model ↓p38 MAPK, ↓GFAP, ↓IBA1, ↓NLRP3, ↓ASC, ↓Caspase1, ↓IL-1β
NLRP3↓,
ASC↓,
Casp1↓,
IL6↓, Lung cancer model ↓TNF‑α, ↓IL‑6, ↓MuRF1, ↓Atrogin-1, ↓IKKβ, ↓p‑p65, ↓p-p38
IKKα↓,
p‑p65↓,
p‑p38↑,
MMP2↓, Lung cancer model ↓MMP-2, ↓ICAM-1, ↓EGFR, ↓p-PI3K, ↓p-Akt
ICAM-1↓,
EGFR↑,
p‑PI3K↓,
E-cadherin↓, Lung cancer model ↑E-cadherin, ↑ZO-1, ↓N-cadherin, ↓Claudin-1, ↓β-Catenin, ↓Snail, ↓Vimentin, ↓Integrin β1, ↓FAK
ZO-1↑,
N-cadherin↓,
CLDN1↓,
β-catenin/ZEB1↓,
Snail↓,
Vim↑,
ITGB1↓,
FAK↓,
p‑Src↓, Lung cancer model ↓p-FAK, ↓p-Src, ↓Rac1, ↓Cdc42, ↓RhoA
Rac1↓,
Cdc42↓,
Rho↓,
PCNA↓, Lung cancer model ↓Cyclin B1, ↑p21, ↑p-Cdc2, ↓Vimentin, ↓MMP9, ↑E-cadherin, ↓AIM2, ↓Pro-caspase-1, ↓Caspase-1 p10, ↓Pro-IL-1β, ↓IL-1β, ↓PCNA
Tyro3↓, Lung cancer model ↓TAM RTKs, ↓Tyro3, ↓Axl, ↓MerTK, ↑p21
AXL↓,
CEA↓, B(a)P induced lung carcinogenesis ↓CEA, ↓NSE, ↑SOD, ↑CAT, ↑GPx, ↑GR, ↑GST, ↑GSH, ↑Vitamin E, ↑Vitamin C, ↓PCNA, ↓CYP1A1, ↓NF-kB
NSE↓,
SOD↓,
Catalase↓,
GPx↓,
GSR↓,
GSTs↓,
GSH↓,
VitE↓,
VitC↓,
CYP1A1↓,
cFos↑, Lung cancer model ↓Claudin-2, ↑p-ERK1/2, ↑c-Fos
AR↓, ↓Androgen receptor
AIF↑, Lung cancer model ↑Apoptosis-inducing factor protein
p‑STAT6↓, ↓p-STAT6, ↓Arginase-1, ↓MRC1, ↓CCL2
p‑MDM2↓, Lung cancer model ↓p-PI3K, ↓p-Akt, ↓p-MDM2, ↑p-P53, ↓Bcl-2, ↑Bax
NOTCH1↓, Lung cancer model ↑Bax, ↑Cleaved-caspase 3, ↓Bcl2, ↑circ_0000190, ↓miR-130a-3p, ↓Notch-1, ↓Hes-1, ↓VEGF
VEGF↓,
H3↓, Lung cancer model ↑Caspase 3, ↑Caspase 7, ↓H3 and H4 HDAC activities
H4↓,
HDAC↓,
SIRT1↓, Lung cancer model ↑Bax/Bcl-2, ↓Sirt1
ROS↑, Lung cancer model ↓NF-kB, ↑JNK, ↑Caspase 3, ↑PARP, ↑ROS, ↓SOD
DR5↑, Lung cancer model ↑Caspase-8, ↑Caspase-3, ↑Caspase-9, ↑DR5, ↑p-Drp1, ↑Cytochrome c, ↑p-JNK
Cyt‑c↑,
p‑JNK↑,
PTEN↓, Lung cancer model 1/5/10/30/50/80/100 μmol/L ↑Cleaved caspase-3, ↑PARP, ↑Bax, ↓Bcl-2, ↓EGFR, ↓PI3K/Akt/PTEN/mTOR, ↓CD34, ↓PCNA
mTOR↓,
CD34↓,
FasL↑, Lung cancer model ↑DR 4, ↑FasL, ↑Fas receptor, ↑Bax, ↑Bad, ↓Bcl-2, ↑Cytochrome c, ↓XIAP, ↑p-eIF2α, ↑CHOP, ↑p-JNK, ↑LC3II
Fas↑,
XIAP↓,
p‑eIF2α↑,
CHOP↑,
LC3II↑,
PD-1↓, Lung cancer model ↓PD-L1, ↓STAT3, ↑IL-2
STAT3↓,
IL2↑,
EMT↓, Luteolin exerts anticancer activity by inhibiting EMT, and the possible mechanisms include the inhibition of the EGFR-PI3K-AKT and integrin β1-FAK/Src signaling pathways
cachexia↓, luteolin could be a potential safe and efficient alternative therapy for the treatment of cancer cachexi
BioAv↑, A low-energy blend of castor oil, kolliphor and polyethylene glycol 200 increases the solubility of luteolin by a factor of approximately 83
*Half-Life↝, ats administered an intraperitoneal injection of luteolin (60 mg/kg) absorbed it rapidly as well, with peak levels reached at 0.083 h (71.99 ± 11.04 μg/mL) and a prolonged half-life (3.2 ± 0.7 h)
*eff↑, Luteolin chitosan-encapsulated nano-emulsions increase trans-nasal mucosal permeation nearly 6-fold, drug half-life 10-fold, and biodistribution of luteolin in brain tissue 4.4-fold after nasal administration

2920- LT,    Formulation, characterization, in vitro and in vivo evaluations of self-nanoemulsifying drug delivery system of luteolin
- in-vitro, Nor, NA - in-vivo, Nor, NA
BioAv↑, optimized formula exhibited approximately 83, 17 and 3-fold enhancement in the solubility in vitro release and ex vivo permeation respectively.
eff↑, Based on the results obtained in this study, we conclude that castor oil, kolliphor and PEG 200 in a proportion of 10:45:45% v/v, respectively, produced an optimum preconcentrate of SNEDDS formulation for solubility and permeability improveme

2914- LT,    Therapeutic Potential of Luteolin on Cancer
- Review, Var, NA
*antiOx↑, As an antioxidant, Luteolin and its glycosides can scavenge free radicals caused by oxidative damage and chelate metal ions
*IronCh↑,
*toxicity↓, The safety profile of Luteolin has been proven by its non-toxic side effects, as the oral median lethal dose (LD50) was found to be higher than 2500 and 5000 mg/kg in mice and rats, respectively, equal to approximately 219.8−793.7 mg/kg in humans
*BioAv↓, One major problem related to the use of flavonoids for therapeutic purposes is their low bioavailability.
*BioAv↑, Resveratrol, which functions as the inhibitor of UGT1A1 and UGT1A9, significantly improved the bioavailability of Luteolin by decreasing the major glucuronidation metabolite in rats
DNAdam↑, Luteolin’s anticancer properties, which involve DNA damage, regulation of redox, and protein kinases in inhibiting cancer cell proliferation
TumCP↓,
DR5↑, Luteolin was discovered to promote apoptosis of different cancer cells by increasing Death receptors, p53, JNK, Bax, Cleaved Caspase-3/-8-/-9, and PARP expressions
P53↑,
JNK↑,
BAX↑,
cl‑Casp3↑,
cl‑Casp8↑,
cl‑Casp9↑,
cl‑PARP↑,
survivin↓, downregulating proteins involved in cell cycle progression, including Survivin, Cyclin D1, Cyclin B, and CDC2, and upregulating p21
cycD1↓,
CycB↓,
CDC2↓,
P21↑,
angioG↓, suppress angiogenesis in cancer cells by inhibiting the expression of some angiogenic factors, such as MMP-2, AEG-1, VEGF, and VEGFR2
MMP2↓,
AEG1↓,
VEGF↓,
VEGFR2↓,
MMP9↓, inhibit metastasis by inhibiting several proteins that function in metastasis, such as MMP-2/-9, CXCR4, PI3K/Akt, ERK1/2
CXCR4↓,
PI3K↓,
Akt↓,
ERK↓,
TumAuto↑, can promote the conversion of LC3B I to LC3B II and upregulate Beclin1 expression, thereby causing autophagy
LC3B-II↑,
EMT↓, Luteolin was identified to suppress the epithelial to mesenchymal transition by upregulating E-cadherin and downregulating N-cadherin and Wnt3 expressions.
E-cadherin↑,
N-cadherin↓,
Wnt↓,
ROS↑, DNA damage that is induced by reactive oxygen species (ROS),
NICD↓, Luteolin can block the Notch intracellular domain (NICD) that is created by the activation of the Not
p‑GSK‐3β↓, Luteolin can inhibit the phosphorylation of the GSK3β induced by Wnt, resulting in the prevention of GSK3β inhibition
iNOS↓, Luteolin in colon cancer and the complications associated with it, particularly the decreasing effect on the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)
COX2↓,
NRF2↑, Luteolin has been identified to increase the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which is a crucial transcription factor with anticarcinogenic properties related
Ca+2↑, caused loss of the mitochondrial membrane action potential, enhanced levels of mitochondrial calcium (Ca2+),
ChemoSen↑, Luteolin enhanced the effect of one of the most effective chemotherapy drugs, cisplatin, on CRC cells
ChemoSen↓, high dose of Luteolin application negatively affected the oxaliplatin-based chemotherapy in a p53-dependent manner [52]. They suggested that the flavonoids with Nrf2-activating ability might interfere with the chemotherapeutic efficacy of anticancer
IFN-γ↓, decreased the expression of interferon-gamma-(IFN-γ)
RadioS↑, suggested that Luteolin can act as a radiosensitizer, promoting apoptosis by inducing p38/ROS/caspase cascade
MDM2↓, Luteolin treatment was associated with increased p53 and p21 and decreased MDM4 expressions both in vitro and in vivo.
NOTCH1↓, Luteolin suppressed the growth of lung cancer cells, metastasis, and Notch-1 signaling pathway
AR↓, downregulating the androgen receptor (AR) expression
TIMP1↑, Luteolin inhibits the migration of U251MG and U87MG human glioblastoma cell lines by downregulating MMP-2 and MMP-9 and upregulating the tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2.
TIMP2↑,
ER Stress↑, Luteolin caused oxidative stress and ER stress in the Hep3B cells,
CDK2↓, Luteolin’s ability to decrease Akt, polo-like kinase 1 (PLK1), cyclin B1, cyclin A, CDC2, cyclin-dependent kinase 2 (CDK2) and Bcl-xL
Telomerase↓, Luteolin dose-dependently inhibited the telomerase levels and caused the phosphorylation of NF-κB and the target gene of NF-κB, c-Myc to suppress the human telomerase reverse transcriptase (hTERT)
p‑NF-kB↑,
p‑cMyc↑,
hTERT↓,
RAS↓, Luteolin was found to suppress the expressions of K-Ras, H-Ras, and N-Ras, which are the activators of PI3K
YAP/TEAD↓, Luteolin caused significant inhibition of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ)
TAZ↓,
NF-kB↓, Luteolin was found to have a strong inhibitory effect on the NF-κB
NRF2↓, Luteolin-loaded nanoparticles resulted in a significant reduction in the Nrf2 levels compared to Luteolin alone.
HO-1↓, The expressions of the downstream genes of Nrf2, Ho1, and MDR1 were also reduced, where inhibition of Nrf2 expression significantly increased the cell death of breast cancer cells
MDR1↓,

2910- LT,  FA,    Folic acid-modified ROS-responsive nanoparticles encapsulating luteolin for targeted breast cancer treatment
- in-vitro, BC, 4T1 - in-vivo, NA, NA
BioAv↓, poor aqueous solubility and low bioactivity of Lut restrict its clinical translation
BioAv↑, Herein, we developed a reactive oxygen species (ROS)-responsive nanoplatforms to improve the bioactivity of Lut.
eff↑, inhibited tumor growth ∼3 times compared to the Lut group
tumCV↓, viability of 4T1 cells was decreased significantly when treated with upon 40 µM of Lut/FA-Oxi-αCD NPs
e-H2O2↓, Interestingly, the extracellular H2O2 concentration of 4T1 cells was decreased obviously with Lut treatment, due to Lut is a widely used antioxidant that can eliminate ROS
i-H2O2∅, However, both Lut and blank Oxi-αCD NPs could not eliminate intracellular H2O2

2912- LT,    Luteolin: a flavonoid with a multifaceted anticancer potential
- Review, Var, NA
ROS↑, induction of oxidative stress, cell cycle arrest, upregulation of apoptotic genes, and inhibition of cell proliferation and angiogenesis in cancer cells.
TumCCA↑,
TumCP↓,
angioG↓,
ER Stress↑, Luteolin induces mitochondrial dysfunction and activates the endoplasmic reticulum stress response in glioblastoma cells, which triggers the generation of intracellular reactive oxygen species (ROS)
mtDam↑,
PERK↑, activate the expression of stress-related proteins by mediating the phosphorylation of PERK, ATF4, eIF2α, and cleaved-caspase 12.
ATF4↑,
eIF2α↑,
cl‑Casp12↑,
EMT↓, Luteolin is known to reverse epithelial-to-mesenchymal transition (EMT), which is associated with the cancer cell progression and metastasis.
E-cadherin↑, upregulating the biomarker E-cadherin expression, followed by a significant downregulation of the N-cadherin and vimentin expression
N-cadherin↓,
Vim↓,
*neuroP↑, Furthermore, luteolin holds potential to improve the spinal damage and brain trauma caused by 1-methyl-4-phenylpyridinium due to its excellent neuroprotective properties.
NF-kB↓, downregulation and suppression of cellular pathways such as nuclear factor kappa B (NF-kB), phosphatidylinositol 3’-kinase (PI3K)/Akt, and X-linked inhibitor of apoptosis protein (XIAP)
PI3K↓,
Akt↑,
XIAP↓,
MMP↓, Furthermore, the membrane action potential of mitochondria depletes in the presence of luteolin, Ca2+ levels and Bax expression upregulate, the levels of caspase-3 and caspase-9 increase, while the downregulation of Bcl-2
Ca+2↑,
BAX↑,
Casp3↑,
Casp9↑,
Bcl-2↓,
Cyt‑c↑, cause the cytosolic release of cytochrome c from mitochondria
IronCh↑, Luteolin serves as a good metal-chelating agent owing to the presence of dihydroxyl substituents on the aromatic ring framework
SOD↓, luteolin further triggered an early phase accumulation of ROS due to the suppression of the activity of cellular superoxide dismutase.
*ROS↓, Luteolin reportedly demonstrated an optimal 43.7% inhibition of the accumulation of ROS, 24.5% decrease in malondialdehyde levels, and 38.7% lowering of lactate dehydrogenase levels at a concentration of 30 µM
*LDHA↑,
*SOD↑, expression of superoxide dismutase ameliorated by 73.7%, while the activity of glutathione improved by 72.3% at the same concentration of luteolin
*GSH↑,
*BioAv↓, Poor bioavailability of luteolin limits its optimal therapeutic efficacy and bioactivity
Telomerase↓, MDA-MB-231 cells with luteolin led to dose dependent arrest of cell cycle in S phase by reducing the levels of telomerase and by inhibiting the phosphorylation of NF-kB inhibitor α along with its target gene c-Myc
cMyc↓,
hTERT↓, These events led to the suppression of the expression of human telomerase reverse transcriptase (hTERT) encoding for the catalytic subunit of telomerase
DR5↑, luteolin upregulated the expression of caspase cascades and death receptors, including DR5
Fas↑, expression of proapoptotic genes such as FAS, FADD, BAX, BAD, BOK, BID, TRADD upregulates, while the anti-apoptotic genes NAIP, BCL-2, and MCL-1 experience downregulation.
FADD↑,
BAD↑,
BOK↑,
BID↑,
NAIP↓,
Mcl-1↓,
CDK2↓, expression of cell cycle regulatory genes CDK2, CDKN2B, CCNE2, CDKN1A, and CDK4 decreased on incubation with luteolin
CDK4↓,
MAPK↓, expression of MAPK1, MAPK3, MAP3K5, MAPK14, PIK3C2A, PIK3C2B, AKT1, AKT2, and ELK1 downregulated
AKT1↓,
Akt2↓,
*Beclin-1↓, luteolin led to downregulation of the expression of hypoxia-inducible factor-1α and autophagy-associated proteins, Beclin 1, and LC3
Hif1a↓,
LC3II↑, LC3-II is upregulated following the luteolin treatment in p53 wild type HepG2 cells i
Beclin-1↑, Luteolin treatment reportedly increased the number of intracellular autophagosomes, as indicated by an increased expression of Beclin 1, and conversion of LC3B-I to LC3B-II in hepatocellular carcinoma SMMC-7721 cells.

1710- Lyco,    Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases
- Review, CardioV, NA
antiOx↓, Lycopene is a potent antioxidant that fights ROS and, subsequently, complications.
ROS↓,
BP↓, It reduces blood pressure via inhibiting the angiotensin-converting enzyme and regulating nitrous oxide bioavailability.
LDL↓, important role in lowering of LDL (low-density lipoproteins) and improving HDL (high-density lipoproteins) levels to minimize atherosclerosis
*toxicity∅, Lycopene is a natural substance that may be used in high doses as a dietary supplement without causing harm to human health or physiology
eff↑, Thermal food processing, particularly in the presence of cooking oils, causes lycopene to micellize and enhance its intestinal absorption rate by a factor of ten
ROS↑, As a pro-oxidant, lycopene may have both good and negative impacts in biological systems, as well as influence the course of human illnesses.
*Half-Life↑, Plasma lycopene has a half-life of 12–33 days in the human body
*BioAv↓, Tomato lycopene is not easily absorbed since it is integrated into the nutritional matrix.
*BioAv↑, Clinical research demonstrates that heat-processed tomato products absorb lycopene more quickly than raw sources, and that adding oil increases absorption
*antiOx↑, Lycopene’s ability to protect against oxidative stress has been established

3528- Lyco,    The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene
- Review, Nor, NA - Review, AD, NA - Review, Park, NA
*antiOx↑, the antioxidant effect of lycopene
*ROS↓, Lycopene has the ability to reduce reactive oxygen species (ROS) and eliminate singlet oxygen, nitrogen dioxide, hydroxyl radicals, and hydrogen peroxide
*BioAv↝, human body cannot synthesize lycopene. It must be supplied with the diet
*Half-Life↑, half-life of lycopene in human plasma is 12–33 days
*BioAv↓, bioavailability decreases with age and in the case of certain diseases
*BioAv↑, heat treatment process of food increases the bioavailability of lycopene
*cardioP↑, positive effect on cardiovascular diseases, including the regulation of blood lipid levels
*neuroP↑, beneficial effects in nervous system disorders, including neurodegenerative diseases such as Parkinson′s disease and Alzheimer′s disease
*H2O2↓, Lycopene has the ability to reduce reactive oxygen species (ROS) and eliminate singlet oxygen, nitrogen dioxide, hydroxyl radicals, and hydrogen peroxide
*VitC↑, ability to regenerate non-enzymatic antioxidants such as vitamin C and E.
*VitE↑,
*GPx↑, increase in cardiac GSH-Px activity and an increase in cardiac GSH levels
*GSH↑,
*MPO↓, also a decrease in the level of cardiac myeloperoxidase (MPO), cardiac H2O2, and a decrease in cardiac glutathione S transferase (GSH-ST) activity.
*GSTs↓,
*SOD↑, increasing the activity of GSH-Px and SOD in the liver
*NF-kB↓, reducing the expression of NF-κB mRNA in the heart
*IL1β↓, decreased the level of IL-1β and IL-6 and increased the level of anti-inflammatory IL-10 in the heart
*IL6↓,
*IL10↑,
*MAPK↓, inhibited the activation of the ROS-dependent pro-hypertrophic mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) signaling pathways.
*Akt↓,
*COX2↓, decrease in the levels of pro-inflammatory mediators in heart: COX-2, TNF-α, IL-6, and IL-1β and an increase in the anti-inflammatory cardiac TGF-β1.
*TNF-α↓,
*TGF-β1↑,
*NO↓, reduced NO levels in heart and cardiac NOS activity
*GSR↑, increase in the level of cardiac and hepatic SOD, CAT, GSH, GPx, and glutathione reductase (GR)
*NRF2↑, It also activated nuclear factor-erythroid 2 related factor 2 (Nrf2). This affected the downstream expression of HO-1 [97].
*HO-1↑,
*TAC↑, Researchers observed an increase in the liver in TAC and GSH levels and an increase in GSH-Px and SOD activity
*Inflam↓, study showed that lycopene was anti-inflammatory
*BBB↑, Lycopene is a lipophilic compound, which makes it easier to penetrate the blood–brain barrier.
*neuroP↑, Lycopene had also a neuroprotective effect by restoring the balance of the NF-κB/Nrf2 pathway.
*memory↑, lycopene on LPS-induced neuroinflammation and oxidative stress in C57BL/6J mice. The tested carotenoid prevented memory loss

3277- Lyco,    Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent
- Review, Var, NA
antiOx↑, lycopene provides a strong antioxidant activity that is 100 times more effective than α-tocopherol and more than double effective that of β-carotene
TumCP↓, In vivo and in vitro experiments have demonstrated that lycopene at near physiological levels (0.5−2 μM) could inhibit cancer cell proliferation [[22], [23], [24]], induce apoptosis [[25], [26], [27]], and suppress metastasis [
Apoptosis↑,
TumMeta↑,
ChemoSen↑, lycopene can increase the effect of anti-cancer drugs (including adriamycin, cisplatin, docetaxel and paclitaxel) on cancer cell growth and reduce tumour size
BioAv↓, low water solubility and bioavailability of lycopene
Dose↝, The concentration of lycopene in plasma (daily intake of 10 mg lycopene) is approximately 0.52−0.6 μM
BioAv↓, significant decrease in lycopene bioavailability in the elderly
BioAv↑, oils and fats favours the bioavailability of lycopene [80], while large molecules such as pectin can hinder the absorption of lycopene in the small intestine due to their action on lipids and bile salt molecules
SOD↑, GC: 50−150 mg/kg BW/day ↑SOD, CAT, GPx ↑IL-2, IL-4, IL-10, TNF-α ↑IgA, IgG, IgM ↓IL-6
Catalase↑,
GPx↑,
IL2↑, lycopene treatment significantly enhanced blood IL-2, IL-4, IL-10, TNF-α levels and reduced IL-6 level in a dose-dependent manner.
IL4↑,
IL1↑,
TNF-α↑,
GSH↑, GC: ↑GSH, GPx, GST, GR
GPx↑,
GSTA1↑,
GSR↑,
PPARγ↑, ↑GPx, SOD, MDA ↑PPARγ, caspase-3 ↓NF-κB, COX-2
Casp3↑,
NF-kB↓,
COX2↓,
Bcl-2↑, AGS cells Lycopene 5 μM ↑Bcl-2 ↓Bax, Bax/Bcl-2, p53 ↓Chk1, Chk2, γ-H2AX, DNA damage ↓ROS Phase arrest
BAX↓,
P53↓,
CHK1↓,
Chk2↓,
γH2AX↓,
DNAdam↓,
ROS↓,
P21↑, CRC: ↑p21 ↓PCNA, β-catenin ↓COX-2, PGE2, ERK1/2 phosphorylated
PCNA↓,
β-catenin/ZEB1↓,
PGE2↓,
ERK↓,
cMyc↓, AGS cells: ↓Wnt-1, c-Myc, cyclin E ↓Jak1/Stat3, Wnt/β-catenin alteration ↓ROS
cycE↓,
JAK1↓,
STAT3↓,
SIRT1↑, Huh7: ↑SIRT1 ↓Cells growth ↑PARP cleavage ↓Cyclin D1, TNFα, IL-6, NF-κB, p65, STAT3, Akt activation ↓Tumour multiplicity, volume
cl‑PARP↑,
cycD1↓,
TNF-α↓,
IL6↓,
p65↓,
MMP2↓, SK-Hep1 human hepatoma cells Lycopene 5, 10 μM ↓MMP-2, MMP-9 ↓
MMP9↓,
Wnt↓, AGS cells Lycopene 0.5 μM, 1 μM ↓Wnt-1, c-Myc, cyclin E ↓Jak1/Stat3, Wnt/β-catenin alteration ↓ROS

3260- Lyco,    Lycopene in human health
- Review, NA, NA
*BioAv↝, Lycopene bioavailability is lower in raw sources than in thermal processed food sources.
*BioAv↓, As a result of the low bioavailability of lycopene, its circulating levels are more suitable as prognostic data for health outcomes than its dietary intake values
*ROS⇅, A beneficial or prejudicial cellular response by lycopene will depend on its antioxidant or prooxidant properties respectively, depending on the cellular and extracellular environment
*BioAv↝, Thus, there is less bioavailability of lycopene in fresh tomatoes than in processed tomato products (such as pasteurized tomato juice, soup, sauce and ketchup)

3268- Lyco,    Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders
- Review, AD, NA
*BioAv↓, Lycopene bioavailability can be decreased by ageing, and some of the pathological states, such as cardiovascular diseases (CVDs)
*AntiCan↑, For instance, it has been shown that a higher dietary intake and circulating concentration of lycopene have protective effects against prostate cancer (PCa), in a dose-dependent way
*ROCK1↓, It remarkably lessened the expression of ROCK1, Ki-67, ICAM-1 and ROCK2,
*Ki-67↓,
*ICAM-1↓,
*cardioP↑, Lycopene is a cardioprotective nutraceutical.
*antiOx↑, Lycopene is a well-known antioxidant.
*NQO1↑, Furthermore, lycopene supplementation improves mRNA expressions of the NQO-1 and HO-1 as antioxidant enzymes.
*HO-1↑,
*TNF-α↓, downregulate inflammatory cytokines (i.e., TNF-α, and IL-1β) in the hippocampus of the mice.
*IL22↓,
*NRF2↑, Lycopene decreased neuronal oxidative damage by activating Nrf2, as well as by inactivating NF-κB translocation in H2O2-related SH-SY5Y cell model
*NF-kB↓,
*MDA↓, significantly reduced the malondialdehyde (MDA)
*Catalase↑, Furthermore, it improved the catalase (CAT), superoxide dismutase (SOD), and GSH levels, and antioxidant capacity [109].
*SOD↑,
*GSH↑,
*cognitive↑, Lycopene administration considerably improved cognitive defects, noticeably reduced MDA levels and elevated GSH-Px activity, and remarkably reduced tau
*tau↓,
*hepatoP↑, Lycopene was also found to be effective against hepatotoxicity by acting as an antioxidant, regulating total glutathione (tGSH) and CAT concentrations
*MMP2↑, It also elevated MMP-2 down-regulation
*AST↓, lowering the liver enzymes levels, like aspartate transaminase (AST), alanine transaminase (ALT), LDL, free fatty acid, and MDA.
*ALAT↓,
*P450↑, Moreover, tomato powder has been shown to have a protective agent against alcohol-induced hepatic injury by inducing cytochrome p450 2E1
*DNAdam↓, lycopene decreased DNA damage
*ROS↓, It has been revealed that they inhibited ROS production, protected antioxidant enzymes, and reversed hepatotoxicity in rats’ liver
*neuroP↑, lycopene consumption relieved cognitive defects, age-related memory loss, neuronal damage, and synaptic dysfunction of the brain.
*memory↑,
*Ca+2↓, Lycopene suppressed the 4-AP-invoked release of glutamate and elevated intra-synaptosomal Ca2+ level.
*Dose↝, an in vivo study revealed that lycopene (6.5 mg/day) was effective against cancer in men [147]. However, lycopene dose should be increased up to 10 mg/day, in the case of advanced PCa.
*Dose↑, lycopene supplementation (15 mg/day, for 12 weeks) in an old aged population improved immune function through increasing natural killer cell activity by 28%
*Dose↝, Finally, according to different epidemiological studies, daily lycopene intake can be suggested to be 2 to 20 mg per day
*toxicity∅, A toxicological study on rats showed the no-observed-adverse-effect level at the highest examined dose (i.e., 1.0% in the diet)
PGE2↓, Lycopene doses of 0, 10, 20, and 30 µM were used to treat human colorectal cancer cell. Prostaglandin E2 (PGE2), and NO levels declined after lycopene administration,
CDK2↓, Treatment with lycopene reduced cell hyperproliferation induced by UVB and ultimately promoted apoptosis and reduced CDK2 and CDK4 complex in SKH-1 hairless mice
CDK4↓,
STAT3↓, lycopene reduced the STAT3 expression in ovarian tissues
NOX↓, (SK-Hep-1) cells and indicated a substantial reduction in NOX activity. Moreover, it inhibits the protein expression of NOX4, NOX4 mRNA and ROS intracellular amounts
NOX4↓,
ROS↓,
*SREBP1↓, Lycopene decreases the fatty acid synthase (FAS), sterol regulatory element-binding protein 1c (SREBP-1c), and Acetyl-CoA carboxylase (ACC1) expression in HFD mice.
*FASN↓,
*ACC↓,

3261- Lyco,    Lycopene and Vascular Health
- Review, Stroke, NA
*Inflam↓, main activity profile of lycopene includes antiatherosclerotic, antioxidant, anti-inflammatory, antihypertensive, antiplatelet, anti-apoptotic, and protective endothelial effects, the ability to improve the metabolic profile, and reduce arterial stif
*antiOx↑, It is a much more potent antioxidant than alpha-tocopherol (10 × more potent) or beta-carotene (twice as potent)
*AntiAg↑, lycopene, protecting against myocardial infarction and stroke, is its antiplatelet activity
*cardioP↑, favorable effect in patients with subclinical atherosclerosis, metabolic syndrome, hypertension, peripheral vascular disease, stroke and several other cardiovascular disorders
*SOD↑, Lycopene modulates also the production of antioxidant enzymes, such as superoxide dismutase and catalase
*Catalase↑,
*ROS↓, By reducing oxidative stress and reactive oxygen species, lycopene increases the bioavailability of nitric oxide (NO), improves endothelium-dependent vasodilation and reduces protein, lipids, DNA, and mitochondrial damage (
*mtDam↓,
*cardioP↑, Lycopene exerts a cardioprotective effect against atrazine induced cardiac injury due to its anti-inflammatory effect, by blocking the NF-kappa B pathway and NO production
*NF-kB↓,
*NO↓,
*COX2↓, downregulation of cyclooxygenase 2,
*LDL↓, significant reductions in total and LDL cholesterol were revealed only at doses of, at least, 25 mg lycopene/day
*eff↑, It was noticed that lycopene can potentiate the antiplatelet effect of aspirin, which requires low lycopene diet
*ER Stress↓, Lycopene protects the cardiomyocytes by relieving ERS
*BioAv↑, Lycopene is very bioavailable in the presence of oil, especially in monounsaturated oils, other dietary fats and processed tomato products
*eff↑, Lycopene can increase the antioxidant properties of vitamin C, E, polyphenols and beta-carotene in a synergistic way
*MMPs↓, figure 3, secretion of MMPs
*COX2↓,
*RAGE↓,

2542- M-Blu,    In Vitro Methylene Blue and Carboplatin Combination Triggers Ovarian Cancer Cells Death
- in-vitro, Ovarian, OV1369 - in-vitro, Ovarian, OV1946 - in-vitro, Nor, ARPE-19
BioAv↝, our study reveals MB’s distinct cellular uptake, with ARPE-19 absorbing 5 to 7 times more MB than OV1946 and OV1369-R2.
TumCP↓, Treatment with 50 µM MB (MB-50) effectively curtailed the proliferation of both ovarian cancer cell lines.
GlutaM↓, MB-50 exhibited the ability to quell glutaminolysis and the Warburg effect in cancer cell cultures.
Warburg↓,
OCR↑, MB-50 spurred oxygen consumption, disrupted glycolytic pathways, and induced ATP depletion in the chemo-sensitive OV1946 cell line.
Glycolysis↓,
ATP↓,
BioAv↝, The reduced permeability of cancer cell membranes, including mitochondria, suggests limited internalization of MB into their cytoplasm or mitochondria, consistent with their preference for aerobic glycolysis, a hallmark of the Warburg effect.
ROS↑, Consistent with our findings, they reported a decrease in intracellular ATP levels, which, in turn, led to increased generation of reactive oxygen species (ROS)

1782- MEL,    Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities
- Review, Var, NA
AntiCan↑, involvement of melatonin in different anticancer mechanisms
Apoptosis↑, apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases
TumCP↓,
TumCG↑,
TumMeta↑,
ChemoSideEff↓, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy,
radioP↑,
ChemoSen↑, augmentation of the therapeutic effects of conventional anticancer therapies
*ROS↓, directly scavenge ROS and reactive nitrogen species (RNS)
*SOD↑, melatonin can regulate the activities of several antioxidant enzymes like superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase
*GSH↑,
*GPx↑,
*Catalase↑,
Dose∅, demonstrated that 1 mM melatonin concentration is the pharmacological concentration that is able to produce anticancer effects
VEGF↓, downregulatory action on VEGF expression in human breast cancer cells
eff↑, tumor-bearing mice were treated with (10 mg/kg) of melatonin and (5 mg/kg) of cisplatin. The results have shown that melatonin was able to reduce DNA damage
Hif1a↓, MDA-MB-231-downregulation of the HIF-1α gene and protein expression coupled with the production of GLUT1, GLUT3, CA-IX, and CA-XII
GLUT1↑,
GLUT3↑,
CAIX↑,
P21↑, upregulation of p21, p27, and PTEN protein is another way of melatonin to promote cell programmed death in uterine leiomyoma
p27↑,
PTEN↑,
Warburg↓, FIGURE 3
PI3K↓, in colon cancer cells by downregulation of PI3K/AKT and NF-κB/iNOS
Akt↓,
NF-kB↓,
cycD1↓,
CDK4↓,
CycB↓,
CDK4↓,
MAPK↑,
IGF-1R↓,
STAT3↓,
MMP9↓,
MMP2↓,
MMP13↓,
E-cadherin↑,
Vim↓,
RANKL↓,
JNK↑,
Bcl-2↓,
P53↑,
Casp3↑,
Casp9↑,
BAX↑,
DNArepair↑,
COX2↓,
IL6↓,
IL8↓,
NO↓,
T-Cell↑,
NK cell↑,
Treg lymp↓,
FOXP3↓,
CD4+↑,
TNF-α↑,
Th1 response↑, FIGURE 3
BioAv↝, varies 1% to 50%?
RadioS↑, melatonin’s radio-sensitizing properties
OS↑, In those individuals taking melatonin, the overall tumor regression rate and the 5-year survival were elevated

2250- MF,  MNPs,    Confronting stem cells with surface-modified magnetic nanoparticles and low-frequency pulsed electromagnetic field
- Review, NA, NA
*Ca+2↑, significant increase in calcium activity was observed between the 10th and 20th days of induction
*Dose↝, The average sizes of MNP, S-MNP, A-MNP and AS-MNP samples were determined as 10 ± 2 nm, 17 ± 3 nm, 14 ± 4 nm, and 18 ± 4 nm, respectively.
*BioAv↓, Several studies have shown that nanoparticles with a diameter of generally < 10 nm have been found to enter cells more easily through passive diffusion without the need for specific cellular uptake mechanisms

3468- MF,    An integrative review of pulsed electromagnetic field therapy (PEMF) and wound healing
- Review, NA, NA
*other↑, studies suggest that PEMF accelerates early stages of wound closure
*necrosis↓, By preventing necrosis, PEMF can potentially be used to reduce the incidence of ulcer formation and amputation in patients with diabetes.
*IL6↑, When gingival wounds were exposed to PEMF, one study measured an increased expression of various signalling molecules involved in proliferation including IL‑6, TGF‑β and iNOS
*TGF-β↑,
*iNOS↑,
*MMP2↑, The same study also found increased levels of MMP‑2, MCP‑1 and HO‑1 expression, all of which are thought to increase wound repair rate
*MCP1↑,
*HO-1↑,
*Inflam↓, PEMF has also been shown to reduce inflammation in chronic wounds through both intracellular and extracellular effects.
*IL1β↓, Multiple studies have measured reductions in inflammatory cytokines (IL‑1β, IL‑6, TNF‑α) following PEMF treatment
*IL6↓,
*TNF-α↓,
*BioAv↑, Electrochemotherapy mediated by PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models
eff⇅, PEMF at 50Hz, 1mT for 1 hour had increased keratinocyte proliferation compared to control groups, while the same tissue exposed to PEMF at 60Hz, 1.5mT for 144 hours had reduced cell proliferation
DNAdam↑, At higher frequencies (6–7mT), an increase in DNA double-strand breaks, apoptosis and levels of reactive oxygen species (ROS) were measured, contributing to the inhibition of cell proliferation.
Apoptosis↑,
ROS↑,
TumCP↓,
*ROS↓, tissues exposed to lower frequencies of PEMF (1mT) had decreased ROS levels
*FGF↑, Furthermore, both diabetes-related and non-diabetes-related incision wounds had similar levels of increased FGF‑2, promoting angiogenesis and preventing necrosis in response to ischaemic injury

782- Mg,    Oral magnesium supplements for cancer treatment‐induced hypomagnesemia: Results from a pilot randomized trial
- Trial, Var, NA
*BioAv↑, magnesium citrate (MgCit) may have the best bioavailability

656- MNPs,  MF,    Effects of combined delivery of extremely low frequency electromagnetic field and magnetic Fe3O4 nanoparticles on hepatic cell lines
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
BioAv↑, higher MNP uptake ratio
Apoptosis↑,
*toxicity↓, ELFF and MNPs produced greater apoptosis of hepatoma cell lines than of healthy control hepatic cells.

2936- NAD,    The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: an Update
*ROS↓, vitro/in vivo studies have demonstrated that NMN supplementation increases NAD+ concentration and could mitigate aging-related disorders such as oxidative stress, DNA damage, neurodegeneration, and inflammatory responses.
*DNAdam↓,
*neuroP↑, NAD+ concentrations in the human brain declined 10% to 25% from young adulthood to old age
*Inflam↓,
*BioAv↑, In fact, it has been shown that caloric restriction increases NAD+ bioavailability by activating
*SIRT1↑, whereas it lowers NADH levels and activates sirtuins to extend the life span of yeast
BioAv↝, NR holds an edge over NMN because cells cannot directly absorb NMN, and NMN must be converted to NR before entering cells.

2933- NAD,    Nicotinamide mononucleotide (NMN) as an anti-aging health product – Promises and safety concerns
- Review, Nor, NA - NA, AD, NA - NA, Diabetic, NA - NA, Stroke, NA - NA, LiverDam, NA - NA, Park, NA
*mtDam↓, The mitochondrial decay, which is responsible for aging, can be reversed by the increased levels of nicotinamide adenine dinucleotide (NAD+) in the body.
*BioAv↝, NMN is a precursor of NAD+ that acts as an intermediate in NAD+ biosynthesis, while dietary supplements of NMN are found to increase the NAD+ levels in the body
*BioAv↑, molecular weight is 334.22 g/mol. It is fairly acidic and water-soluble compound. The solubility has been reported to be 1.8 mg/mL
*OS↑, plays a vital role in a variety of biological processes of the body including cell death, aging, gene expression, neuroinflammation and DNA repair, which indicating a significance role of NAD+ in longevity and health of human life
*eff↑, NMN has therapeutic effects towards a range of diseases, including age-induced type 2 diabetes, obesity, cerebral and cardiac ischemia, heart failure and cardiomyopathies
*eff↑, Alzheimer’s disease and other neurodegenerative disorders, corneal injury, macular degeneration and retinal degeneration, acute kidney injury and alcoholic liver disease
*cognitive↑, cognitive impairments, DNA damage and sirtulin gene inactivation, are brought about by aging which can be evaded by enhancing NAD+ count in the body
*DNAdam↓,
*SIRT1↑, NMN, the NAMPT reaction product, is able to be utilised to trigger the SIRT1 activity
*cardioP↑, NMN also can restore gene expression linked to circadian rhythm, inflammatory response and oxidative stress, and improve hepatic insulin sensitivity, partially by SIRT1 activation.
*ROS↓, NMN has been proven to reduce DNA damage and accumulation of ROS
*Dose↝, NMN in available commercial products vary from 50 to 150 mg/capsule, whereas some consumers take two 150 mg capsules per day
*BioAv↑, NMN was speedily absorbed in the small intestine by a specific transporter, which was encoded by the Slc12a8 gene as demonstrated in in vitro and in vivo studies
*hepatoP↑, NMN supplementation has been found to have significant recovering effects on hepatocyte functions and liver pathologies in early-stage of ethanol toxicity, instead of causing adverse effects to the liver
*eff↑, supplementation of NMN has been found to be a promising therapeutic remedy for PD
*BG↓, Oral administration of NMN increased serum bilirubin contents and decreased blood glucose, chloride and serum creatinine levels, but within the normal range.
*creat↓,

1806- NarG,    Naringin: Nanotechnological Strategies for Potential Pharmaceutical Applications
- Review, NA, NA
Inflam↓, anti-inflammatory, antioxidant, antiapoptotic, anticancer and antiulcer effects
antiOx↓,
AntiCan↑,
BioAv↓, clinical application of naringin is severely restricted due to its susceptibility to oxidation, poor water solubility, and dissolution rate. low bioavailability (approximately 8.8%) when administered orally
BioAv↓, In addition, naringin shows instability at acidic pH, is enzymatically metabolized by β-glycosidase in the stomach and is degraded in the bloodstream when administered intravenously
BioAv↑, limitations, however, have been overcome thanks to the development of naringin nanoformulations.
INF-γ↓, The report indicates decreased levels of proinflammatory cytokines (INF-γ, IL-6, and TNF-α) with an increase in IL-10 (anti-inflammatory cytokine), and the attenuation of serum rheumatoid factor (RF-factor) levels and C-reactive protein (CRP)
IL6↓,
TNF-α↓,
IL10↑,
CRP↓,

1805- NarG,    Naringenin suppresses epithelial ovarian cancer by inhibiting proliferation and modulating gut microbiota
- in-vitro, Ovarian, A2780S - in-vivo, NA, NA
TumCP↓, Naringenin suppressed the proliferation and migration of A2780 and ES-2 cancer cell lines
TumCMig↓,
PI3K↓, downregulated PI3K in vitro
TumVol↓, significantly decreased the tumor weight and volume,
TumW↓,
BioAv↑, oral administration exhibited greater effects than intraperitoneal injection.
GutMicro↑, Naringenin at 200 mg/kg ameliorated the disordered gut microbiota in vivo. diversity of gut microbes was markedly increased after naringenin administration. Alistipes is high in the gut microflora of healthy people but low in cervical cancer patients
Dose∅, 50 μM and 200 μM naringenin to treat the cancer cells for 24 h in further experiments
eff↑, 200 μM concentration, naringenin showed even better inhibitory effects than paclitaxel on the ES-2 cell line
EGFR↓, 50 μM and 200 μM naringenin treatments reduced the expression levels of EGFR, PI3K and cyclin D1
cycD1↓,
toxicity∅, All these results demonstrate that naringenin is an excellent nontoxic therapeutic candidate for ovarian cancer prevention and treatment

1804- NarG,    Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: An update on bioavailability, pharmacokinetics, and mechanisms
- Review, NA, NA
GutMicro↝, interplays between the flavanones and gut microbiota.
BioAv↝, Gut microbiota plays an important role in the absorption and metabolism of naringenin and naringin

1799- NarG,    Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics
- Review, NA, NA
TumCCA↑, inhibition of the cell cycle
BioAv↑, oral bioavailability was determined to be 5.81%.Novel delivery strategies such as nanoparticles, liposomes, and micelles have been investigated to improve their bioavailability
Half-Life∅, researchers recorded a maximum concentration (Cmax) of 2009.51 ng/mL in 3.67 h after administration. elimination half-life was found to be 2.31 h.
TNF-α↓,
Casp8↑,
BAX↑,
Bak↑,
EGF↓,
mTOR↓,
PI3K↓,
ERK↓,
Akt↓,
NF-kB↓,
VEGF↓,
angioG↓,
antiOx↑,
EMT↓, Naringenin reduces the metastatic efficacy of breast cancer cells by EMT suppression
OS↑, Oral administration of naringenin dramatically reduced the number of metastatic tumor cells in the lungs and prolonged the lifespan of mice that had their tumors removed
MAPK↓, Naringenin inhibited the MAPK and PI3K pathways
ChemoSen↑, In MCF-7 breast cancer cells, combination therapy using NGE and tamoxifen was more effective than either drug alone
MMP9↓, downregulating the expression of MMP-9 and MMP-2
MMP2↓,
ROS↑, combination treatment increases ROS generation
ROS↑, demonstrated the antitumor effects of naringenin nanoparticles through increased ROS levels, GSH attenuation, and caspase-3 activation, which ultimately induced apoptosis
GSH↓,
Casp3↑,
ROS↑, This review concludes that naringenin can reduce carcinogenesis through pleiotropic processes such as antioxidative, apoptotic-inducing ROS generation, and cell cycle arrest

1798- NarG,    Naringenin: A potential flavonoid phytochemical for cancer therapy
- Review, NA, NA
*Inflam↓, including anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and anti-cancer activities
*antiOx↓,
neuroP↑, neuroprotective
hepatoP↑, hepatoprotective
AntiCan↑,
Apoptosis↑, apoptosis induction, cell cycle arrest, angiogenesis hindrance
TumCCA↑,
angioG↓,
ROS↝, antioxidant effects, by modulating reactive oxygen species (ROS) levels and increasing superoxide dismutase (SOD
SOD↑,
TGF-β↓, inhibition of transforming growth factor-β (TGF-β), suppression of regulatory T-cells (Tregs), and down-regulation of interleukin-1β (IL-1β)
Treg lymp↓,
IL1β↓,
*BioAv↝, naringenin is mainly responsible for its low aqueous solubility, low oral bioavailability, and instability which are challenges to its efficient medical application. To overcome these physicochemical issues, nano-drug delivery systems have been used
ChemoSen↑, ombinational therapy consisting of naringenin and standard anti-cancer agents is arising, as a new treatment strategy and was proven to show synergistic effects
cardioP↑, cardioprotective

1814- Oxy,    Hyperbaric oxygen therapy for malignancy: a review
- Review, Var, NA
ROS↑, HBO also produces reactive oxygen species, which can damage tumors by inducing excessive oxidative stress.
SOD↑, Kaelin et al. showed a significant increase in the activity of SOD and improved survival of the skin flaps of rats exposed to HBO
OS↑,
ChemoSen↑, HBO therapy in combination with chemotherapy increases cellular uptake of certain anticancer agents and the susceptibility of cells to these agents
RadioS↑, cells to enter a proliferative stage, thus sensitizing them to radiotherapy and certain chemotherapy.
BioAv↑, Improved oxygenation improves drug delivery to hypoxic regions in the tumor

2052- PB,    Lipid-regulating properties of butyric acid and 4-phenylbutyric acid: Molecular mechanisms and therapeutic applications
- Review, NA, NA
*HDAC↓, BA appears to function as a histone deacetylase (HDAC) inhibitor while PBA acts as a chemical chaperone and/or a HDAC inhibitor.
*Half-Life↑, In humans, the plasma concentration of BA decreased quickly with a half-life of approximately 5 min once the infusion had ended
*Half-Life↑, The mean half-lives of PBA, PAA and PAGN in blood plasma were 0.7, 1.2 and 1.7 h, respectively, after an intravenous infusion of sodium phenylbutyrate to human subjects and 1, 1.8 and 2.8 h in serum, respectively, after an oral PB 9 to 45 g/day
*lipoGen↓, in vivo studies have shown that PBA ameliorated fructose-induced hepatosteatosis by inhibiting lipogenesis.
*ER Stress↓, PBA blocked fructose-driven expression of SREBP1c and its target genes by attenuating ER stres
*FAO↑, BA and PBA promote fatty acid β-oxidation
*ROS↓, Moreover, PBA prevented palmitate-induced autophagy-dependent reactive oxygen species (ROS) formation further supporting the protective role of PBA against lipotoxicity.
*BioAv↑, The absolute bioavailability of PBA averaged 78% in human subjects following the oral administrations of 9-45 g/day

2038- PB,    A phase I dose escalation and bioavailability study of oral sodium phenylbutyrate in patients with refractory solid tumor malignancies
- Trial, Var, NA
Dose∅, The recommended Phase II dose is 27 g/day.
*toxicity↝, Nonoverlapping dose-limiting toxicities of nausea/vomiting and hypocalcemia were seen at 36 g/day
BioAv↑, The p.o. bioavailability of PB was 78% for all dose levels, and the biologically active concentration of 0.5 mM was achieved at all dose levels.
SD↑, No partial remission or complete remission was seen, but 7 patients had stable disease for more than 6 months while on the drug.

2045- PB,    Phenylbutyrate—a pan-HDAC inhibitor—suppresses proliferation of glioblastoma LN-229 cell line
- in-vitro, GBM, LN229 - in-vitro, GBM, LN-18
HDAC↓, Phenylbutyrate (PBA) is a histone deacetylase inhibitor known for inducing differentiation, cell cycle arrest, and apoptosis in various cancer cells. PBA is slightly more potent in inhibiting HDAC activity in LN-229
TumCG↓, In contrary, in LN-229 cells, 5 and 15 mmol/L PBA inhibited cell growth and proliferation mainly by causing prominent changes in cell morphology and promoting S- and G2/M-dependent cell cycle arrest.
TumCCA↑,
P21↑, PBA was found to up-regulate the expression of p21 whereas p53 expression level remained unchanged
Bcl-2↓, PBA down-regulated the expression of the anti-apoptotic genes Bcl-2/Bcl-X L
Bcl-xL↓,
BioAv↑, PBA is characterized by good bioavailability in vivo of approximately 3 mmol/L; nevertheless, higher concentrations ranging between 1 and 5 mmol/L have also been stated

2026- PB,    Oral sodium phenylbutyrate in patients with recurrent malignant gliomas: A dose escalation and pharmacologic study
- Trial, GBM, NA
Dose↝, Four dose levels of PB were studied: 9, 18, 27, and 36 g/day
Dose↑, At 36 g/day, two of four patients developed dose-limiting grade 3 fatigue and somnolence.
Dose↝, This study defines the MTD and recommended phase 2 dose of PB at 27 g/day for heavily pretreated patients with recurrent gliomas
OS↑, One patient had a complete response for five years, and no partial responses were noted, which yielded an overall response rate of 5%
HDAC↓, In vitro PB concentrations required to inhibit histone deacetylase and induce apoptosis begin at 0.5 mM of PB.
TumCCA↑, PB induces G1/G0 arrest and induces p21waf1/cip1, a cell cycle checkpoint protein associated with differentiation and an inhibitor of histone deacetylase, within 24 h of treatment
P21↑,
other↝, Phenyl-butyrate (PB)4 is an aromatic fatty acid that is converted in vivo to phenylacetate (PA) by β-oxidation in liver and kidney mitochondria.
BioAv↑, Oral bioavailability was 78%, and the maximum tolerated dose (MTD) was 27 g/day, with nausea/vomiting, neurocortical toxicity, and hypocalcemia being dose limiting at doses ⩾45 g/day (Gilbert et al., 2001).
eff↑, The coadministration of P450-inducing anticonvulsants has recently been shown to significantly affect the pharmacology of many chemotherapeutic agents

1666- PBG,    Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer
- Review, Var, NA
ChemoSen↑, Ingredients from propolis also ”sensitize“ cancer cells to chemotherapeutic agents
TumCCA↑, cell-cycle arrest and attenuation of cancer cells proliferation
TumCP↓,
Apoptosis↑,
antiOx↓, behave as antioxidants against peroxyl and hydroxyl radicals,
ROS↑, whereas prooxidant activity is observed in the presence of Cu2+.
COX2↑, Propolis, as well as flavonoids derived from propolis, such as galangin, is a potent COX-2 inhibitor
ER(estro)↓, Some flavonoids from propolis, such as galangin, genistein, baicalein, hesperetin, naringenin, and quercetin, suppressed the proliferation of an estrogen receptor (ER)
cycA1↓, by suppressing expressions of cyclin A, cyclin B, and Cdk2 and by stopping proliferation at the G2 phase, by increasing levels of p21 and p27 proteins, and through the inhibition of telomerase reverse transcriptase (hTERT),
CycB↓,
CDK2↓,
P21↑,
p27↑,
hTERT↓, leukemia cells, propolis successfully reduced hTERT mRNA expression
HDAC↓, by suppressing expressions of cyclin A, cyclin B, and Cdk2 and by stopping proliferation at the G2 phase, by increasing levels of p21 and p27 proteins, and through the inhibition of telomerase reverse transcriptase (hTERT),
ROS⇅, Mexican propolis, demonstrated both pro- and anti-inflammatory effects, depending on the dose applied
Dose?, Mexican propolis, demonstrated both pro- and anti-inflammatory effects, depending on the dose applied
ROS↓, By scavenging free radicals, chelating metal ions (mainly iron and copper), and stimulating endogenous antioxidant defenses, propolis and its flavonoids directly attenuate the generation of ROS
ROS↑, Romanian propolis [99], exhibits prooxidant properties at high concentrations, by mobilizing endogenous copper ions and DNA-associated copper in cells.
DNAdam↑, propolis, i.e., its polyphenolic components, may induce DNA damage in the presence of transition metal ions.
ChemoSen↑, Algerian propolis + doxorubicin decreased cell viability, prevented cell proliferation and cell cycle progression, induced apoptosis by activating caspase-3 and -9 activities, and increased the accumulation of chemotherapeutic drugs in MDA-MB-231 cel
LOX1↓, propolis components inhibited the LOX pathway
lipid-P↓, Croatian propolis improved psoriatic-like skin lesions induced by irritant agents n-hexyl salicylate or di-n-propyl disulfide by decreasing the extent of lipid peroxidation
NO↑, Taken together, propolis may increase the phagocytic index, NO production, and production of IgG antibodies
Igs↑,
NK cell↑, propolis treatment for 3 days increases the cytotoxic activity of NK cells against murine lymphoma.
MMPs↓, extracts of propolis containing artepillin C and CAPE decreased the formation of new vessels and expression of MMPs and VEGF in various cancer cells
VEGF↓,
Hif1a↓, Brazilian green propolis inhibit the expression of the hypoxia-inducible factor-1 (HIF-1) protein and HIF-1 downstream targets such as glucose transporter 1, hexokinase 2, and VEGF-A
GLUT1↓,
HK2↓,
selectivity↑, Portuguese propolis was selectively toxic against malignant cells.
RadioS↑, propolis increased the lifespan of mice that received the radiotherapy with gamma rays
GlucoseCon↓, Portuguese propolis disturbed the glycolytic metabolism of human colorectal cancer cells, as evidenced by a decrease in glucose consumption and lactate production
lactateProd↓,
eff↓, Furthermore, different pesticides or heavy metals can be found in propolis, which can cause unwanted side effects.
*BioAv↓, Due to the low bioavailability and clinical efficacy of propolis and its flavonoids, their biomedical applications remain limited.

1668- PBG,    Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms
- Review, Var, NA
antiOx↑, Propolis has well-known therapeutic actions including antioxidative, antimicrobial, anti-inflammatory, and anticancer properties.
Inflam↓,
AntiCan↑,
TumCP↓, primarily by inhibiting cancer cell proliferation, inducing apoptosis
Apoptosis↑,
eff↝, Depending on the bee species, geographic location, plant species, and weather conditions, the chemical makeup of propolis fluctuates significantly
MMPs↓, via inhibiting the metastatic protein expression such as MMPs (matrix metalloproteinases)
TNF-α↓, inhibit inflammatory mediators including tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS), cyclooxygenase-1/2 (COX ½), lipoxygenase (LOX), prostaglandins (PGs), and interleukin 1- β (IL1-β)
iNOS↓,
COX2↓,
IL1β↑,
*BioAv↓, Despite the low bioavailability of Artepillin C, a compound with a wide variety of physiological activities
BAX↑, Egyptian propolis extract revealed high apoptotic effects through an increase in BAX (pro-apoptotic protein), caspase-3, and cytochrome-c expression levels, and by a reduction in B-cell lymphoma2 (BCL2)
Casp3↑,
Cyt‑c↑,
Bcl-2↓,
eff↑, enhanced the G0/G1 cell cycle arrest induced by methotrexate
selectivity↑, Thailand propolis on normal and cancerous cells carried out by Umthong et al. found significant differences with the propolis showing cytotoxicity against cancerous but not normal cells.
P53↑, significant increases in the levels of p53 in cells treated with propolis extracts.
ROS↑, propolis induced apoptosis in the SW620 human colorectal cancer cell line through mitochondrial dysfunction caused by high production of reactive oxygen species (ROS) and caspase activation
Casp↑,
eff↑, Galangin- and chrysin-induced apoptosis and mitochondrial membrane potential loss in B16-F1 and A375 melanoma cell lines
ERK↓, Galangin- and chrysin-induced apoptosis and mitochondrial membrane potential loss in B16-F1 and A375 melanoma cell lines
Dose∅, propolis extracts at concentrations of 50 μg/mL significantly increased the levels of TRAIL in cervical tumor cell lines
TRAIL↑,
NF-kB↑, p53, NF-κB, and ROS. These molecules were found to be elevated following exposure of the cells to the alcoholic extract of the propolis
ROS↑,
Dose↑, high concentrations, propolis increased the amounts of integrin β4, ROS, and p53
MMP↓, high expression levels of these molecules, in turn, drove a decrease in mitochondrial membrane potential
DNAdam↑, propolis extract induced DNA fragmentation
TumAuto↑, CAPE, were found to induce autophagy in a breast cancer cell line (MDA-MB-231) through upregulating LC3-II and downregulating p62,
LC3II↑,
p62↓,
EGF↓, downregulation of EGF, HIF-1α, and VEGF
Hif1a↓,
VEGF↓,
TLR4↓, downregulating Toll-like receptor 4 (TLR-4), glycogen synthase kinase 3 beta (GSK3 β), and NF-κB signaling pathways
GSK‐3β↓,
NF-kB↓,
Telomerase↓, Propolis was shown to inhibit the telomerase reverse transcriptase activity in leukemia cells.
ChemoSen↑, Propolis has been shown to increase the activity of existing chemotherapeutic agents and inhibit some of their side effects
ChemoSideEff↓,

3251- PBG,    The Antioxidant and Anti-Inflammatory Effects of Flavonoids from Propolis via Nrf2 and NF-κB Pathways
- Review, AD, NA - Review, Diabetic, NA - Review, Var, NA - in-vitro, Nor, H9c2
*antiOx↑, In this study, the antioxidant and anti-inflammatory effects of the main flavonoids of propolis (chrysin, pinocembrin, galangin, and pinobanksin) and propolis extract were researched.
*Inflam↓,
*ROS↓, ROS levels were decreased; SOD and CAT activities were increased; and the expression of HO-1 protein was increased by chrysin.
*SOD↑,
*Catalase↑,
*HO-1↑,
*NO↓, The results demonstrated that NO (Nitric Oxide), NOS (Nitric Oxide Synthase), and the activation of the NF-κB signaling pathway were inhibited in a dose-dependent manner
*NOS2↓,
*NF-kB↓,
*NRF2↑, it is possible that phytochemicals activate the Nrf2 pathway and inhibited the NF-κB (Nuclear factor kappa B) pathway.
*hepatoP↑, propolis has antioxidant, anti-inflammatory, anti-cancer, anti-bacterial, and hepatoprotective properties.
*MDA↓, chrysin reduced the cytotoxicity, MDA levels, and lysosomal and mitochondrial damage induced by AlP in a dose-dependent manner and increased the GSH activity induced by AlP i
*mtDam↓,
*GSH↑,
*p65↓, Similarly, galangin at 15, 30, and 60 mg/kg inhibited the expression of NF-κB p65, NOS, TNF-α, and IL-1β in a dose-dependent manner
*TNF-α↓,
*IL1β↓,
*NRF2↑, Nrf2 translocation from the cytoplasm to the nucleus was up-regulated (chrysin range of 5 μM–10 μM, pinocembrin range of 5 μM–40 μM, and propolis-extract range of 5 μg/mL–40 μg/mL)
*NRF2↓, and then down-regulated (chrysin range of 15 μM–25 μM, pinocembrin range of 40 μM–60 μM, and propolis-extract range of 40 μg/mL–100 μg/mL) following treatments with chrysin, pinocembrin, and propolis extract
*ROS⇅, Secondly, chrysin, pinocembrin, galangin, pinobanksin, and propolis extract exhibited antioxidant and pro-oxidant effects in a dose-dependent manner.
*BioAv↓, bioavailability values of galangin and chrysin in propolis extracts were determined in a study, and they were at 7.8% and 7.5%, respectively
*BioAv↑, Moreover, propolis extract has a higher bioavailability than single-flavonoid standards

3248- PBG,    Propolis as a promising functional ingredient: A comprehensive review on extraction, bioactive properties, bioavailability, and industrial applications
- Review, NA, NA
*BioAv↓, propolis and its bioactive compounds have poor water solubility, rapid and intense metabolism, and low oral bioavailability, which limits their wide application.
*Half-Life↓,

3247- PBG,    Bioavailability and In Vivo Antioxidant Activity of a Standardized Polyphenol Mixture Extracted from Brown Propolis
- Review, NA, NA
Half-Life↝, Gardana et al. (2007) demonstrated significant increase in plasma polyphenols within few hours (5 h) after the ingestion of a propolis standardized extract corresponding to 125 mg of flavonoids.
BioAv↓, artepillin C was demonstrated to be less efficiently absorbed than p-coumaric acid due to the involvement of the monocarboxylic acid transporter (MCT)
Half-Life↝, Galangine–glucuronide concentration in plasma samples collected at different times is shown: after 5 min this metabolite reaches its highest concentration in plasma; , after 45 min from the treatment, it is no longer detectable.
BioAv↓, In spite of its low bioavailability, galangin absorption and metabolization in healthy mice prompted us to verify the in vivo antioxidant effects

2649- PL,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
AntiCan↑, investigated for its anticancer activity in various cancer types, including hematological cancers, colorectal, gastric, lung, breast, prostate, and oral cancers, melanoma, and glioma
ROS↑, Its in vitro anticancer activity can be attributed to induction of ROS through increased glutathione disulfide levels, decreased glutathione levels
GSH↓,
TrxR↓, inhibition of thioredoxin reductase (TrxR), an enzyme which reduces thioredoxin, a redox protein that protects against oxidative stress
Trx↓,
Apoptosis↑, PPL-mediated ROS accumulation further leads to ROS-mediated apoptosis
TumCCA↑, G1 or G2/M cell cycle arrest
ER Stress↑, ER stress
DNAdam↑, oxidative DNA damage
ChemoSen↑, PPL was reported to sensitize head and neck, gastric, and liver cancers to cisplatin [18], oxaliplatin [19], and sorafenib [20], respectively
BioAv↓, Additionally, its poor aqueous solubility and bioavailability limit its therapeutic potential

2964- PL,    Preformulation Studies on Piperlongumine
- Analysis, Nor, NA
*BioAv↓, The solubility of piperlongumine in water was found to be approximately 26 μg/ml.
*BioAv↑, Using 10% polysorbate 80 as a surfactant resulted in a 27 fold increase in solubility.
*other↝, maximum stability around pH 4. It was estimated that it would take approximately 17 weeks for piperlongumine to degrade by 10% at 25°C, pH 4.
*eff↓, piperlongumine showed marked photo-degradation upon exposure to an ultraviolet light source, especially in aqueous media.

2962- PL,    Synthesis of Piperlongumine Analogues and Discovery of Nuclear Factor Erythroid 2‑Related Factor 2 (Nrf2) Activators as Potential Neuroprotective Agents
- in-vitro, Nor, PC12
*GSH↑, compounds 4 and 5 remarkably elevats GSH level and antioxidant enzymes activity (NQO1, Trx, and TrxR).
*NQO1↑,
*Trx↑,
*TrxR↑,
*NRF2↑, revealed that the total Nrf2 expression was slightly upregulated. 4 and 5, have been identified as potent Nrf2 activators with minimal cytotoxicity.
*NRF2⇅, Notably, the cytosolic Nrf2 decreased gradually (Figure 9, middle panel). Coincidently, the amount of Nrf2 in nuclei increased.
*eff↑, Induction of transcription of antioxidant genes via the Nrf2-dependent cytoprotective pathway requires translocation of Nrf2 from cytosol to nucleus.
*BioAv↑, PL could cross the BBB after oral administration
*ROS↓, The elevation of cellular endogenous antioxidant system prevents the accumulation of ROS and thus confers protection against oxidative insults to the cells.

2966- PL,    A strategy to improve the solubility and bioavailability of the insoluble drug piperlongumine through albumin nanoparticles
- in-vitro, LiverDam, NA
*Half-Life↑, pharmacokinetic properties of PL-BSA-NPs were shown that PL-BSA-NPs could maintain a certain level of blood drug concentration for a long time, thus demonstrating the sustained release and increased bioavailability of PL.
*BioAv↑,
eff↑, antitumor activity of the PL-BSA-NPs and found that PL can significantly inhibit HepG2 cell proliferation, and that PL-BSA-NPs enhanced the inhibitory effect of PL on this proliferative effect.
ROS↑, t PL can destroy liver cancer cells by increasing ROS levels.

2967- PL,    Piperlongumine and its derivatives against cancer: A recent update and future prospective
- Review, Var, NA
BioAv↓, it has poor intrinsic properties (low aqueous solubility, poor bioavailability, etc.).
BioAv↑, attachment of ligustrazine and 4-hydroxycoumarin heterocyclic rings in place of phenyl rings, and attachment of heterocyclic rings like indole at the C7-C8 olefin position in native PL can help to improve anticancer activity, aqueous solubility, cell

2968- PL,  Chit,    Preparation of piperlongumine-loaded chitosan nanoparticles for safe and efficient cancer therapy
- in-vitro, GC, AGS
eff↑, The PL-CSNPs showed efficient cytotoxicity against human gastric carcinoma (AGS) cells via dramatic increase of intracellular ROS leading to cell apoptosis
Dose↝, Chitosan was mixed with NaTPP at a 4 : 1 weight ratio.
ROS↑, n contrast, the cells treated with PL–CSNPs and free PL indicated a signicant increase in intracellular ROS (
BioAv↑, Chitosan has been intensively explored for biocompatible drug carriers due to high biodegradability and low toxicity.

2946- PL,    Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent
- Review, Var, NA
ROS↑, piperlongumine inhibits cancer growth by resulting in the accumulation of intracellular reactive oxygen species, decreasing glutathione and chromosomal damage, or modulating key regulatory proteins, including PI3K, AKT, mTOR, NF-kβ, STATs, and cycD
GSH↓, reduced glutathione (GSH) levels in mouse colon cancer cells
DNAdam↑,
ChemoSen↑, combined treatment with piperlongumine potentiates the anticancer activity of conventional chemotherapeutics and overcomes resistance to chemo- and radio- therapy
RadioS↑, piperlongumine treatment enhances ROS production via decreasing GSH levels and causing thioredoxin reductase inhibition
BioEnh↑, Moreover, the bioavailability is significantly improved after oral administration of piperlongumine
selectivity↑, It shows selectivity toward human cancer cells over normal cells and has minimal side effects
BioAv↓, ts low aqueous solubility affects its anti-cancer activity by limiting its bioavailability during oral administration
eff↑, encapsulation of piperlongumine in another biocompatible natural polymer, chitosan, has been found to result in pH-dependent piperlongumine release and to enhance cytotoxicity via efficient intracellular ROS accumulation against human gastric carcin
p‑Akt↓, Fig 2
mTOR↓,
GSK‐3β↓,
β-catenin/ZEB1↓,
HK2↓, iperlongumine treatment decreases cell proliferation, single-cell colony-formation ability, and HK2-mediated glycolysis in NSCLC cells via inhibiting the interaction between HK2 and voltage-dependent anion channel 1 (VDAC1)
Glycolysis↓,
Cyt‑c↑,
Casp9↑,
Casp3↑,
Casp7↑,
cl‑PARP↑,
TrxR↓, piperlongumine (4 or 12 mg/kg/day for 15 days) administration significantly inhibits increase in tumor weight and volume with less TrxR1 activity in SGC-7901 cell
ER Stress↑,
ATF4↝,
CHOP↑, activating the downstream ER-MAPK-C/EBP homologous protein (CHOP) signaling pathway
Prx4↑, piperlongumine kills high-grade glioma cells via oxidative inactivation of PRDX4 mediated ROS induction, thereby inducing intracellular ER stress
NF-kB↓, piperlongumine treatment (2.5–5 mg/ kg body weight) decreases the growth of lung tumors via inhibition of NF-κB
cycD1↓, decreases expression of cyclin D1, cyclin- dependent kinase (CDK)-4, CDK-6, p- retinoblastoma (p-Rb)
CDK4↓,
CDK6↓,
p‑RB1↓,
RAS↓, piperlongumine downregulates the expression of Ras protein
cMyc↓, inhibiting the activity of other related proteins, such as Akt/NF-κB, c-Myc, and cyclin D1 in DMH + DSS induced colon tumor cells
TumCCA↑, by arresting colon tumor cells in the G2/M phase of the cell cycle
selectivity↑, hows more selective cytotoxicity against human breast cancer MCF-7 cells than human breast epithelial MCF-10A cells
STAT3↓, thus inducing inhibition of the STAT3 signaling pathway in multiple myeloma cells
NRF2↑, Nrf2) activation has been found to mediate the upregulation of heme oxygenase-1 (HO-1) in piperlongumine treated MCF-7 and MCF-10A cells
HO-1↑,
PTEN↑, stimulates ROS accumulation; p53, p27, and PTEN overexpression
P-gp↓, P-gp, MDR1, MRP1, survivin, p-Akt, NF-κB, and Twist downregulation;
MDR1↓,
MRP1↓,
survivin↓,
Twist↓,
AP-1↓, iperlongumine significantly suppresses the expression of transcription factors, such as AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6, and YY1.
Sp1/3/4↓,
STAT1↓,
STAT6↓,
SOX4↑, increased expression of p21, SOX4, and XBP in B-ALL cells
XBP-1↑,
P21↑,
eff↑, combined use of piperlongumine with cisplatin enhances the sensitivity toward cisplatin by inhibiting Akt phosphorylation
Inflam↓, inflammation (COX-2, IL6); invasion and metastasis, such as ICAM-1, MMP-9, CXCR-4, VEGF;
COX2↓,
IL6↓,
MMP9↓,
TumMeta↓,
TumCI↓,
ICAM-1↓,
CXCR4↓,
VEGF↓,
angioG↓,
Half-Life↝, The analysis of the plasma of piperlongumine treated mice (50 mg/kg) after intraperitoneal administration, 1511.9 ng/ml, 418.2 ng/ml, and 41.9 ng/ml concentrations ofplasma piperlongumine were found at 30 minutes, 3 hours, and 24 hours, respecti
BioAv↑, Moreover, the bioavailability is significantly improved after oral administration of piperlongumine

1948- PL,  born,    Natural borneol serves as an adjuvant agent to promote the cellular uptake of piperlongumine for improving its antiglioma efficacy
- in-vitro, GBM, NA
selectivity↑, Piperlongumine (PL) can selectively inhibit the proliferation of various cancer cells by increasing reactive oxygen species (ROS) level to cause a redox imbalance in cancer cells rather than in normal cells.
ROS↑, combination of NB and PL significantly induced higher levels of ROS
BioAv↓, clinical application of PL is limited by its poor cellular uptake.
BioAv↑, NB obviously promoted the cellular uptake of PL with a 1.3-fold increase in the maximum peak concentration and an earlier peak time of 30 min in C6 glioma cells.
Apoptosis↑, increased apoptosis and enhanced G2/M cycle arrest of C6 glioma cells, compared to PL alone administration.
TumCCA↑,
eff↑, NB-enhanced antiglioma efficacy of PL without side effects was confirmed in tumor-bearing mice, which was attributed to the improved cellular uptake of PL.

3347- QC,    Recent Advances in Potential Health Benefits of Quercetin
- Review, Var, NA - Review, AD, NA
*antiOx↑, Its strong antioxidant properties enable it to scavenge free radicals, reduce oxidative stress, and protect against cellular damage.
*ROS↓,
*Inflam?, Quercetin’s anti-inflammatory properties involve inhibiting the production of inflammatory cytokines and enzymes,
TumCP↓, exhibits anticancer effects by inhibiting cancer cell proliferation and inducing apoptosis.
Apoptosis↑,
*cardioP↑, cardiovascular benefits such as lowering blood pressure, reducing cholesterol levels, and improving endothelial function
*BP↓, Quercetin‘s ability to reduce blood pressure was also supported by a different investigation
TumMeta↓, The most important impact of quercetin is its ability to inhibit the spread of certain cancers including those of the breast, cervical, lung, colon, prostate, and liver
MDR1↓, quercetin decreased the expression of genes multidrug resistance protein 1 and NAD(P)H quinone oxidoreductase 1 and sensitized MCF-7 cells to the chemotherapy medication doxorubicin
NADPH↓,
ChemoSen↑,
MMPs↓, Inhibiting CT26 cells’ migration and invasion abilities by inhibiting their expression of tissue inhibitors of metalloproteinases (TIMPs) inhibits their invasion and migration abilities
TIMP2↑,
*NLRP3↓, inhibited NLRP3 by acting on this inflammasome
*IFN-γ↑, quercetin significantly upregulates the gene expression and production of interferon-γ (IFN-γ), which is obtained from T helper cell 1 (Th1), and downregulates IL-4, which is obtained from Th2.
*COX2↓, quercetin is known to decrease the production of inflammatory molecules COX-2, nuclear factor-kappa B (NF-κB), activator protein 1 (AP-1), mitogen-activated protein kinase (MAPK), reactive nitric oxide synthase (NOS), and reactive C-protein (CRP)
*NF-kB↓,
*MAPK↓,
*CRP↓,
*IL6↓, Quercetin suppressed the production of inflammatory cytokines such as IL-6, TNF-α, and IL-1β via upregulating TLR4.
*TNF-α↓,
*IL1β↓,
*TLR4↑,
*PKCδ↓, Quercetin employed suppression on the phosphorylation of PKCδ to control the PKCδ–JNK1/2–c-Jun pathway.
*AP-1↓, This pathway arrested the accumulation of AP-1 transcription factor in the target genes, thereby resulting in reduced ICAM-1 and inflammatory inhabitation
*ICAM-1↓,
*NRF2↑, Quercetin overexpressed Nrf2 and targeted its downstream gene, contributing to increased HO-1 levels responsible for the down-regulation of TNF-α, iNOS, and IL-6
*HO-1↑,
*lipid-P↓, Quercetin acts as a potent antioxidant by scavenging ROS, inhibiting lipid peroxidation, and enhancing the activity of antioxidant enzymes
*neuroP↑, This helps to counteract oxidative stress and protect against neurodegenerative processes that contribute to AD
*eff↑, rats treated with chronic rotenone or 3-nitropropionic acid showed enhanced neuroprotection when quercetin and fish oil were taken orally
*memory↑, Both memory and learning abilities in the test animals increased
*cognitive↑,
*AChE↓, The increase in AChE activity brought on by diabetes was prevented in the cerebral cortex and hippocampus by quercetin at a level of 50 mg/kg body weight.
*BioAv↑, consumption of fried onions compared to black tea, suggesting that the form of quercetin present in onions is better absorbed than that in tea
*BioAv↑, This suggests that dietary fat can increase the absorption of quercetin [180]
*BioAv↑, potential of liposomes to enhance the bioactivity and bioavailability of quercetin has been the subject of several investigations
*BioAv↑, several emulsion types that may be employed to encapsulate quercetin, but oil-in-water (O/W) emulsions are the most widely utilized.
*BioAv↑, the kind of oil (triglyceride oils made up of either long-chain or medium-chain fatty acids) affected the bioaccessibility of quercetin and gastrointestinal stability, emphasizing the significance of picking a suitable oil phase

3343- QC,    Quercetin, a Flavonoid with Great Pharmacological Capacity
- Review, Var, NA - Review, AD, NA - Review, Arthritis, NA
*antiOx↑, Quercetin has a potent antioxidant capacity, being able to capture reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive chlorine species (ROC),which act as reducing agents by chelating transition-metal ions.
*ROS↓, Quercetin is a potent scavenger of reactive oxygen species (ROS), protecting the organism against oxidative stress
*angioG↓,
*Inflam↓, anti-inflammatory properties; the ability to protect low-density lipoprotein (LDL) oxidation, and the ability to inhibit angiogenesis;
*BioAv↓, It is known that the bioavailability of quercetin is usually relatively low (0.17–7 μg/mL), less than 10% of what is consumed, due to its poor water solubility (hydrophobicity), chemical stability, and absorption profile.
*Half-Life↑, their slow elimination since their half-life ranges from 11 to 48 h, which could favor their accumulation in plasma after repeated intakes
*GSH↑, Animal and cell studies have demonstrated that quercetin induces the synthesis of GSH
*SOD↑, increase in the expression of superoxide dismutase (SOD), catalase (CAT), and GSH with quercetin pretreatment
*Catalase↑,
*Nrf1↑, quercetin accomplishes this process involves increasing the activity of the nuclear factor erythroid 2-related factor 2 (NRF2), enhancing its binding to the ARE, reducing its degradation
*BP↓, quercetin has been shown to inhibit ACE activity, reducing blood pressure
*cardioP↑, quercetin has positive effects on cardiovascular diseases
*IL10↓, Under the influence of quercetin, the levels of interleukin 10 (IL-10), IL-1β, and TNF-α were reduced.
*TNF-α↓,
*Aβ↓, quercetin’s ability to modulate the enzyme activity in clearing amyloid-beta (Aβ) plaques, a hallmark of AD pathology.
*GSK‐3β↓, quercetin can inhibit the activity of glycogen synthase kinase 3β,
*tau↓, thus reducing tau aggregation and neurofibrillary tangles in the brain
*neuroP↑,
*Pain↓, quercetin reduces pain and inflammation associated with arthritis
*COX2↓, quercetin included the inhibition of oxidative stress, production of cytokines such as cyclooxygenase-2 (COX-2) and proteoglycan degradation, and activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) (Nrf2/HO-1)
*NRF2↑,
*HO-1↑,
*IL1β↓, Mechanisms included decreased levels of TNF-α, IL-1β, IL-17, and monocyte chemoattractant protein-1 (MCP-1)
*IL17↓,
*MCP1↓,
PKCδ↓, studies with human leukemia 60 (HL-60) cells report that concentrations between 20 and 30 µM are sufficient to exert an inhibitory effect on cytosolic PKC activity and membrane tyrosine protein kinase (TPK) activity.
ERK↓, 50 µM resulted in the blockade of the extracellular signal-regulated kinases (ERK1/2) pathway
BAX↓, higher doses (75–100 µM) were used, as these doses reduced the expression of proapoptotic factors such as Bcl-2-associated X protein (Bax) and caspases 3 and 9
cMyc↓, induce apoptosis at concentrations of 80 µM and also causes a downregulation of cellular myelocytomatosis (c-myc) and Kirsten RAt sarcoma (K-ras) oncogenes
KRAS↓,
ROS↓, compound’s antioxidative effect changes entirely to a prooxidant effect at high concentrations, which induces selective cytotoxicity
selectivity↑, On the other hand, when noncancerous cells are exposed to quercetin, it exerts cytoprotective effects;
tumCV↓, decrease cell viability in human glioma cultures of the U-118 MG cell line as well as an increase in death by apoptosis and cell arrest at the G2 checkpoint of the cell cycle.
Apoptosis↑,
TumCCA↑,
eff↑, quercetin combined with doxorubicin can induce multinucleation of invasive tumor cells, downregulate P-glycoprotein (P-gp) expression, increase cell sensitivity to doxorubicin,
P-gp↓,
eff↑, resveratrol, quercetin, and catechin can effectively block the cell cycle and reduce cell proliferation in vivo
eff↑, cotreatment with epigallocatechin gallate (EGCG) inhibited catechol-O-methyltransferase (COMT) activity, decreasing COMT protein content and thereby arresting the cell cycle of PC-3 human prostate cancer cells
eff↑, synergistic treatment of tamoxifen and quercetin was also able to inhibit prostate tumor formation by regulating angiogenesis
eff↑, coadministration of 2.5 μM of EGCG, genistein, and quercetin suppressed the cell proliferation of a prostate cancer cell line (CWR22Rv1) by controlling androgen receptor and NAD (P)H: quinone oxidoreductase 1 (NQO1) expression
CycB↓, It can also downregulate cyclin B1 and cyclin-dependent kinase-1 (CDK-1),
CDK1↓,
CDK4↓, quercetin causes a decrease in cyclins D1/Cdk4 and E/Cdk2 and an increase in p21 in vascular smooth muscle cells
CDK2↓,
TOP2↓, quercetin is known to be a potent inhibitor of topoisomerase II (TopoII), a cell cycle-associated enzyme necessary for DNA replication
Cyt‑c↑, quercetin can induce apoptosis (cell death) through caspase-3 and caspase-9 activation, cytochrome c release, and poly ADP ribose polymerase (PARP) cleavage
cl‑PARP↑,
MMP↓, quercetin induces the loss of mitochondrial membrane potential, leading to the activation of the caspase cascade and cleavage of PARP.
HSP70/HSPA5↓, apoptotic effects of quercetin may result from the inhibition of HSP kinases, followed by the downregulation of HSP-70 and HSP-90 protein expression
HSP90↓,
MDM2↓, (MDM2), an onco-protein that promotes p53 destruction, can be inhibited by quercetin
RAS↓, quercetin can prevent Ras proteins from being expressed. In one study, quercetin was found to inhibit the expression of Harvey rat sarcoma (H-Ras), K-Ras, and neuroblastoma rat sarcoma (N-Ras) in human breast cancer cells,
eff↑, there was a substantial difference in EMT markers such as vimentin, N-cadherin, Snail, Slug, Twist, and E-cadherin protein expression in response to AuNPs-Qu-5, inhibiting the migration and invasion of MCF-7 and MDA-MB cells

3341- QC,    Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application
- Review, Var, NA - Review, Stroke, NA
*antiOx↑, we highlight the recent advances in the antioxidant activities, chemical research, and medicinal application of quercetin.
*BioAv↑, Moreover, owing to its high solubility and bioavailability,
*GSH↑, Animal and cell studies found that quercetin induces GSH synthesis
*AChE↓, In this way, it has a stronger inhibitory effect against key enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which are associated with oxidative properties
*BChE↓,
*H2O2↓, Quercetin has been shown to alleviate the decline of manganese-induced antioxidant enzyme activity, the increase of AChE activity, hydrogen peroxide generation, and lipid peroxidation levels in rats, thereby preventing manganese poisoning
*lipid-P↓,
*SOD↑, quercetin significantly enhanced the expression levels of endogenous antioxidant enzymes such as Cu/Zn SOD, Mn SOD, catalase (CAT), and GSH peroxidase in the hippocampal CA1 pyramidal neurons of animals suffering from ischemic injury.
*SOD2↑,
*Catalase↑,
*GPx↑,
*neuroP↑, Thus, quercetin may be a potential neuroprotective agent for transient ischemia
*HO-1↑, quercetin can promote fracture healing in smokers by removing free radicals and upregulating the expression of heme-oxygenase- (HO-) 1 and superoxide-dismutase- (SOD-) 1, which protects primary human osteoblasts exposed to cigarette smoke
*cardioP↑, Quercetin has also been shown to prevent heart damage by clearing oxygen-free radicals caused by lipopolysaccharide (LPS)-induced endotoxemia.
*MDA↓, quercetin treatment increased the levels of SOD and CAT and reduced the level of MDA after LPS induction, suggesting that quercetin enhanced the antioxidant defense system
*NF-kB↓, quercetin promotes disease recovery by downregulating the expression of NIK and NF-κB including IKK and RelB, and upregulating the expression of TRAF3.
*IKKα↓,
*ROS↓, quercetin controls the development of atherosclerosis induced by a high-fructose diet by inhibiting ROS and enhancing PI3K/AKT.
*PI3K↑,
*Akt↑,
*hepatoP↑, Quercetin exerts antioxidant and hepatoprotective effects against acute liver injury in mice induced by tertiary butyl hydrogen peroxide. T
P53↑, Quercetin prevents cancer development by upregulating p53, which is the most common inactivated tumor suppressor. It also increases the expression of BAX, a downstream target of p53 and a key pro-apoptotic gene in HepG2 cells
BAX↑,
IGF-1R↓, Studies have found that insulin-like growth factor receptor 1 (IGFIR), AKT, androgen receptor (AR), and cell proliferation and anti-apoptotic proteins are increased in cancer, but quercetin supplementation normalizes their expression
Akt↓,
AR↓,
TumCP↓,
GSH↑, Moreover, quercetin significantly increases antioxidant enzyme levels, including GSH, SOD, and CAT, and inhibits lipid peroxides, thereby preventing skin cancer induced by 7,12-dimethyl Benz
SOD↑,
Catalase↑,
lipid-P↓,
*TNF-α↓, Heart: increases TNF-α, and prevents Ca2+ overload-induced myocardial cell injury
*Ca+2↓,

3374- QC,    Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis
- Review, Oral, NA - Review, AD, NA
α-SMA↓, In oral cancer cells, quercetin could inhibit EMT via up-regulation of claudin-1 and E-cadherin and down-regulation of α-SMA, vimentin, fibronectin, and Slug [29]
α-SMA↑, OSC20 Invasion: ↓Migration, ↑Expression of epithelial markers (E-cadherin & claudin-1), ↑Expression of mesenchymal markers (fibronectin, vimentin, & α-SMA),
TumCP↓, quercetin significantly reduced cancer cell proliferation, cell viability, tumor volume, invasion, metastasis and migration
tumCV↓,
TumVol↓,
TumCI↓,
TumMeta↓,
TumCMig↓,
ROS↑, This anti-cancer agent induced oxidative stress and apoptosis in the cancer cells.
Apoptosis↑,
BioAv↓, The efficacy of quercetin (as lipophilic) is much impacted by its poor absorption rates, which define its bioavailability. The research on quercetin's bioavailability in animal models shows it may be as low as 10%
*neuroP↑, quercetin has been observed to exhibit neuroprotective effects in Alzheimer's disease through its anti-oxidants, and anti-inflammatory properties and inhibition of amyloid-β (Aβ) fibril formation
*antiOx↑,
*Inflam↓,
*Aβ↓,
*cardioP↑, Additionally, quercetin protects the heart by stopping oxidative stress, inflammation, apoptosis, and protein kinases
MMP↓, ↓MMP, ↑Cytosolic Cyt. C,
Cyt‑c↑,
MMP2↓, ↓Activation MMP-2 & MMP-9, ↓Expression levels of EMT inducers & MMPs, Downregulated Twist & Slug
MMP9↓,
EMT↓,
MMPs↓,
Twist↓,
Slug↓,
Ca+2↑, ↑Apoptosis, ↑ROS, ↑Ca2+ production, ↑Activities of caspase‑3, caspase‑8 & caspase‑9
AIF↑, ↑Mitochondrial release of Cyt. C, AIF, & Endo G
Endon↑,
P-gp↓, ↓ Protein levels of P-gp, & P-gp Expression
LDH↑, ↑LDH release
HK2↓, CAL27 cells) 80µM/24h Molecular markers: ↓Activities of HK, PK, & LDH, ↓Glycolysis, ↓Glucose uptake, ↓Lactate production, ↓Viability, ↓G3BP1, & YWHA2 protein levels
PKA↓,
Glycolysis↓,
GlucoseCon↓,
lactateProd↓,
GRP78/BiP↑, Quercetin controls the activation of intracellular Ca2+ and calpain-1, which then activates GRP78, caspase-12, and C/EBP homologous protein (CHOP) in oral cancer cells
Casp12↑,
CHOP↑,

3335- QC,    Recent advances on the improvement of quercetin bioavailability
- Review, NA, NA
*BioAv↓, bioavailability of quercetin is relatively low (<10%)

1490- RES,    Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues
- Review, Var, NA
TumCCA↑, lapachone and its iodine derivatives induce cell cycle arrest in G2/M in human oral squamous cell carcinoma cells
ROS↑, The primary mechanism of action of β-lapachone and its derivatives is the formation of ROS [92] through its processing by NAD(P)H quinone oxidoreductase 1 (NQO1).
Ca+2↑, abnormal production of ROS leads to an increase in Ca++
MMP↓, depolarization of the mitochondrial membrane
ATP↓, decrease in ATP synthesis
TOP1?, β-lapachone inhibits the catalytic activity of topoisomerase I
P53↑, including upregulation of the p53 tumor suppressor protein
p53 Wildtype∅,
Akt↓, inactivation of the Akt/mTOR pathway was again attributed to β-lapachone, promoting the inhibition of EMT transition in NQO1-positive cells.
mTOR↓,
EMT↓,
*BioAv↓, β-lapachone is a promising anticancer drug, its low bioavailability represents a limitation for clinical use due to low solubility in water and gastrointestinal fluids

1489- RES,    Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer
- Review, Var, NA
RadioS↑,
ChemoSen↑,
*BioAv↓, However, in vivo experimental models have demonstrated that RSV is rapidly metabolized and eliminated, which leads to low bioavailability of the compound. 75% of RSV has been shown to be absorbed orally, only 1% is detected in the blood plasma
*BioAv↑, nanocarrier of RSV-loaded poly (ε-caprolactone)-poly (ethylene glycol) nanoparticles with an erythrocyte membrane. This system improved RSV’s poor water solubility
Ferroptosis↑, SV could induce ferroptotic cell death in colorectal cancer by initiating lipid peroxidation and suppressing the expression of SLC7A11 and GPX4
lipid-P↑,
xCT↓,
GPx4↓,
*BioAv↑, Bioactive or bioenhancer compounds have also been used (piperine, quercetin, biflavone ginkgetin) that, in combination with RSV, improve bioavailability, solubility, absorption, and cellular permeability
COX2↓, inhibiting Cyclooxygenase-COX
cycD1↓,
FasL↓,
FOXP3↓,
HLA↑,
p‑NF-kB↓, decrease NF-ĸB phosphorylation
BAX↑,
Bcl-2↓,
MALAT1↓, decrease the expression of the lncRNA MALAT1 in colorectal and gastric cancer cells through the Wnt/β-catenin signaling pathway

2650- RES,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, Several molecular mechanisms have been proposed for the anticancer activity of resveratrol, including ROS induction
Dose↝, ROS, the effect of resveratrol appears to be concentration dependent; at low concentrations, it exerts antioxidant effects, whereas at high concentrations (50–100 µM), resveratrol induces ROS production
NRF2↑, Cheng et al. [27] reported that resveratrol-induced ROS activate the Nrf2 signaling pathway, which subsequently suppresses NAF1 and induces apoptosis in pancreatic cancer cells.
NAF1↓,
ChemoSen↑, This also increased their sensitivity to gemcitabine.
BioAv↓, Despite the promising potential of resveratrol, its unstable pharmacokinetics due to its high metabolism and poor bioavailability limit its clinical application.

2566- RES,    A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke
- Review, Stroke, NA
*neuroP↑, comprehensive overview of resveratrol's neuroprotective role in IS
*NRF2↑, Findings from previous studies suggest that Nrf2 activation can significantly reduce brain injury following IS and lead to better outcomes
*SIRT1↑, neuroprotective effects by activating nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) pathways.
*PGC-1α↑, IRT1 activation by resveratrol triggers the deacetylation and activation of downstream targets like peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and forkhead box protein O (FOXO)
*FOXO↑,
*HO-1↑, ctivation of NRF2 through resveratrol enhances the expression of antioxidant enzymes, like heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), which neutralize reactive oxygen species and mitigate oxidative stress in the ischemic bra
*NQO1↑,
*ROS↓,
*BP↓, Multiple studies have demonstrated that resveratrol presented protective effects in IS, it can mediate blood pressure and lipid profiles which are the main key factors in managing and preventing stroke
*BioAv↓, The residual quantity of resveratrol undergoes metabolism, with the maximum reported concentration of free resveratrol being 1.7–1.9 %
*Half-Life↝, The levels of resveratrol peak 60 min following ingestion. Another study found that within 6 h, there was a further rise in resveratrol levels. This increase can be attributed to intestinal recirculation of metabolites
*AMPK↑, Resveratrol also increases AMPK and inhibits GSK-3β (glycogen synthase kinase 3 beta) activity in astrocytes, which release energy, makes ATP available to neurons and reduces ROS
*GSK‐3β↓,
*eff↑, Furthermore, oligodendrocyte survival is boosted by resveratrol, which may help to preserve brain homeostasis following a stroke
*AntiAg↑, resveratrol may suppress platelet activation and aggregation caused by collagen, adenosine diphosphate, and thrombin
*BBB↓, Although resveratrol is a highly hydrophobic molecule, it is exceedingly difficult to penetrate a membrane like the BBB. However, an alternate administration is through the nasal cavity in the olfactory area, which results in a more pleasant route
*Inflam↓, Resveratrol's anti-inflammatory effects have been demonstrated in many studies
*MPO↓, Resveratrol dramatically lowered the amounts of cerebral infarcts, neuronal damage, MPO activity, and evans blue (EB) content in addition to neurological impairment scores.
*TLR4↓, TLR4, NF-κB p65, COX-2, MMP-9, TNF-α, and IL-1β all had greater levels of expression after cerebral ischemia, whereas resveratrol decreased these amounts
*NF-kB↓,
*p65↓,
*MMP9↓,
*TNF-α↓,
*IL1β↓,
*PPARγ↑, Previous studies have shown that resveratrol activates the PPAR -γ coactivator 1α (PGC-1 α), which has free radical scavenging properties
*MMP↑, Resveratrol can prevent mitochondrial membrane depolarization, preserve adenosine triphosphate (ATP) production, and inhibit the release of cytochrome c
*ATP↑,
*Cyt‑c∅,
*mt-lipid-P↓, mitochondrial lipid peroxidation (LPO), protein carbonyl, and intracellular hydrogen peroxide (H2O2) content were significantly reduced in the resveratrol treatment group, while the expression of HSP70 and metallothionein were restored
*H2O2↓,
*HSP70/HSPA5↝,
*Mets↝,
*eff↑, Shin et al. showed that 5 mg/kg intravenous (IV) resveratrol reduced infarction volume by 36 % in an MCAO mouse model.
*eff↑, This study indicates that resveratrol holds the potential to improve stroke outcomes before ischemia as a pre-treatment strategy
*motorD↑, resveratrol treatment significantly reduced infarct volume and prevented motor impairment, increased glutathione, and decreased MDA levels compared to the control group,
*MDA↓,
*NADH:NAD↑, Resveratrol treatment significantly enhanced the intracellular NAD+/NADH ratio
eff↑, Pretreatment with resveratrol (20 or 40 mg/kg) significantly lowered the cerebral edema, infarct volume, lipid peroxidation products, and inflammatory markers
eff↑, Intraperitoneal administration of resveratrol at a dose of 50 mg/kg reduced cerebral ischemia reperfusion damage, brain edema, and BBB malfunction

2687- RES,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, NA, NA - Review, AD, NA
NF-kB↓, RES affects NF-kappaB activity and inhibits cytochrome P450 isoenzyme (CYP A1) drug metabolism and cyclooxygenase activity.
P450↓,
COX2↓,
Hif1a↓, RES may inhibit also the expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) and thus may have anti-cancer properties
VEGF↓,
*SIRT1↑, RES induces sirtuins, a class of proteins involved in regulation of gene expression. RES is also considered to be a SIRT1-activating compound (STACs).
SIRT1↓, In contrast, decreased levels of SIRT1 and SIRT2 were observed after treatment of BJ cells with concentrations of RES
SIRT2↓,
ChemoSen⇅, However, the effects of RES remain controversial as it has been reported to increase as well as decrease the effects of chemotherapy.
cardioP↑, RES has been shown to protect against doxorubicin-induced cardiotoxicity via restoration of SIRT1
*memory↑, RES has been shown to inhibit memory loss and mood dysfunction which can occur during aging.
*angioG↑, RES supplementation resulted in improved learning in the rats. This has been associated with increased angiogenesis and decreased astrocytic hypertrophy and decreased microglial activation in the hippocampus.
*neuroP↑, RES may have neuroprotective roles in AD and may improve memory function in dementia.
STAT3↓, RES was determined to inhibit STAT3, induce apoptosis, suppress the stemness gene signature and induced differentiation.
CSCs↓,
RadioS↑, synergistically increased radiosensitivity. RES treatment suppressed repair of radiation-induced DNA damage
Nestin↓, RES decreased NESTIN
Nanog↓, RES was determined to suppress the expression of NANOG
TP53↑, RES treatment activated TP53 and p21Cip1.
P21↑,
CXCR4↓, RES downregulated nuclear localization and activity of NF-kappa-B which resulted in decreased expression of MMP9 and C-X-C chemokine receptor type 4 (CXCR4), two proteins associated with metastasis.
*BioAv↓, The pharmacological properties of RES can be enhanced by nanoencapsulation. Normally the solubility and stability of RES is poor.
EMT↓, RES was determined to suppress many gene products associated with EMT such as decreased vimentin and SLUG expression but increased E-cadherin expression.
Vim↓,
Slug↓,
E-cadherin↑,
AMPK↑, RES can induce AMPK which results in inhibition of the drug transporter MDR1 in oxaliplatin-resistant (L-OHP) HCT116/L-OHP CRCs.
MDR1↓,
DNAdam↑, RES induced double strand DNA breaks by interfering with type II topoisomerase.
TOP2↓, The DNA damage was determined to be due to type II topoisomerase poisoning.
PTEN↑, RES was determined to upregulate phosphatase and tensin homolog (PTEN) expression and decrease the expression of activated Akt.
Akt↓,
Wnt↓, RES was shown to decrease WNT/beta-catenin pathway activity and the downstream targets c-Myc and MMP-7 in CRC cells.
β-catenin/ZEB1↓,
cMyc↓,
MMP7↓,
MALAT1↓, RES also decreased the expression of long non-coding metastasis associated lung adenocarcinoma transcript 1 (RNA-MALAT1) in the LoVo and HCT116 CRC cells.
TCF↓, Treatment of CRC cells with RES resulted in decreased expression of transcription factor 4 (TCF4), which is a critical effector molecule of the WNT/beta-catenin pathway.
ALDH↓, RES was determined to downregulate ALDH1 and CD44 in HNC-TICs in a dose-dependent fashion.
CD44↓,
Shh↓, RES has been determined to decrease IL-6-induced Sonic hedgehog homolog (SHH) signaling in AML.
IL6↓, RES has been shown to inhibit the secretion of IL-6 and VEGF from A549 lung cancer cells
VEGF↓,
eff↑, Combined RES and MET treatment resulted in a synergistic response in terms of decreased TP53, gammaH2AX and P-Chk2 expression. Thus, the combination of RES and MET might suppress some of the aging effects elicited by UVC-induced DNA damage
HK2↓, RES treatment resulted in a decrease in HK2 and increased mitochondrial-induced apoptosis.
ROS↑, RES was determined to shut off the metabolic shift and increase ROS levels and depolarized mitochondrial membranes.
MMP↓,

2442- RES,    High absorption but very low bioavailability of oral resveratrol in humans
- in-vitro, Nor, NA
BioAv↝, The absorption of a dietary relevant 25-mg oral dose was at least 70%, with peak plasma levels of resveratrol and metabolites of 491 +/- 90 ng/ml (about 2 microM)
Half-Life↝, plasma half-life of 9.2 +/- 0.6 h
BioAv↓, However, only trace amounts of unchanged resveratrol (<5 ng/ml) could be detected in plasma.
eff↝, Although the systemic bioavailability of resveratrol is very low, accumulation of resveratrol in epithelial cells along the aerodigestive tract and potentially active resveratrol metabolites may still produce cancer-preventive and other effects.

2441- RES,    Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions
- Review, Var, NA
*toxicity↓, Although resveratrol at high doses up to 5 g has been reported to be non-toxic [34], in some clinical trials, resveratrol at daily doses of 2.5–5 g induced mild-to-moderate gastrointestinal symptoms [
*BioAv↝, After an oral dose of 25 mg in healthy human subjects, the concentrations of native resveratrol (40 nM) and total resveratrol (about 2 µM) in plasma suggested significantly greater bioavailability of resveratrol metabolites than native resveratrol
*Dose↝, The total plasma concentration of resveratrol did not exceed 10 µM following high oral doses of 2–5 g
*hepatoP↑, hepatoprotective effects
*neuroP↑, neuroprotective properties
*AntiAg↑, Resveratrol possesses the ability to impede platelet aggregation
*COX2↓, suppresses promotion by inhibiting cyclooxygenase-2 activity
*antiOx↑, It is widely recognized that resveratrol has antioxidant properties at concentrations ranging from 5 to 10 μM.
*ROS↓, antioxidant properties at concentrations ranging from 5 to 10 μM.
*ROS↑, pro-oxidant properties when present in doses ranging from 10 to 40 μM
PI3K↓, It is known that resveratrol suppresses PI3-kinase, AKT, and NF-κB signaling pathways [75] and may affect tumor growth via other mechanisms as well
Akt↓,
NF-kB↓,
Wnt↓, esveratrol inhibited breast cancer stem-like cells in vitro and in vivo by suppressing Wnt/β-catenin signaling pathway
β-catenin/ZEB1↓,
NRF2↑, Resveratrol activated the Nrf2 signaling pathway, causing separation of the Nrf2–Keap1 complex [84], leading to enhanced transcription of antioxidant enzymes, such as glutathione peroxidase-2 [85] and heme-oxygenase (HO-1)
GPx↑,
HO-1↑,
BioEnh?, Resveratrol was demonstrated to have an impact on drug bioavailability,
PTEN↑, Resveratrol could suppress leukemia cell proliferation and induce apoptosis due to increased expression of PTEN
ChemoSen↑, Resveratrol enhances the sensitivity of cancer cells to chemotherapeutic agents through various mechanisms, such as promoting drug absorption by tumor cells
eff↑, it can also be used in nanomedicines in combination with various compounds or drugs, such as curcumin [101], quercetin [102], paclitaxel [103], docetaxel [104], 5-fluorouracil [105], and small interfering ribonucleic acids (siRNAs)
mt-ROS↑, enhancing the oxidative stress within the mitochondria of these cells, leading to cell damage and death.
Warburg↓, Resveratrol Counteracts Warburg Effect
Glycolysis↓, demonstrated in several studies that resveratrol inhibits glycolysis through the PI3K/Akt/mTOR signaling pathway in human cancer cells
GlucoseCon↓, resveratrol reduced glucose uptake by cancer cells due to targeting carrier Glut1
GLUT1↓,
lactateProd↓, therefore, less lactate was produced
HK2↓, Resveratrol (100 µM for 48–72 h) had a negative impact on hexokinase II (HK2)-mediated glycolysis
EGFR↓, activation of EGFR and downstream kinases Akt and ERK1/2 was observed to diminish upon exposure to resveratrol
cMyc↓, resveratrol suppressed the expression of leptin and c-Myc while increasing the level of vascular endothelial growth factor.
ROS↝, it acts as an antioxidant in regular conditions but as a strong pro-oxidant in cancer cells,
MMPs↓, Main targets of resveratrol in tumor cells. COX-2—cyclooxygenase-2, SIRT-1—sirtuin 1, MMPs—matrix metalloproteinases,
MMP7↓, Resveratrol was shown to exert an inhibitory effect on the expression of β-catenins and also target genes c-Myc, MMP-7, and survivin in multiple myeloma cells, thus reducing the proliferation, migration, and invasion of cancer cells
survivin↓,
TumCP↓,
TumCMig↓,
TumCI↓,

3076- RES,    Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells
- Review, Var, NA
IL6↓, A dose-dependent reduction of IL-6 by resveratrol led to attenuation of matrix metalloproteinases (MMPs), including MMP2 and MMP9
MMPs↓,
MMP2↓,
MMP9↓,
BioAv↓, The most important weakness of the usual form of resveratrol is its low absorption in the intestine and its low bioavailability
Half-Life↑, some covers such as liposomes and micelles also can facilitate absorption and increase half-life
BioAv↑, another study showed that carboxymethyl chitosan can increase bioavailability by more than 3.5 times
Dose↝, low concentrations of resveratrol (lower than 50 uM) cause no remarkable toxicity for normal cells, while higher concentrations are associated with increased oxidative injury
angioG↓, It is suggested that inhibition of STAT3, IL-10, and a reduction of vascular endothelial growth factor (VEGF) by resveratrol is involved in the suppression of macrophages and reduction of invasion and angiogenesis
IL10↓,
VEGF↓,
NF-kB↓, Inhibition of NF-kB by resveratrol can attenuate the expression of COX-2.
COX2↓,
SIRT1↑, Activation of Sirt-1 by resveratrol has a role in the suppression of NF-kB
Wnt↓, Resveratrol has also been shown that inhibit the Wnt/C-Myc pathway too
cMyc↓,
STAT3↓, Resveratrol has been shown that attenuate the expression of STAT3 through reduction of IL-6 level
PTEN↑, Downregulation of miR-17, miR-20a and miR-106b by resveratrol can activate PTEN, which leads to suppression of PI3K and induction of apoptosis in cancer cells
ROS↑, Resveratrol can trigger NOX5-induced ROS, leading to the induction of DNA damage and cancer cells senescence
RadioS↑, The combination of radiation and resveratrol has shown that has a synergic effect for stimulation of ROS production and induction of senescence in non-small cell lung carci- noma
Hif1a↓, Resveratrol can inhibit HIF-1α and its downstream proteins, including E-cadherin and vimentin
E-cadherin↓,
Vim↓,
angioG↓, Furthermore, resveratrol inhibits angiogenesis markers and tumor growth through the inhibition of HIF-1a

3063- RES,    Resveratrol: A Review of Pre-clinical Studies for Human Cancer Prevention
- Review, Var, NA
*Inflam↓, Resveratrol is known to have potent anti-inflammatory and anti-oxidant effects and to inhibit platelet aggregation and the growth of a variety of cancer cells.
*antiOx↑,
*AntiAg↑,
*chemoP↑, Its potential chemopreventive and chemotherapeutic activities have been demonstrated in all three stages of carcinogenesis
ChemoSen↑,
BioAv↑, Compared to other known polyphenols, such as quercetin and catechin, trans-resveratrol is well absorbed much more efficiently following oral administration to humans
Half-Life↝, Compared to resveratrol, which has a plasma half-life of 8–14 min, the metabolites have a plasma half-life of about 9.2 hours
COX2↓, there was inhibited expression of anti-apoptotic proteins, such as survivin, and markers of tumor promotion, cyclooxygenase (COX)-2, and ornithine decarboxylase (ODC) were observed
cycD1↓, Resveratrol decreased the expression of cyclins D1 and D2, Cdk 2, 4 and 6, and proliferating cell nuclear antigen (PCNA) whereas p21WAF1/CIP1 was increased
CDK2↓,
CDK4↓,
CDK6↓,
P21↑,
MMP9↓, associated with decreased COX-2 and matrix metalloprotease-9 expression and suppression of NFκB activation
NF-kB↓,
Telomerase↓, Relatively high concentrations also substantially downregulate telomerase activity
PSA↓, Resveratrol downregulates PSA by a mechanism independent of changes in AR
MAPK↑, Resveratrol treatment of various prostate cells also accompanied the activation of MAPK signaling and an increase in cellular p53
P53↑,

3055- RES,    Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic Targets
- Review, Var, NA
BioAv↓, Resveratrol is poorly bioavailable, and that considered the major hindrance to exert its therapeutic effect, especially for cancer management
BioAv↓, at lower doses (25 mg per healthy subject) demonstrate that the mean proportion of free resveratrol in plasma was 1.7–1.9% with a mean plasma concentration of free resveratrol around 20 nM
Dose↑, Boocock and his colleagues studied the pharmacokinetic of resveratrol; in vitro data showed that minimum of 5 µmol/L resveratrol is essential for the chemopreventive effects to be elicited
eff↑, Despite the low bioavailability of resveratrol, it shows efficacy in vivo. This may be due to the conversion of both glucuronides and sulfate back to resveratrol in target organs such as the liver
eff↑, repeated administration of high doses of resveratrol generates a higher plasma concentration of parent and a much higher concentration of sulfate and glucuronide conjugates in the plasma
Dose↑, The doses tested in this study were 0.5, 1.0, 2.5 or 5.0 g daily for 29 days. No toxicity was detected, but moderate gastrointestinal symptoms were reported for 2.5 and 5.0 g doses
BioAv↑, the co-administration of piperine with resveratrol was used to enhance resveratrol bioavailability
ROS↑, Recent studies have shown that resveratrol increases ROS generation and decreases mitochondrial membrane potential
MMP↓,
P21↑, treatment decreased the viability of melanoma cells by activating the expression of both p21 and p27, which promoted cell cycle arrest.
p27↑,
TumCCA↑,
ChemoSen↑, Additionally, the use of resveratrol with cisplatin in malignant human mesothelioma cells (MSTO-211H and H-2452 cells) synergistically induces cell death by increasing the intracellular ROS level [64].
COX2↓, covers the down-regulation of the products of the following genes, COX-2, 5-LOX, VEGF, IL-1, IL-6, IL-8, AR and PSA [93].
5LO↓,
VEGF↓,
IL1↓,
IL6↓,
IL8↓,
AR↓,
PSA↓,
MAPK↓, by preventing also the activation of the MAPK and PI3K/Akt signaling pathways, it suppresses HIF-1a and VEGF release in ovarian cancer cells of humans
Hif1a↓,
Glycolysis↓, Resveratrol was found to effectively impede the activation, invasion, migration and glycolysis of PSCs induced by reactive oxygen species (ROS) by down-regulating the expression of microRNA 21 (miR-21)
miR-21↓,
PTEN↑, also by increasing the phosphatise and tensin homolog (PTEN) protein levels
Half-Life↝, 25 mg/70 kg resveratrol administered to healthy human participants, the compound predominantly appeared in the form of glucuronide and sulfate conjugates in serum and urine and reached its peak concentrations in serum about 30 min after ingestion
*IGF-1↓, Brown and colleagues noted how a major decline in circulating insulin-like growth factor (IGF)-I as well as IGF-binding proteins (IGFBP-3) among healthy individuals can be credited to the intake of resveratrol
*IGFBP3↑,
Half-Life↓, Microactive® and Resveratrol SR and manufactured by Bioactives. This compound is capable of sustained release for over 12 h to increase intestinal residence time.

3100- RES,    Neuroprotective effects of resveratrol in Alzheimer disease pathology
- Review, AD, NA
*neuroP↑, several studies have reported interesting insights about the neuroprotective properties of the polyphenolic compound resveratrol
*BioAv↓, However, resveratrol’s low bioavailability originating from its poor water solubility and resulting from its short biological half-life
*Half-Life↓,
*BioAv↑, encapsulation in liposomal formulations
*BBB↑, Resveratrol being a lipophilic compound can readily cross the BBB via transmembrane diffusion
*NRF2↑, resveratrol into aged cells leading to the activation of cellular Nrf2-mediated antioxidant defense systems
*BioAv↓, An oral dose of 25 mg results in less than 5 μg/mL in the serum following absorption through the gastrointestinal tract, corresponding to approximately a 1000-fold decrease in bioavailability.
*BioAv↑, Treatment with pterostilbene also produced a sevenfold rise in its oral bioavailability than the parent resveratrol
*SIRT1↑, Amongst all the naturally occurring activators of SIRT 1, resveratrol is considered to be the most effective SIRT 1 activator.
*cognitive↑, Pterostilbene has shown to be a potent modulator of cognition and cellular oxidative stress associated with AD
*lipid-P↓, Figure 2
*HO-1↑,
*SOD↑,
*GSH↑,
*GPx↑,
*G6PD↑,
*PPARγ↑,
*AMPK↑,
*Aβ↓, Lowered Aβ levels by activating AMPK pathway

3099- RES,    Resveratrol and cognitive decline: a clinician perspective
- Review, Nor, NA - NA, AD, NA
*antiOx↑, In preclinical models of cognitive decline, resveratrol displays potent antioxidant activity by scavenging free radicals, reducing quinone reductase 2 activity and upregulating endogenous enzymes.
*ROS↓,
*cognitive↑,
*neuroP↑,
*SIRT1↑, By inducing SIRT1, resveratrol may promote neurite outgrowth and enhance neural plasticity in the hippocampal region
*AMPK↑, Resveratrol also induces neurogenesis and mitochondrial biogenesis by enhancing AMP-activated protein kinase (AMPK), which is known to stimulate neuronal differentiation and mitochondrial biogenesis in neurons.
*GPx↑, figure 1
*HO-1↑,
*GSK‐3β↑,
*COX2↓,
*PGE2↓, Resveratrol also inhibits pro-inflammatory enzyme (i.e., COX-1 and -2) expression, reduces NF-κB activation as well as PGE2, NO, and TNF-α production, and cytokine release
*NF-kB↓,
*NO↓,
*Casp3↓,
*MMP3↓,
*MMP9↓,
*MMP↑, resveratrol attenuated ROS production and mitochondrial membrane-potential disruption; moreover, it restored the normal levels of glutathione (GSH) depleted by Aβ1-42
*GSH↑,
*other↑, resveratrol significantly increased cerebral blood flow (CBF) in the frontal cortex of young healthy humans.
*BioAv↑, receiving 200 mg/day of resveratrol in a formulation with quercetin 320 mg [53], in order to increase its bioavailability,
*memory↑, Resveratrol supplementation induced retention of memory and improved the functional connectivity between the hippocampus and frontal, parietal, and occipital areas, compared with placebo
*GlutMet↑, Also, glucose metabolism was improved and this may account for some of the beneficial effects of resveratrol on neuronal function.
*BioAv↓, The main problems related to the therapeutic or preventive use of resveratrol are linked to its low oral bioavailability and its short half-life in serum
*Half-Life↓,
*toxicity∅, On the other hand, the tolerability and safety profile of resveratrol is very high

3019- RosA,    Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid
- in-vivo, Nor, NA
*BioAv↝, Experiments in rats demonstrated that RA applied topically to skin was absorbed percutaneously and became distributed in skin, blood, bone and muscle while intravenously administered RA was distributed in various tissues such as lung, spleen, heart a
*Half-Life↝, RA compounds (free and conjugate forms) reached a maximum concentration of 4.63 Amol/l 0.5 h after RA administration.
*Half-Life↑, e maximum COA concentration of 0.75 Amol/l was reached gradually, peaking at 8 h post-intake
*Half-Life↝, About 83% of this excretion occurred within the period 8 to 18 h after RA administration
*BioAv↑, This result shows that orally administered RA was rapidly absorbed from the digestive tract.

3013- RosA,    Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro
- in-vitro, NA, NA
*BioAv↑, Rosmarinic acid (RA), a water-soluble polyphenolic compound with anti-oxidative and anti-inflammatory activities
*antiOx↑,
*Inflam↑,
*ROS↓, RA also reduced intracellular reactive oxygen species (ROS) level, H2O2-dependent VEGF expression and IL-8 release of endothelial cells.
*VEGF↓,
*IL8↓,

3001- RosA,    Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review
- Review, Var, NA
TumCP↓, including in tumor cell proliferation, apoptosis, metastasis, and inflammation
Apoptosis↑,
TumMeta↓,
Inflam↓,
*antiOx↑, RA is therefore considered to be the strongest antioxidant of all hydroxycinnamic acid derivatives
*AntiAge↑, , it also exerts powerful antimicrobial, anti-inflammatory, antioxidant and even antidepressant, anti-aging effects
*ROS↓, RA and its metabolites can directly neutralize reactive oxygen species (ROS) [10] and thereby reduce the formation of oxidative damage products.
BioAv↑, RA is water-soluble, and according to literature data, the efficacy of secretion of this compound in infusions is about 90%
Dose↝, Accordingly, it is possible to consume approximately 110 mg RA daily, i.e., approximately 1.6 mg/kg for adult men weighing 70 kg.
NRF2↑, liver cancer cell line, HepG2, transfected with plasmid containing ARE-luciferin gene, RA predominantly enhances ARE-luciferin activity and promotes nuclear factor E2-related factor-2 (Nrf2) translocation from cytoplasm to the nucleus
P-gp↑, and also increases MRP2 and P-gp efflux activity along with intercellular ATP level
ATP↑,
MMPs↓, RA concurrently induced necrosis and apoptosis and stimulated MMP dysfunction activated PARP-cleavage and caspase-independent apoptosis.
cl‑PARP↓,
Hif1a↓, inhibits transcription factor hypoxia-inducible factor-1α (HIF-1α) expression
GlucoseCon↓, it also suppressed glucose consumption and lactate production in colorectal cells
lactateProd↓,
Warburg↓, may suppress the Warburg effects through an inflammatory pathway involving activator of transcription-3 (STAT3) and signal transducer of interleukin (IL)-6
TNF-α↓, RA supplementation also reduced tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and IL-6 levels, and modulated p65 expression [
COX2↓,
IL6↓,
HDAC2↓, RA induced the cell cycle arrest and apoptosis in prostate cancer cell lines (PCa, PC-3, and DU145) [31]. These effects were mediated through modulation of histone deacetylases expression (HDACs), specifically HDAC2;
GSH↑, RA can also inhibit adhesion, invasion, and migration of Ls 174-T human colon carcinoma cells through enhancing GSH levels and decreasing ROS levels
ROS↓,
ChemoSen↑, RA also enhances chemosensitivity of human resistant gastric carcinoma SGC7901 cells
*BG↓, RA significantly increased insulin index sensitivity and reduced blood glucose, advanced glycation end-products, HbA1c, IL-1β, TNFα, IL-6, p-JNK, P38 mitogen-activated protein kinase (MAPK), and NF-κB levels
*IL1β↓,
*TNF-α↓,
*IL6↓,
*p‑JNK↓,
*p38↓,
*Catalase↑, The reduced activities of CAT, SOD, glutathione S-transferases (GST), and glutathione peroxidase (GPx) and the reduced levels of vitamins C and E, ceruloplasmin, and GSH in plasma of diabetic rats were also significantly recovered by RA application
*SOD↑,
*GSTs↑,
*VitC↑,
*VitE↑,
*GSH↑,
*GutMicro↑, protective effects of RA (30 mg/kg) against hypoglycemia, hyperlipidemia, oxidative stress, and an imbalanced gut microbiota architecture was studied in diabetic rats.
*cardioP↑, Cardioprotective Activity: RA also reduced fasting serum levels of vascular cell adhesion molecule 1 (VCAM-1), inter-cellular adhesion molecule 1 (ICAM-1), plasminogen-activator-inhibitor-1 (PAI-1), and increased GPX and SOD levels
*ROS↓, Finally, in H9c2 cardiac muscle cells, RA inhibited apoptosis by decreasing intracellular ROS generation and recovering mitochondria membrane potential
*MMP↓,
*lipid-P↓, At once, RA suppresses lipid peroxidation (LPO) and ROS generation, whereas in HSC-T6 cells it increases cellular GSH.
*NRF2↑, Additionally, it significantly increases Nrf2 translocation
*hepatoP↑, Hepatoprotective Activity
*neuroP↑, Nephroprotective Activity
*P450↑, RA also reduced CP-produced oxidative stress and amplified cytochrome P450 2E1 (CYP2E1), HO-1, and renal-4-hydroxynonenal expression.
*HO-1↑,
*AntiAge↑, Anti-Aging Activity
*motorD↓, A significantly delays motor neuron dysfunction in paw grip endurance tests,

3005- RosA,    Nanoformulated rosemary extract impact on oral cancer: in vitro study
- in-vitro, Laryn, HEp2
TumCCA↑, They induced apoptotic changes as well as cell cycle arrest at G2/M phase. They enhanced ROS expression in cancer cells
ROS↑, The treatment of cancer cells with RE leads to a strong increase in intracellular ROS that results in cell death.
Bcl-2↓,
BAX↑,
Casp3↑,
P53↑,
necrosis↑, RE in a dose of 20–40 µg/ml resulted in an obvious increase in ROS intracellularly which guided cells toward necrosis and death.
eff↑, Chitosan was chosen as a nanodrug delivery in our research as per our aim, and we intended to offer a locally acting formula that may be applicable in managing oral cancerous lesions. Chitosan has a penetration capability as it is able to open tight
BioAv↑, chitosan nanoparticles, an increase in the surface-to-volume ratio occurs as well as the specific surface area. This enhances the dissolution of poorly water-soluble drugs so increases their bioavailability.

1749- RosA,    Rosmarinic Acid and Related Dietary Supplements: Potential Applications in the Prevention and Treatment of Cancer
- Review, Var, NA
antiOx↑, Rosmarinic acid (RA) is known for its excellent antioxidant properties and is safe and effective in preventing and inhibiting tumors
eff↑, Research has shown that foliar spraying with NO and Si and under Cu stress in S. officinalis elevated total RA content by 2-fold above control leaves.
*toxicity↝, For toxicology, a dose of 169.6 ± 32.4 mg/kg in Kunming mice (6 weeks old) was shown to be lethal, indicating that RA was slightly toxic
*BioAv↑, RA–phospholipid complexes increased oral bioavailability through enhanced intestinal permeability
*ROS↓, RA had the function of scavenging free radicals, including ROS and H2O2, and enhanced antioxidant enzymes and non-enzymic antioxidants
SOD↑, RA enhanced SOD, CAT, and glutathione peroxidase (GPx) activities and reduced lipid peroxidation and cytochrome P450, significantly reducing DMH-induced intestinal polyps in vivo
Catalase↑,
GPx↑,
lipid-P↓,
P450↓,
chemoP↑, RA protected ovaries without attenuating the anti-tumor effect of cisplatin
hepatoP↑, RA improved the hepatorenal toxicity induced by methotrexate
ChemoSen↑, RA acts as a chemosensitizer in a ROS-independent manner to inhibit DNA damage repair, thereby negatively responding to DNA damage

1744- RosA,    Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity
- Review, Var, NA
chemoR↓, Recently, several studies have shown that RA is able to reverse cancer resistance to first-line chemotherapeutics
ChemoSideEff↓, as well as play a protective role against toxicity induced by chemotherapy and radiotherapy
RadioS↑, RA decreased radiation-induced ROS with RA by 21% compared to control
ROS↓, mainly due to its scavenger capacity
ChemoSen↑, recent years, evidence has emerged demonstrating the ability of RA to act as a chemosensitizer
BioAv↑, bioavailability of RA have been studied in animal models, revealing rapid absorption in the stomach and intestine
Half-Life↝, Urine was the primary route of RA excretion, with 83% of the total metabolites excreted during the period from 8 to 18 h after RA administration
antiOx↑, RA, well known for its antioxidant properties,
ROS↑, has recently been identified as a potential pro-oxidant in the presence of superoxide anions.
Fenton↑, Studies indicate that RA can facilitate the reduction of Cu (II) to Cu (I) and Fe (III) to Fe (II) leading to Fenton-type reactions that generate reactive hydroxyl radicals (HO˙)
DNAdam↑, These radicals are implicated in DNA damage and induction of apoptosis in cancer cells
Apoptosis↑,
CSCs↓, RA has demonstrated potential in controlling breast cancer stem cells (CSCs)
HH↓, RA inhibits stem-like breast cancer cells by targeting the hedgehog signaling pathway and modulating the Bcl-2/Bax ratio at concentrations of 270 and 810 μM
Bax:Bcl2↑,
MDR1↓, It has been observed to downregulate P-glycoprotein (P-gp) expression and decrease MDR1 gene transcription, thereby reversing MDR.
P-gp↓,
eff↑, RA has been reported to modulate the ADAM17/EGFR/AKT/GSK3β signaling axis in A375 melanoma cells, potentially enhancing synergy with cisplatin
eff↑, RA has demonstrated effectiveness in enhancing chemosensitivity to 5-FU, a commonly used chemotherapy agent for gastrointestinal cancers.
FOXO4↑, By upregulating FOXO4 expression, RA restored the sensitivity of cells to 5-FU
*eff↑, RA has been shown to reduce DOX-induced apoptosis in H9c2 cardiac muscle cells, and reduce intracellular ROS generation through downregulation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), as well as to restore the
*ROS↓,
*JNK↓,
*ERK↓,
*GSH↑, RA has also shown an antioxidant role, which is evidenced by the ability and recovery of levels of glutathione (GSH), hydrogen peroxide (H2O2), and superoxide radicals (O2·), reducing the expression of malondialdehyde
*H2O2↑,
*MDA↓,
*SOD↓, regulating the expression of antioxidant enzymes such as superoxide dismutase (SOD), as well as upregulating catalase heme oxygenase-1, resulting in significantly improved viability
*HO-1↑,
*CardioT↓, The cardioprotective effect of RA
selectivity↑, RA blocked caspases 3 and 9 activation, cytochrome c release, and ROS generation induced by cisplatin in HEI-OC1(normal)cells

1748- RosA,    The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity
- Review, Var, NA
AntiCan↑, RA exhibits significant potential as a natural agent for cancer prevention and treatment
*BioAv↝, Various factors, including its lipophilic nature, stability in the gastrointestinal tract, and interactions with food, can significantly influence its absorption
*CardioT↓, RA attenuated these effects by reducing ROS levels, indicating its potential role as a cardioprotective agent during chemotherapy.
*Iron↓, Another significant mechanism antioxidant activity of RA is its capacity to chelate transition metal ions, particularly iron (Fe2+) and copper (Cu2+), which can catalyze the formation of highly reactive hydroxyl radicals through the Fenton reaction.
*ROS↓, forming stable complexes with Fe2+ and Cu2+, thus inhibiting their pro-oxidant activity.
*SOD↑, SOD, CAT, and GPx, play crucial roles in neutralizing ROS and maintaining cellular redox homeostasis. RA upregulates the expression and activity of these enzymes
*Catalase↑,
*GPx↑,
*NRF2↑, activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, a primary regulator of the antioxidant response
MARK4↓, Anwar’s study demonstrated that RA inhibited MARK4 activity in MDA-MB-231 breast cancer cells, resulting in dose-dependent apoptosis
MMP9↓, RA effectively inhibited cancer cell invasion and migration by reducing matrix metalloproteinase-9 (MMP-9) activity
TumCCA↑, caused cell cycle arrest
Bcl-2↓, RA downregulates Bcl-2 expression and upregulates Bax, thereby promoting apoptosis
BAX↑,
Apoptosis↑,
E-cadherin↑, promoting E-cadherin expression, while downregulating N-cadherin and vimentin
N-cadherin↓,
Vim↓,
Gli1↓, induced apoptosis by downregulating Gli1, a key component of the Hedgehog signaling pathway,
HDAC2↓, RA induced apoptosis by modulating histone deacetylase 2 (HDAC2) expression
Warburg↓, anti-Warburg effect of RA in colorectal carcinoma
Hif1a↓, RA inhibits hypoxia-inducible factor-1 alpha (HIF-1α) and downregulates miR-155
miR-155↓,
p‑PI3K↑, RA has been shown to upregulate p-PI3K, protecting cells through the PI3K/Akt pathway,
ROS↑, RA, induces significant ROS generation in A549 cells, which triggers both apoptosis and autophagy.
*IronCh↑, RA’s dual nature as both a phenolic acid and a flavonoid-related compound enables it to chelate metal ions and prevent the formation of free radicals,

1062- Sel,    Sodium Selenite Decreased HDAC Activity, Cell Proliferation and Induced Apoptosis in Three Human Glioblastoma Cells
- in-vitro, GBM, LN229 - in-vitro, GBM, T98G - in-vitro, GBM, U87MG
HDAC↓,
TumCP↓,
TumCCA↑, G2 phase
Apoptosis↑,
Casp3↝, apoptotic cell death process caspase-3-dependent
MMP2↓,
*BioAv↝, SS was weakly absorbed (<2%)

2556- SFN,    The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review
- Review, Var, NA
chemoP↑, sulforaphane (SFN) has surfaced as a particularly potent chemopreventive agent based on its ability to target multiple mechanisms within the cell to control carcinogenesis
HDAC↓, SFN's chemopreventative properties was also demonstrated in another study, where through its HDACi activity,
Hif1a↓, SFN inhibits hypoxia inducible factor-1 α (HIF-1α) and c-Myc, two angiogenesis- associated transcription factors
angioG↓,
CYP1A1↓, CYP1A1 reduction, MFC7
eff↑, Kallifatidis et al. reported SFN to potentiate the anti-cancer effects of cisplatin, gemcitabine, doxorubicin or 5-flurouracil on prostate cancer cell line MIA-PaCa2 while also increasing cytotoxicity of cancer stem cells
BioAv↑, Shapiro et al. reported that the chewing of fresh broccoli sprouts increases the interaction of glucosinolates with myrosinase and consequently, increases the bioavailability of SFN in the body (Shapiro et al. 2001).

3184- SFN,    The Integrative Role of Sulforaphane in Preventing Inflammation, Oxidative Stress and Fatigue: A Review of a Potential Protective Phytochemical
- Review, Nor, NA
*NRF2↑, SFN treatment modulates redox balance via activating redox regulator nuclear factor E2 factor-related factor (Nrf2).
*Inflam↓, SFN reduces inflammation by suppressing centrally involved inflammatory regulator nuclear factor-kappa B (NF-κB),
*NF-kB↓,
*ROS↓, SFN in preventing fatigue, inflammation, and oxidative stress,
*BioAv↝, It was identified that the lowest oral dose of SFN (2.8 µmol/kg or 0.5 mg/kg) has an absolute bioavailability of more than 80%, whilst with the highest dose (28 µmol/kg or 5 mg/kg) had only 20% bioavailability
*BioAv↝, For example, quickly steaming broccoli sprouts, followed by myrosinase treatment, contains the highest amount SFN, which is approximately 11 and 5 times higher than freeze dried and untreated steamed broccoli sprouts, respectively
*BioAv↝, The peak concentration of SFN metabolites (1.91 ± 0.24 µM) was identified in urine after 1 h of oral dose (200 µmol) of broccoli sprout ITCs to four healthy human volunteers
*BioAv↝, study with 20 participants, providing 200 µmol of SFN in capsule form revealed a peak of SFN equivalence (0.7 ± 0.2 µM) at 3 h
*cardioP↑, FN actives signaling pathways and phosphorylates Nrf2, which further increases the expression and activity of phase 2 enzymes, such as GR, GST, TR, NQO1, to minimize cardiac cell arrest,
*GPx↑, 200 mg of dried broccoli sprouts increased glutathione content, decreased levels of oxidized glutathione, increased the activity of GR and glutathione peroxidase (GPx), which are associated with decreasing oxidative stress in the cardiovascular syst
*SOD↑, SFN treatment activates Nrf2, which translocates into the nucleus to induce production of cellular defense enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), heme oxygenase (HO) 1, NADPH quinone oxidoreductase
*Catalase↑,
*GPx↑,
*HO-1↑,
*NADPH↑,
*NQO1↑,
*LDH↓, Furthermore, creatinine phosphokinase (CPK) and lactate dehydrogenase (LDH) (two enzymatic markers to assess muscle damage) were significantly lower after SFN treatment compared to a placebo
*hepatoP↑, protects exercise-induced liver damage, evidenced by reducing blood levels of enzymes such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), via inducing antioxidant defense response
*ALAT↓,
*AST↓,
*IL6↓, fresh broccoli sprouts (30 g/day) daily for 10 weeks. After the intervention period, plasma IL-6 concentrations were significantly lower

2447- SFN,    Sulforaphane Bioavailability from Glucoraphanin-Rich Broccoli: Control by Active Endogenous Myrosinase
- Review, Nor, NA
*BioAv↓, when either broccoli sprouts or seeds are administered directly to subjects without prior extraction and consequent inactivation of endogenous myrosinase, the sulforaphane in those preparations is 3-4-fold more bioavailable than sulforaphane from gl
*BioAv↓, sulforaphane is only moderately stable over time, especially in aqueous solution
*BioAv↓, their useful shelf-life is limited unless chemically stabilized, kept cold, or made frequently during the study
*BioAv↝, see Table 1 for interesing bioavailable information of different forms

2449- SFN,    Optimization of a blanching step to maximize sulforaphane synthesis in broccoli florets
- Study, Nor, NA
BioAv↑, Optimal blanching condition was immersion in water at 57° for 13 min.coinciding with the minimum glucosinolates and glucoraphanin content, and with the maximum myrosinase. Sulforaphane content was increased by 237% compared with fresh broccoli.

2448- SFN,    Sulforaphane and bladder cancer: a potential novel antitumor compound
- Review, Bladder, NA
Apoptosis↑, Recent studies have demonstrated that Sulforaphane not only induces apoptosis and cell cycle arrest in BC cells, but also inhibits the growth, invasion, and metastasis of BC cells
TumCG↓,
TumCI↓,
TumMeta↓,
glucoNG↓, Additionally, it can inhibit BC gluconeogenesis
ChemoSen↑, demonstrate definite effects when combined with chemotherapeutic drugs/carcinogens.
TumCCA↑, SFN can block the cell cycle in G2/M phase, upregulate the expression of Caspase3/7 and PARP cleavage, and downregulate the expression of Survivin, EGFR and HER2/neu
Casp3↑,
Casp7↑,
cl‑PARP↑,
survivin↓,
EGFR↓,
HER2/EBBR2↓,
ATP↓, SFN inhibits the production of ATP by inhibiting glycolysis and mitochondrial oxidative phosphorylation in BC cells in a dose-dependent manner
Glycolysis↓,
mt-OXPHOS↓,
AKT1↓, dysregulation of glucose metabolism by inhibiting the AKT1-HK2 axis
HK2↓,
Hif1a↓, Sulforaphane inhibits glycolysis by down-regulating hypoxia-induced HIF-1α
ROS↑, SFN can upregulate ROS production and Nrf2 activity
NRF2↑,
EMT↓, inhibiting EMT process through Cox-2/MMP-2, 9/ ZEB1 and Snail and miR-200c/ZEB1 pathways
COX2↓,
MMP2↓,
MMP9↓,
Zeb1↓,
Snail↓,
HDAC↓, FN modulates the histone status in BC cells by regulating specific HDAC and HATs,
HATs↓,
MMP↓, SFN upregulates ROS production, induces mitochondrial oxidative damage, mitochondrial membrane potential depolarization, cytochrome c release
Cyt‑c↓,
Shh↓, SFN significantly lowers the expression of key components of the SHH pathway (Shh, Smo, and Gli1) and inhibits tumor sphere formation, thereby suppressing the stemness of cancer cells
Smo↓,
Gli1↓,
BioAv↝, SFN is unstable in aqueous solutions and at high temperatures, sensitive to oxygen, heat and alkaline conditions, with a decrease in quantity of 20% after cooking, 36% after frying, and 88% after boiling
BioAv↝, It has been reported that the ability of individuals to use gut myrosinase to convert glucoraphanin into SFN varies widely
Dose↝, Excitingly, it has been reported that daily oral administration of 200 μM SFN in melanoma patients can achieve plasma levels of 655 ng/mL with good tolerance

2446- SFN,  CAP,    The Molecular Effects of Sulforaphane and Capsaicin on Metabolism upon Androgen and Tip60 Activation of Androgen Receptor
- in-vitro, Pca, LNCaP
AR↓, Sulforaphane and capsaicin decreased nuclear AR, prostate specific antigen and Bcl-XL levels, and cell proliferation induced by androgen and Tip60 in LNCaP cells.
Bcl-xL↓,
TumCP↓,
Glycolysis↓, Sulforaphane at 10 µM reduced the glycolysis and glycolytic capacity by 42% and 39%,
HK2↓, These bioactive compounds prevented the increase in glycolysis, hexokinase and pyruvate kinase activity, and reduced HIF-1α stabilization induced by androgen and Tip60 in LNCaP cells.
PKA↓,
Hif1a↓, Sulforaphane and Capsaicin Reduced the Increased HIF-1α Levels Induced by Androgen Stimulus and Tip60 Overexpression
PSA↓, Sulforaphane and capsaicin prevented the activation of AR signaling (decreased nuclear AR levels and PSA levels)
ECAR↓, and glycolysis (decreased EACR; and HK and PK activities) induced by androgen and Tip60.
BioAv↑, increased sulforaphane bioavailability can be attained after the intake of sulforaphane-enriched broccoli sprout preparation (generated by quick steaming followed by myrosinase treatment) in mice
BioAv↓, Liposomal and methoxypoly (ethylene glycol)-poly(ε-caprolactone) microencapsulation increase capsaicin bioavailability by 3.34-fold and 6-fold respectively in rats
*toxicity↓, considering that the minimum lethal oral dose of capsaicin is 100 mg/Kg body weight in mice, its consumption could be safely increased

1732- SFN,    Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, SUM159 - in-vivo, NA, NA
TumCD↑, reduced the size and number of primary mammospheres by 8~125-fold and 45%~75% (P < 0.01), respectively.
CSCs↓, Sulforaphane eliminated breast CSCs in vivo,
Wnt↓, Sulforaphane inhibits breast CSCs and down-regulates Wnt/β-catenin self-renewal pathway
β-catenin/ZEB1↓,
*BioAv↑, Sulforaphane was found to be converted from glucoraphanin, a major glucosinolate in broccoli/broccoli sprouts
angioG↓, Sulforaphane was also shown to suppress angiogenesis and metastasis by down-regulating VEGF, HIF-1α, MMP-2 and MMP-9 (4).
VEGF↓,
Hif1a↓,
MMP2↓,
MMP9↓,
Casp3↑,
*Half-Life∅, Plasma concentrations of sulforaphane equivalents peaked 0.94~2.27 μM in humans 1 hr after a single dose of 200 μmol broccoli sprout isothiocyanates (mainly sulforaphane)

1731- SFN,    Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts
- Review, Var, NA
CSCs↓, A number of studies have indicated that sulforaphane may target CSCs
ChemoSen↑, Combination therapy with sulforaphane and chemotherapy in preclinical settings has shown promising results.
NF-kB↓, downregulation of NF-kB activity by sulforaphane
Shh↓, Inhibits SHH pathway (Smo, Gli1, Gli2)
Smo↓,
Gli1↓,
GLI2↓,
PI3K↓, Inhibits PI3K/AKT pathway
Wnt↓, Inhibits Wnt/b-catenin pathway
β-catenin/ZEB1↓,
Nanog↓, sulforaphane was found to reduce the expression of SHH pathway components, as well as downstream target genes (e.g.,Nanog, Oct-4, VEGF and ZEB-1)
COX2↓, han et al. suggested that sulforaphane inhibited the EMT process via the COX-2/MMP2,9/ZEB1, Snail and miR-200c/ZEB1 pathways,
Zeb1↓,
Snail↓,
ChemoSideEff↓, More importantly, the combination therapy abolished tumor-initiating potential in vivo, without inducing additional side effects
eff↑, Broccoli sprouts contain approximately 20-times more glucoraphanin than broccoli, which represents typically 74% of all glucosinolates in the sprouts
*BioAv↑, Again, the bioavailability of sulforaphane from broccoli sprouts or broccoli sprout preparations heavily relies on the presence of plant myrosinase.

1730- SFN,    Sulforaphane: An emergent anti-cancer stem cell agent
- Review, Var, NA
BioAv↓, When exposed to high temperatures during meal preparation, myrosinase can be degraded, lose its function, and subsequently compromise the synthesis of SFN.
BioAv↑, eating raw cruciferous vegetables, instead of heating them can significantly improve the biodisponibility of SFN and its subsequent beneficial effects.
GSTA1↑, induction of Phase II enzymes [glutathione S-transferase (GST)
P450↓, (cytochrome P450, CYP) inhibition
TumCCA↑, herb-derived agent can also promote cell cycle arrest and apoptosis by regulating different signaling pathways including Nuclear Factor erythroid Related Factor 2 (Nrf2)-Keap1 and NF-κB.
HDAC↓, modulate the activity of some epigenetic factors, such as histone deacetylases (HDAC),
P21↑, upregulation of p21 and p27,
p27↑,
DNMT1↓, SFN was able to decrease the expression of DNMT1 and DNMT3 in LnCap prostate cancer cells
DNMT3A↓,
cycD1↑, reduce methylation in Cyclin D2 promoter, thus inducing Cyclin D2 gene expression in those cells
DNAdam↑, SFN induced DNA damage, enhanced Bax expression and the release of cytochrome C followed by apoptosis
BAX↑,
Cyt‑c↑,
Apoptosis↑,
ROS↑, SFN increased reactive oxygen species (ROS), apoptosis-inducing factor (AIF)
AIF↑,
CDK1↑,
Casp3↑, activation of caspase-3, -8, and -9
Casp8↑,
Casp9↑,
NRF2↑, SFN significantly activated the major antioxidant marker Nrf2 and decreased NFκB, TNF-α, IL-1β
NF-kB↓,
TNF-α↓,
IL1β↓,
CSCs↓, SFN, have attracted attention due to their anti-CSC effect
CD133↓,
CD44↓,
ALDH↓,
Nanog↓,
OCT4↓,
hTERT↓,
MMP2↓,
EMT↓, SFN was reported to inhibit EMT and metastasis in the NSCLC, the cell lines H1299
ALDH1A1↓, ALDH1A1), Wnt3, and Notch4, other CSC-related genes inhibited by SFN treatment
Wnt↓,
NOTCH↓, SFN can inhibit aberrantly activated embryonic pathways in CSCs, including Sonic Hedgehog (SHH), Wnt/β-catenin, Cripto-1 (CR-1), and Notch.
ChemoSen↑, These results suggest that the antioxidant properties of SFN do not impact the cytotoxicity of antineoplastic drugs, but on the contrary, seems to improve it.
*Ki-67↓, Ki-67 and HDAC3 levels significantly decreased in benign breast tissues, and there was also a reduction in HDAC activity in blood cells
*HDAC3↓,
*HDAC↓,

1455- SFN,    Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress
- in-vitro, Cerv, HeLa - in-vitro, Nor, 1321N1
*ROS↓, SFN may trigger a self-defense cellular mechanism that can effectively mitigate oxidative stress commonly associated with many metabolic and age-related diseases. SFN treatment prevented CCCP-induced ROS increases in WT 1321N1 cells(normal)
*BioAv↑, Tissue concentrations of SFN can reach 3–30 μM upon broccoli consumption
LC3II↑, SFN (15 μM, 3–9 h) treatment markedly increased endogenous LC3-II levels in HeLa cells
LAMP1?, gradual (within hours) increases in the expression of LAMP1 proteins upon SFN (15 μM, 3–9 h) treatment in HeLa cells
TumAuto↑, SFN led to enhanced lysosomal and autophagic function.
TFEB↑, SFN (10–15 μM) treatment for 4 h induced nuclear translocation of endogenous TFEB in HeLa cells
ROS↑, SFN treatment for 2 h resulted in a mild increase of intracellular ROS. ROS mediate some effects of SFN
eff↓, NAC (5 mM), a commonly used membrane-permeable antioxidant compound [7], prevented SFN-induced increases in ROS

1484- SFN,    Sulforaphane’s Multifaceted Potential: From Neuroprotection to Anticancer Action
- Review, Var, NA - Review, AD, NA
neuroP↑, current evidence supporting the neuroprotective and anticancer effects of SFN
AntiCan↑,
NRF2↑, neuroprotective effects through the activation of the Nrf2 pathway
HDAC↓, histone deacetylase was inhibited after human subjects ingested 68 g of broccoli sprouts
eff↑, sensitize cancer cells to chemotherapy
*ROS↓, protecting neurons [14] and microglia [15] against oxidative stress
neuroP↑, neuroprotective effects in Alzheimer’s disease (AD)
HDAC↓, capacity as a histone deacetylase (HDAC) inhibitor
*toxicity∅, normal cells are relatively resistant to SFN-induced cell death
BioAv↑, SFN has good bioavailability; it can reach high intracellular and plasma concentrations
eff↓, However, it is important to consider that at lower doses, specifically 2.5 μM, SFN resulted in a slight increase in cell proliferation by 5.18–11.84% within a 6 to 48 h treatment window
cycD1↓, in breast cancer
CDK4↓, in breast cancer
p‑RB1↓, in breast cancer
Glycolysis↓, in prostate cancer
miR-30a-5p↑, ovarian cancer
TumCCA↑, gastric cancer
TumCG↓,
TumMeta↓,
eff↑, SFN emerged as a critical enhancer of ST’s efficacy by suppressing resistance in RCC cells, offering a potent approach to overcome ST monotherapy limitations.
ChemoSen↑, SFN may improve the effectiveness of chemotherapy by increasing cancer cell sensitivity to the drugs used to treat them
RadioS↑, SFN may help protect healthy cells and tissues from the harmful effects of radiation
CardioT↓, Several studies have demonstrated the protective role of SFN in cardiotoxicity
angioG↓, In colon cancers, SFN blocks cells’ progression and angiogenesis by inhibiting HIF-1α and VEGF expression
Hif1a↓,
VEGF↓,
*BioAv?, SFN is well absorbed in the intestine, with an absolute bioavailability of approximately 82%.
*Half-Life∅, In rats, after an oral dose of 50 μmol of SFN, the plasma concentration of SFN can peak at 20 μM at 4 h and decline with a half-life of about 2.2 h

1454- SFN,    Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract
- Human, Nor, NA
*HDAC↓, SFN metabolites were reported to inhibit histone deacetylases (HDAC)
*eff↑, Plasma and urinary levels of total SFN metabolites were ~3–5 times higher in sprout consumers compared to BSE consumers
*eff↑, In sprout consumers (Fig. 2C inset), plasma concentrations were 2.4-fold higher after consuming the second dose than after the first dose.
*eff↑, Compared to the BSE, raw sprouts likely contain more fiber, which can slow gut transit and increase contact time between SFN and absorptive surfaces in the proximal gut.
*BioAv↑, Sprout 127.6 grams = 205uM±19.9 content yields SFN 0.5 to 2uM in plasma
*BioAv↑, Differences in SFN bioavailability among ingested forms of broccoli have largely been attributed to differences in myrosinase activity. Subjects consuming raw broccoli or broccoli sprouts containing intact myrosinase have higher recovery

1453- SFN,    Sulforaphane Reduces Prostate Cancer Cell Growth and Proliferation In Vitro by Modulating the Cdk-Cyclin Axis and Expression of the CD44 Variants 4, 5, and 7
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
TumCG↓,
TumCP↓,
TumCCA↑, cell cycle arrest at the S- and G2/M-phase
H3↑,
H4↑,
HDAC↓, SFN acts as a histone deacetylase (HDAC) inhibitor.
CDK1↑, With 10 µM SFN, CDK1 and CDK2 increased in both cell lines,
CDK2↑,
p19↑,
*BioAv↑, A transient decrease in HDAC activity has also been observed in healthy humans 3 h after providing a daily 200 µM SFN dose, resulting in a plasma concentration of SFN metabolites of 0.1–0.2 µM

1508- SFN,    Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment
- Review, Var, NA
*BioAv↑, RAW: higher amounts were detected when broccoli were eaten raw (bioavailability equal to 37%), compared to the cooked broccoli (bioavailability 3.4%)
HDAC↓, Sulforaphane is able to down-regulate HDAC activity and induce histone hyper-acetylation in tumor cell
TumCCA↓, Sulforaphane induces cell cycle arrest in G1, S and G2/M phases,
eff↓, in leukemia stem cells, sulforaphane potentiates imatinib effect through inhibition of the Wnt/β-catenin functions
Wnt↓,
β-catenin/ZEB1↓,
Casp12?, inducing caspases activation
Bcl-2↓,
cl‑PARP↑,
Bax:Bcl2↑, unbalancing the ratio Bax/Bcl-2
IAP1↓, down-regulating IAP family proteins
Casp3↑,
Casp9↑,
Telomerase↓, In Hep3B cells, sulforaphane reduces telomerase activity
hTERT↓, inhibition of hTERT expression;
ROS?, increment of ROS, induced by this compound, is essential for the downregulation of transcription and of post-translational modification of hTERT in suppression of telomerase activity
DNMTs↓, (2.5 - 10 μM) represses hTERT by impacting epigenetic pathways, in particular through decreased DNA methyltransferases activity (DNMTs)
angioG↓, inhibit tumor development through regulation of angiogenesis
VEGF↓,
Hif1a↓,
cMYB↓,
MMP1↓, inhibition of migration and invasion activities induced by sulforaphane in oral carcinoma cell lines has been associated to the inhibition of MMP-1 and MMP-2
MMP2↓,
MMP9↓,
ERK↑, inhibits invasion by activating ERK1/2, with consequent upregulation of E-cadherin (an invasion inhibitor)
E-cadherin↑,
CD44↓, downregulation of CD44v6 and MMP-2 (invasion promoters)
MMP2↓,
eff↑, ombination of sulforaphane and quercetin synergistically reduces the proliferation and migration of melanoma (B16F10) cells
IL2↑, induces upregulation of IL-2 and IFN-γ
IFN-γ↑,
IL1β↓, downregulation of IL-1beta, IL-6, TNF-α, and GM-CSF
IL6↓,
TNF-α↓,
NF-kB↓, sulforaphane inhibits the phorbol ester induction of NF-κB, inhibiting two pathways, ERK1/2 and NF-κB
ERK↓,
NRF2↑, At molecular level, sulforaphane modulates cellular homeostasis via the activation of the transcription factor Nrf2.
RadioS↑, sulforaphane could be used as a radio-sensitizing agent in prostate cancer if clinical trials will confirm the pre-clinical results.
ChemoSideEff↓, chemopreventive effects of sulforaphane

1507- SFN,    Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects
- in-vivo, Colon, NA - Human, Nor, NA
TumCG↓, When consumed in the diet at an average daily dose of 7.5 mumol per animal for 21 days, SFN suppressed the growth of human PC-3 prostate cancer cells by 40% in male nude mice.
HDAC↓, significant decrease in HDAC activity
*BioAv↑, a single dose of 68 g BroccoSprouts inhibited HDAC activity significantly in peripheral blood mononuclear cells (PBMC) 3 and 6 hrs following consumption.
Dose∅, a single dose of 68 g BroccoSprouts inhibited HDAC activity significantly in peripheral blood mononuclear cells (PBMC) 3 and 6 hrs following consumption.
Half-Life∅, a single dose of 68 g BroccoSprouts inhibited HDAC activity significantly in peripheral blood mononuclear cells (PBMC) 3 and 6 hrs following consumption.

3282- SIL,    Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions
- Review, NA, NA
hepatoP↑, This group of flavonoids has been extensively studied and they have been used as hepato-protective substances
AntiCan↑, however, silymarin compounds have clear anticancer effects
TumCMig↓, decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, i
Hif1a↓, In prostate cancer cells silibinin inhibited HIF-1α translation
selectivity↑, antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected
toxicity∅, long history of silymarin use in human diseases without toxicity after prolonged administration.
*antiOx↑, as an antioxidant, by scavenging prooxidant free radicals
*Inflam↓,
*NA↓, antiinflammatory effects similar to those of indomethacin,
TumCCA↑, MDA-MB 486 breast cancer cells, G1 arrest was found due to increased p21 and decreased CDKs activity
P21↑,
CDK4↓,
NF-kB↓, human prostate carcinoma cells, silymarin decreased ligand binding to Erb1 135 and NF-kB expression was strongly inhibited by silymarin in hepatoma cell
ERK↓, human prostate carcinoma cells, silymarin decreased ligand binding to Erb1 135 and NF-kB expression was strongly inhibited by silymarin in hepatoma cell
PSA↓, Treating prostate carcinoma cells with silymarin the levels of PSA were significantly decreased and cell growth was inhibited through decreased CDK activity and induction of Cip1/p21 and Kip1/p27. 1
TumCG↓,
p27↑,
COX2↓, such as anti-COX2 and anti-IL-1α activity, 140 antiangiogenic effects through inhibition of VEGF secretion, upregulation of Insulin like Growth Factor Binding Protein 3 (IGFBP3), 141 and inhibition of androgen receptors.
IL1↓,
VEGF↓,
IGFBP3↑,
AR↓,
STAT3↓, downregulation of the STAT3 pathway which was seen in many cell models.
Telomerase↓, silymarin has the ability to decrease telomerase activity in prostate cancer cells
Cyt‑c↑, mitochondrial cytochrome C release-caspase activation.
Casp↑,
eff↝, Malignant p53 negative cells show only minimal apoptosis when treated with silymarin. Therefore, one conclusion is that silymarin may be useful in tumors with conserved p53.
HDAC↓, inhibit histone deacetylase activity;
HATs↑, increase histone acetyltransferase activity
Zeb1↓, reduce expression of the transcription factor ZEB1
E-cadherin↑, increase expression of E-cadherin;
miR-203↑, increase expression of miR-203
NHE1↓, reduce activation of sodium hydrogen isoform 1 exchanger (NHE1)
MMP2↓, target β catenin and reduce the levels of MMP2 and MMP9
MMP9↓,
PGE2↓, reduce activation of prostaglandin E2
Vim↓, suppress vimentin expression
Wnt↓, inhibit Wnt signaling
angioG↓, Silymarin inhibits angiogenesis.
VEGF↓, VEGF downregulation
*TIMP1↓, Silymarin has the capacity to decrease TIMP1 expression166–168 in mice.
EMT↓, found that silibinin had no effect on EMT. However, the opposite was found in other malignant tissues160–162 where it showed inhibitory effects.
TGF-β↓, Silibinin reduces the expression of TGF β2 in different tumors such as triple negative breast, 174 prostate, and colorectal cancers.
CD44↓, Silibinin decreased CD44 expression and the activation of EGFR (epidermal growth factor receptor)
EGFR↓,
PDGF↓, silibinin had the ability to downregulate PDFG in fibroblasts, thus decreasing proliferation.
*IL8↓, Flavonoids, in general, reduce levels of IL-8. Curcumin, 200 apigenin, 201 and silybin showed the ability to decrease IL-8 levels
SREBP1↓, Silymarin inhibited STAT3 phosphorylation and decreased the expression of intranuclear sterol regulatory element binding protein 1 (SREBP1), decreasing lipid synthesis.
MMP↓, reduced membrane potential and ATP content
ATP↓,
uPA↓, silibinin decreased MMP2, MMP9, and urokinase plasminogen activator receptor level (uPAR) in neuroblastoma cells. uPAR is also a marker of cell invasion.
PD-L1↓, Silibinin inhibits PD-L1 by impeding STAT5 binding in NSCLC.
NOTCH↓, Silybin inhibited Notch signaling in hepatocellular carcinoma cells showing antitumoral effects
*SIRT1↑, Silymarin can also increase SIRT1 expression in other tissues, such as hippocampus, 221 articular chondrocytes, 222 and heart muscle
SIRT1↓, Silymarin seems to act differently in tumors: in lung cancer cells SIRT downregulated SIRT1 and exerted multiple antitumor effects such as reduced adhesion and migration and increased apoptosis.
CA↓, Silymarin has the ability to inhibit CA isoforms CA I and CA II.
Ca+2↑, ilymarin increases mitochondrial release of Ca++ and lowers mitochondrial membrane potential in cancer cell
chemoP↑, Silymarin: Decreasing Side Effects and Toxicity of Chemotherapeutic Drugs
cardioP↑, There is also evidence that it protects the heart from doxorubicin toxicity, however, it is less potent than quercetin in this effect.
Dose↝, oral administration of 240 mg of silybin to 6 healthy volunteers the following results were obtained 377 : maximum\,plasmaconcentration0.34±0.16⁢𝜇⁢g/m⁢L
Half-Life↝, and time to maximum plasma concentration 1.32 ± 0.45 h. Absorption half life 0.17 ± 0.09 h, elimination half life 6.32 ± 3.94 h
BioAv↓, silymarin is not soluble in water and oral administration shows poor absorption in the alimentary tract (approximately 1% in rats,
BioAv↓, Our conclusion is that, from a bioavailability standpoint, it is much easier to achieve migration inhibition, than proliferative reduction.
BioAv↓, Combination with succinate: is available on the market under the trade mark Legalon® (bis hemisuccinate silybin). Combination with phosphatidylcholine:
toxicity↝, 13 g daily per os divided into 3 doses was well tolerated. The most frequent adverse event was asymptomatic liver toxicity.
Half-Life↓, It may be necessary to administer 800 mg 4 times a day because the half-life is short.
ROS↓, its ability as an antioxidant reduces ROS production
FAK↓, Silibinin decreased human osteosarcoma cell invasion through Erk inhibition of a FAK/ERK/uPA/MMP2 pathway

3307- SIL,    Flavolignans from Silymarin as Nrf2 Bioactivators and Their Therapeutic Applications
- Review, Var, NA
*NRF2↑, antioxidant and protective activities, which are probably related to the activation of the nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2), known as a master regulator of the cytoprotector response.
*antiOx↑, many studies have been conducted in order to identify its different biological activities, such as antioxidant, chemoprotective, anti-inflammatory,
*chemoP↑,
*Inflam↓,
*BioAv↑, The design of silybinnano-emulsions using oil, surfactants, and co-surfactants (sefsol-218/Tween 80/ethanol) in oral administration was more capable of improving the SM hepatoprotective effect than SM alone [138].
eff↑, ↑ Induction of UGT1A7 with propolis, artichoke and SM (7.3, 5 and 4.5-fold respectively
*NQO1↑, ↑ activity of NQO1
TNF-α↓, ↑ SOD and GPx activity ↓ gastric inflammation: TNF- α, IL-6 and myeloperoxidase activity,
IL6↓,
*GSH↑, PC12 cells (normal) ↑ intracellular levels of GSH ↓ levels of ROS and MDA
*ROS↓,
*MDA↓,
eff↑, combination of SM with vitamin E and/or curcumin can be a good option for the treatment of liver injury induced by toxic substances
*hepatoP↑,
*GPx↑, 50 mg/kg of SM inhibits the synthesis of lipid peroxides, promotes the upregulation of Nrf2, and the enhancement of the activity of GPx and SOD enzymes, increasing antioxidant and cytoprotective defense, thus preventing gastric oxidative stress.
*SOD↑,
*Catalase↑, treatment with SM at 200 mg/kg for 3 days improved oxidative stress by reducing MDA and increasing the activity of SOD, Cat, and GPx in lung tissue
*HO-1↑, These results were related to the upregulation of Nrf2, HO-1, and NQO1 in male Sprague-Dawley rats.
*neuroP↑, SM can exert neuroprotection against acrylamide-induced damage

3309- SIL,    Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives
- Review, NA, NA
*ROS↓, (1) Direct scavenging free radicals and chelating free Fe and Cu are mainly effective in the gut.
*IronCh↑,
*MMP↑, (2) Preventing free radical formation by inhibiting specific ROS-producing enzymes, or improving an integrity of mitochondria in stress conditions, are of great importance.
*NRF2↑, (3) Maintaining an optimal redox balance in the cell by activating a range of antioxidant enzymes and non-enzymatic antioxidants, mainly via Nrf2 activation
*Inflam↓, (4) Decreasing inflammatory responses by inhibiting NF-κB pathways is an emerging mechanism of SM protective effects in liver toxicity and various liver diseases.
*hepatoP↑,
*HSPs↑, (5) Activating vitagenes, responsible for synthesis of protective molecules, including heat shock proteins (HSPs), thioredoxin and sirtuins
*Trx↑,
*SIRT2↑, increased expression of protective molecules (GSH, Thioredoxins, heat shock proteins (HSPs), sirtuins, etc.)
*GSH↑,
*ROS↑, Similarly, production of O2− and NO in isolated rat Kupffer cells were inhibited by silibinin in a dose-dependent manner, with IC50 80 μM
*NADPH↓, It also decreased the NADPH oxidase, iNOS and NF-κB over expression by As and upregulated the Nrf2 expression in the renal tissue.
*iNOS↓,
*NF-kB↓,
*BioAv↓, active free silibinin concentration in plasma after oral consumption of SM, depending on dose of supplementation, could be in the range 0.2–2.0 μM.
*Dose↝, healthy volunteers, after an oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL
*BioAv↑, For example, silibinin concentration in the gut could reach 800 μM

3288- SIL,    Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations
- Review, Var, NA
Inflam↓, Silymarin, a milk thistle extract, has anti-inflammatory, immunomodulatory, anti-lipid peroxidative, anti-fibrotic, anti-oxidative, and anti-proliferative properties.
lipid-P↓,
TumMeta↓, Silymarin exhibits not only anti-cancer functions through modulating various hallmarks of cancer, including cell cycle, metastasis, angiogenesis, apoptosis, and autophagy, by targeting a plethora of molecules
angioG↓,
chemoP↑, but also plays protective roles against chemotherapy-induced toxicity, such as nephrotoxicity,
EMT↓, Figure 2, Metastasis
HDAC↓,
HATs↑,
MMPs↓,
uPA↓,
PI3K↓,
Akt↓,
VEGF↓, Angiogenesis
CD31↓,
Hif1a↓,
VEGFR2↓,
Raf↓,
MEK↓,
ERK↓,
BIM↓, apoptosis
BAX↑,
Bcl-2↓,
Bcl-xL↓,
Casp↑,
MAPK↓,
P53↑,
LC3II↑, Autophagy
mTOR↓,
YAP/TEAD↓,
*BioAv↓, Additionally, the oral bioavailability of silymarin in rats is only 0.73 %
MMP↓, silymarin treatment reduced mitochondrial transmembrane potential, leading to an increase in cytosolic cytochrome c (Cyt c), downregulating proliferation-associated proteins (PCNA, c-Myc, cyclin D1, and β-catenin)
Cyt‑c↑,
PCNA↓,
cMyc↓,
cycD1↓,
β-catenin/ZEB1↓,
survivin↓, and anti-apoptotic proteins (survivin and Bcl-2), and upregulating pro-apoptotic proteins (caspase-3, Bax, APAF-1, and p53)
APAF1↑,
Casp3↑,
MDSCs↓, ↓MDSCs, ↓IL-10, ↑IL-2 and IFN-γ
IL10↓,
IL2↑,
IFN-γ↑,
hepatoP↑, Moreover, in a randomized clinical trial, silymarin attenuated hepatoxicity in non-metastatic breast cancer patients undergoing a doxorubicin/cyclophosphamide-paclitaxel regimen
cardioP↑, For example, Rašković et al. studied the hepatoprotective and cardioprotective effects of silymarin (60 mg/kg orally) in rats following DOX
GSH↑, silymarin could protect the kidney and heart from ADR toxicity by protecting against glutathione (GSH) depletion and inhibiting lipid peroxidation
neuroP↑, silymarin attenuated the neurotoxicity of docetaxel by reducing apoptosis, inflammation, and oxidative stress

3295- SIL,    Hepatoprotective effect of silymarin
- Review, NA, NA
*hepatoP↑, The hepatoprotective and antioxidant activity of silymarin is caused by its ability to inhibit the free radicals that are produced from the metabolism of toxic substances such as ethanol, acetaminophen, and carbon tetrachloride.
*ROS↓,
*GSH↑, Silymarin enhances hepatic glutathione and may contribute to the antioxidant defense of the liver.
*BioAv↝, For example, the level of silymarin absorption is between 20% and 50%. low solubility in water, low bioavailability, and poor intestinal absorption reduce its efficacy
ERK↓, treatment of melanoma cells with silybin attenuated the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and RSK2,
NF-kB↓, silybin resulted in the reduced activation of nuclear factor-kappa B (NF-κB), activator protein-1, and STAT3
STAT3↓,
COX2↓, cytoprotective effect in liver is also caused by the inhibition of the cyclooxygenase cycle
Inflam↓, These affects reduce inflammation
IronCh↑, chelating iron, and slowing calcium metabolism,
lipid-P↓, Silymarin also affects intracellular glutathione, which prevents lipoperoxidation of membranes
ALAT↓, led to significantly reduced levels of alanine aminotransferase (ALT) and aspartame aminotransferase (AST) (AST/ALT < 1)
AST↓,
TNF-α↓, It also reduced the level of TNF-α, which reduces inflammation.
*α-SMA↓, There was also a reduction in FR and reduced markers of fibrosis such as alpha smooth muscle actin, collagen α 1(I), and in the caspase cytotoxicity marker.
*SOD↑, The activity of the enzymes superoxide dismutase (SOD) and glutathione-S-transferase (GST) increased significantly.

3291- SIL,    Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases
- Review, Nor, NA
*antiOx↑, Silymarin has antioxidant activities against CVDs and offers protection against oxidative stress-induced hypertension, atherosclerosis and cardiac toxicity.
*ROS↓,
*cardioP↑,
*BioAv↓, Absorption of silymarin after oral administration is rather low and peak plasma concentrations are achieved in 6 hours, in animal and humans.
*Half-Life↝, elimination half-life ranges from 6 to 8 hours.
*other↑, Rare side effects include mild gastrointestinal disturbance, nausea, and headache in clinical trials
IronCh↑, chelating metals-promoters such as Fe and Cu (2

3289- SIL,    Silymarin: a promising modulator of apoptosis and survival signaling in cancer
- Review, Var, NA
*BioAv↝, silymarin’s poor bioavailability and limited thérapeutic efficacy have been overcome by encapsulation of silymarin into nanoparticles
*BioAv↓, Silymarin is barely 20–50% absorbed by the GIT cells and has an absolute oral bioavailability of 0.95%
Fas↑, silibinin, enhances the Fas pathway in most cancers cells by upregulating the Fas and Fas L
FasL↑,
FADD↑, silymarin triggered apoptosis via upregulating the expression of FADD (Fig. 2b), a downstream component of the death receptor pathway, subsequently leading to the cleavage of procaspase 8 and initiation of apoptotic cell death
pro‑Casp8↑,
Apoptosis↑,
DR5↑, silymarin promotes apoptosis through the death receptor-mediated pathway, contributing to its anticancer effects
Bcl-2↑, Bcl-2, an anti-apoptotic protein, was decreased
BAX↑, Bax is also upregulated and leads to the activation of caspase-3.
Casp3↑,
PI3K↓, Silibinin inhibits the PI3K activity, leading to the reduction of FoxM1 (Forkhead box M1) and the subsequent activation of the mitochondrial apoptotic pathway
Foxm1↓,
p‑mTOR↓, inhibiting phosphorylation of several key components in this pathway, such as mTOR, p70S6K and 4E-BP1
p‑P70S6K↓,
Hif1a↓, mTOR pathway signaling in turn may result in low levels of HIF-1α due to the unfavorable conditions of hypoxia.
Akt↑, silibinin activates the Akt pathway in cervical cancer cells. This activation of Akt could have some bearing on the overall antitumor activity of silibinin in cervical cancer cells.
angioG↓, silibinin inhibited STAT3, HIF-1α, and NF-κB, thereby reducing the population of lung macrophages and limiting angiogenesis
STAT3↓,
NF-kB↓,
lipid-P↓, silibinin delays the progression of endometrial carcinoma via inhibiting STAT3 activation and lowering lipid accumulation, which is regulated by SREBP1
eff↑, Sorafenib and silibinin work together to target both liver cancer cells and cancer stem cells. This combination operates by suppressing the STAT3/ERK/AKT pathways and decreasing the production of Mcl-1 and Bcl-2 proteins
CDK1↓, reducing the expression of CDK1, survivin, Bcl-xL, cyclinB1 and Mcl- 1 and simultaneously activate caspases 3 and 9
survivin↓,
CycB↓,
Mcl-1↓,
Casp9↑,
AP-1↓, hindered the activation of transcription factors NF-κB and AP-1
BioAv↑, Liang et al., created a chitosan-based lipid polymer hybrid nanoparticles that boosted the bioavailability of silymarin by 14.38-fold

3321- SIL,    Silymarin (Milk thistle)
- Review, AD, NA
*neuroP↝, Although silymarin is effective in several Alzheimer’s animal models, most of the proposed mechanisms of action are similar to approved drugs or drugs that have been ineffective for Alzheimer’s.
*Dose↝, Large variability in doses used, but commonly 200-600mg/day
*Half-Life?, Half-life: Six hours
*BioAv↝, (oral absorption is ~23-47%)
*cognitive↑, silibinin and silymarin improved cognition in an Alzheimer’s mouse model
*Aβ↓, Silymarin was also reported to slightly reduce Aβ plaques, Aβ oligomers, and insoluble (but not soluble) Aβ, reduce microglial inflammation, and improve cognition in an Alzheimer’s mouse model
*Inflam↓,
*OS↑, silymarin increased mean lifespan of worms by 10.1% and 24.8% at 25μM and 50μM, respectively, but had no effect at 100μM
*memory↑, (50mg/kg/day intramuscular injection) improved memory performance

3040- SK,    Pharmacological Properties of Shikonin – A Review of Literature since 2002
- Review, Var, NA - Review, IBD, NA - Review, Stroke, NA
*Half-Life↝, One study using H-shikonin in mice showed that shikonin was rapidly absorbed after oral and intramuscular administration, with a half-life in plasma of 8.79 h and a distribution volume of 8.91 L/kg.
*BioAv↓, shikonin is generally used in creams and ointments, that is, oil-based preparations; indeed, its insolubility in water is usually the cause of its low bioavailability
*BioAv↑, 200-fold increase in the solubility, photostability, and in vitro permeability of shikonin through the formation of a 1 : 1 inclusion complex with hydroxypropyl-β-cyclodextrin.
*BioAv↑, 181-fold increase in the solubility of shikonin in aqueous media in the presence of β-lactoglobulin at a concentra- tion of 3.1 mg/mL
*Inflam↓, anti-inflammatory effect of shikonin
*TNF-α↓, shikonin inhibited TNF-α production in LPS-stimulated rat primary macrophages as well as NF-κB translocation from the cytoplasm to the nucleus.
*other↑, authors found that treatment with shikonin prevented the shortening of the colorectum and decreased weight loss by 5 % while improving the ap- pearance of feces and preventing bloody stools.
*MPO↓, MPO activity was reduced as well as the expression of COX-2, the activation of NF-κB and that of STAT3.
*COX2↓,
*NF-kB↑,
*STAT3↑,
*antiOx↑, Antioxidant Effects of Shikonin
*ROS↓, radical scavenging activity of shikonin
*neuroP↑, shown to exhibit a neuroprotective effect against the damage caused by ischemia/reperfusion in adult male Kunming mice
*SOD↑, it also attenuated neuronal damage and the upregulation of superoxide dismutase, catalase, and glutathione peroxidase activities while reducing the glutathione/glutathione disulfide ratio.
*Catalase↑,
*GPx↑,
*Bcl-2↑, shikonin upregulated Bcl-2, downregulated Bax and prevented cell nuclei from undergoing morphological changes typical of apoptosis.
*BAX↓,
cardioP↑, Two different studies have suggested a possible cardioprotective effect of shikonin that would be related to its anti-inflammatory and antioxidant effects.
AntiCan↑, A wide spectrum of anticancer mechanisms of action have been described for shikonin:
NF-kB↓, suppression of NF-κB-regulated gene products [44],
ROS↑, ROS generation [46],
PKM2↓, inhibition of tumor-specific pyruvate kinase-M2 [47,48]
TumCCA↑, cell cycle arrest [49]
Necroptosis↑, or induction of necroptosis [50],
Apoptosis↑, shikonin at 1 μM induced caspase-dependent apoptosis in U937 cells after 6 h with an increase in DNA fragmentation, intracellular ROS, low mitochondrial membrane potential
DNAdam↑,
MMP↓,
Cyt‑c↑, At 10 μM, shikonin induced a greater release of cytochrome c from the mitochondria and of lactate dehydrogenase,
LDH↝,

3041- SK,    Promising Nanomedicines of Shikonin for Cancer Therapy
- Review, Var, NA
Glycolysis↓, SHK could regulate immunosuppressive tumor microenvironment through inhibiting glycolysis of tumor cells and repolarizing tumor-associated macrophages (TAMs).
TAMS↝,
BioAv↓, HK is a hydrophobic natural molecule with unsatisfactory solubility, rapid intestinal absorption, obvious “first pass” effect, and rapid clearance, leading to low oral bioavailability.
Half-Life↝, SHK displays a half-life of 15.15 ± 1.41 h and Cmax of 0.94 ± 0.11 μg/ml in rats when administered intravenously.
P21↑, Table 1
ERK↓,
ROS↑,
GSH↓,
MMP↓,
TrxR↓,
MMP13↓,
MMP2↓,
MMP9↓,
SIRT2↑,
Hif1a↓,
PKM2↓,
TumCP↓, Inhibit Cell Proliferation
TumMeta↓, Inhibit Cells Metastasis and Invasion
TumCI↓,

1343- SK,    Simple ROS-responsive micelles loaded Shikonin for efficient ovarian cancer targeting therapy by disrupting intracellular redox homeostasis
- in-vitro, Ovarian, A2780S - in-vivo, NA, A2780S
*BioAv↓, clinical use is limited by poor tumor targeting and low bioavailability
ROS↑,
GSH↓,
TumCG↓,

2188- SK,    Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment
- Review, Var, NA
ROS↑, their induction of reactive oxygen species production, inhibition of EGFR and PI3K/AKT signaling pathway activation, inhibition of angiogenesis and induction of apoptosis and necroptosis
EGFR↓,
PI3K↓,
Akt↓,
angioG↓,
Apoptosis↑,
Necroptosis↑,
GSH↓, leading to the increased consumption of reduced glutathione (GSH) and increased Ca2+ concentration in the cells and destroying the mitochondrial membrane potential.
Ca+2↓,
MMP↓,
ERK↓, 24 h of treatment with shikonin, ERK 1/2 and AKT activities were significantly inhibited, and p38 activity was upregulated, which ultimately led to pro-caspase-3 cleavage and triggered the apoptosis of GC cells.
p38↑,
proCasp3↑,
eff↓, pretreated with the ROS scavengers NAC and GSH before treatment with shikonin, the production of ROS was significantly inhibited, the cytotoxicity of shikonin was attenuated
VEGF↓, shikonin can inhibit the expression of VEGF
FOXO3↑, Activated FOXO3a/EGR1/SIRT1 signaling
EGR1↑,
SIRT1↑,
RIP1↑, Upregulation of RIP1 and RIP3
RIP3↑,
BioAv↓, limitations caused by its poor water solubility, it has a short half-life and nonselective biological distribution
NF-kB↓, Shikonin can also prevent the activation of NF-κB by AKT and then downregulate the expression of Bcl-xl,
Half-Life↓, due to the limitations caused by its poor water solubility, it has a short half-life and nonselective biological distribution.

1937- TQ,    Migration and Proliferation Effects of Thymoquinone-Loaded Nanostructured Lipid Carrier (TQ-NLC) and Thymoquinone (TQ) on In Vitro Wound Healing Models
- NA, Nor, 3T3
*ROS↓, In this study, TQ-NLC or TQ was seen to reduce the level of ROS produced in the cells at all concentrations of treatment given.
*antiOx↓, Both of these compounds are able to exert their antioxidant activity at the concentration as lower as 3 μM within 24 hours of treatment and as higher as 12 μM without causing any harm towards the cells.
*BioAv↓, bioavailability of TQ is limited by its poor solubility and lipophilic nature in water
*BioAv↑, to overcome the disadvantages of TQ, thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) was designed and effectively prepared by Ng et al. [49] via high-pressure homogenization technique
*NO↑, TQ was also reported to decrease production of nitric oxide (NO) and attenuate nitrosative stress by inhibiting the inducible nitric oxide synthase enzyme
*SOD↑, TQ exhibits strong antioxidant activity by upregulating superoxide dismutase (SOD), glutathione (GPX), and catalase (CAT) [88].
*GPx↑,
*Catalase↑,

2127- TQ,    Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways
- Review, GBM, NA
chemoP↑, TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells
ChemoSen↑,
BioAv↑, TQ adds another advantage in overcoming blood-brain barrier
PTEN↑, TQ upregulates PTEN signaling [72, 73], interferes with PI3K/Akt signaling and promotes G(1) arrest, downregulates PI3K/Akt
PI3K↓,
Akt↓,
TumCCA↓,
NF-kB↓, and NF-κB and their regulated gene products, such as p-AKT, p65, XIAP, Bcl-2, COX-2, and VEGF, and attenuates mTOR activity
p‑Akt↓,
p65↓,
XIAP↓,
Bcl-2↓,
COX2↓,
VEGF↓,
mTOR↓,
RAS↓, Studies in colorectal cancer have demonstrated that TQ inhibits the Ras/Raf/MEK/ERK signaling
Raf↓,
MEK↓,
ERK↓,
MMP2↓, Multiple studies have reported that TQ downregulates FAC and reduces the secretion of MMP-2 and MMP-9 and thereby reduces GBM cells migration, adhesion, and invasion
MMP9↓,
TumCMig↓,
TumCI↓,
Casp↑, caspase activation and PARP cleavage
cl‑PARP↑,
ROS⇅, TQ is hypothesized to act as an antoxidant at lower concentrations and a prooxidant at higher concentrations depending on its environment [89]
ROS↑, In tumor cells specifically, TQ generates ROS production that leads to reduced expression of prosurvival genes, loss of mitochondrial potential,
MMP↓,
eff↑, elevated level of ROS generation and simultaneous DNA damage when treated with a combination of TQ and artemisinin
Telomerase↓, inhibition of telomerase by TQ through the formation of G-quadruplex DNA stabilizer, subsequently leads to rapid DNA damage which can eventually induce apoptosis in cancer cells specifically
DNAdam↑,
Apoptosis↑,
STAT3↓, TQ has shown to suppress STAT3 in myeloma, gastric, and colon cancer [86, 171, 172]
RadioS↑, TQ might enhance radiation therapeutic benefit by enhancing the cytotoxic efficacy of radiation through modulation of cell cycle and apoptosis [31]

2092- TQ,    Dissecting the Potential Roles of Nigella sativa and Its Constituent Thymoquinone on the Prevention and on the Progression of Alzheimer's Disease
- Review, AD, NA
*iNOS↓, PC12normal: downregulated the iNOS expression along with NO level; (5) had a protective role of intracellular oxidative stress, by restoring the ROS level
*ROS↓,
*GSH↑, SH-SY5Y(normal): increasing the GSH levels.
*neuroP↑, TQ was able to reduce the neurotoxicity induced by Aß in an in vitro model of undifferentiated pheochromocytoma rat cell line, PC-12,
*MMPs↓, reestablishment of the abnormal levels of Matrix metalloproteinases (MMPs) and ROS
*MMP↑, E18, through the inhibition of ROS formation, and mitochondrial membrane depolarization.
*TXNIP↓, TQ was able to downregulate ... Thioredoxin-interacting protein (Txnip) and to upregulate the expression of Peroxiredoxin 1 (Prdx 1)
*Prx↑,
*memory↑, Bargi et al. (2017), reported that TQ was able, yet at lower doses, to improve memory impairments induced by LPS in rats.
*MDA↓, decreased level of markers of oxidative damage in brain tissues such as NOS, malondialdehyde (MDA) as well as an increased activity of SOD and catalase in hippocampus and cortex
*SOD↑,
*Catalase↑,
*BioAv↑, nanoemulsion may enhance the oral bioavailability and brain delivery.

2094- TQ,    Cytotoxicity of Nigella sativa Extracts Against Cancer Cells: A Review of In Vitro and In Vivo Studies
- Review, Var, NA
ROS↑, Oxidative stress generation leading to cancer cell death
angioG↓, Suppression of angiogenesis and metastasis by inhibiting VEGF and MMPs.
TumMeta↓,
VEGF↓,
MMPs↓,
P53↑, upregulation of p53, Bax, caspases
BAX↑,
Casp↑,
Bcl-2↓, downregulating anti-apoptotic factors (Bcl-2, survivin).
survivin↓,
*ROS↓, antioxidant activity neutralizes reactive oxygen species (ROS)
ChemoSen↑, enhances the efficacy of conventional chemotherapeutics like doxorubicin, cisplatin, and 5-fluorouracil while reducing their toxicity.
chemoP↑,
MDR1↓, helps overcome drug resistance by modulating multidrug resistance (MDR) proteins
BioAv↓, thymoquinone, their absorption and stability are limited due to poor solubility and rapid metabolism
BioAv↑, To improve efficacy, nanoformulations, such as lipid-based carriers and nanoparticles, have been explored

2106- TQ,    Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy
- Review, Var, NA
Apoptosis↑, The anticancer power of TQ is accomplished by several aspects; including promotion of apoptosis, arrest of cell cycle and ROS generation.
TumCCA↑,
ROS↑,
*Catalase↑, activation of antioxidant cytoprotective enzymes including, CAT, SOD, glutathione reductase (GR) [80], glutathione-S-transferase (GST) [81] and glutathione peroxidase (GPx) - scavenging H2O2 and superoxide radicals and preventing lipid peroxidation
*SOD↑,
*GR↑,
*GSTA1↓,
*GPx↑,
*H2O2↓,
*ROS↓,
*lipid-P↓,
*HO-1↑, application of TQ to HaCaT (normal) cells promoted the expression of HO-1 in a concentration and time-dependent pattern
p‑Akt↓, TQ could induce ROS which provoked phosphorylation and activation of Akt and AMPK-α
AMPKα↑,
NK cell↑, TQ was outlined to enhance natural killer (NK) cells activity
selectivity↑, Many researchers have noticed that the growth inhibitory potential of TQ is particular to cancer cells
Dose↝, Moreover, TQ has a dual effect in which it can acts as both pro-oxidant and antioxidant in a dose-dependent manner; it acts as an antioxidant at low concentration whereas, at higher concentrations it possess pro-oxidant property
eff↑, Pro-oxidant property of TQ occurs in the presence of metal ions including copper and iron which induce conversion of TQ into semiquinone. This leads to generation of reactive oxygen species (ROS) causing DNA damage and induction of cellular apoptosis
GSH↓, TQ for one hour resulted in three-fold increase of ROS while reduced GSH level by 60%
eff↓, pre-treatment of cells with N-acetylcysteine, counteracted TQ-induced ROS production and alleviated growth inhibition
P53↑, TQ provokes apoptosis in MCF-7 cancer cells by up regulating the expression of P53 by time-dependent manner.
p‑STAT3↓, TQ inhibited the phosphorylation of STAT3
PI3K↑, via up regulation of PI3K and MPAK signalling pathway
MAPK↑,
GSK‐3β↑, TQ produced apoptosis in cancer cells and modulated Wnt signaling by activating GSK-3β, translocating β-catenin
ChemoSen↑, Co-administration of TQ and chemotherapeutic agents possess greater cytotoxic influence on cancer cells.
RadioS↑, Treatment of cells with both TQ and IR enhanced the antiproliferative power of TQ as observed by shifting the IC50 values for MCF7 and T47D cells from ∼104 and 37 μM to 72 and 18 μM, respectively.
BioAv↓, TQ cannot be used as the primary therapeutic agent because of its poor bioavailability [177,178] and lower efficacy
NRF2↑, TQ to HaCaT cells promoted the expression of HO-1 in a concentration and time-dependent pattern. This was achieved via increasing stabilization of Nrf2

2084- TQ,    Thymoquinone, as an anticancer molecule: from basic research to clinical investigation
- Review, Var, NA
*ROS↓, An interesting study reported that thymoquinone is actually a potent apoptosis inducer in cancer cells, but it exerts antiapoptotic effect through attenuating oxidative stress in other types of cell injury
*chemoP↑, antioxidant activity of thymoquinone is responsible for its chemopreventive activities
ROS↑, other studies reported thymoquinone induce apoptosis in cancer cells by exerting oxidative damage
ROS⇅, Another hypothesis states that thymoquinone acts as an antioxidant at lower concentrations and a prooxidant at higher concentrations
MUC4↓, Torres et al. [17] revealed that thymoquinone down-regulates glycoprotein mucin 4 (MUC4)
selectivity↑, thymoquinone was found to inhibit DNA synthesis, proliferation, and viability of cancerous cells, such as LNCaP, C4-B, DU145, and PC-3, but not noncancerous BPH-1 prostate epithelial cells [20].
AR↓, Down-regulation of androgen receptor (AR) and cell proliferation regulator E2F-1 was indicated as the mechanism behind thymoquinone’s action in prostate cancer
cycD1↓, expression of STAT3-regulated gene products, such as cyclin D1, Bcl-2, Bcl-xL, survivin, Mcl-1 and vascular endothelial growth factor (VEGF), was inhibited by thymoquinone, which ultimately increased apoptosis and killed cancer cells
Bcl-2↓,
Bcl-xL↓,
survivin↓,
Mcl-1↓,
VEGF↓,
cl‑PARP↑, induction of the cleavage of poly-(ADP-ribose) polymerase (PARP
ROS↑, In ALL cell line CEM-ss, thymoquinone treatment generated reactive oxygen species (ROS) and HSP70
HSP70/HSPA5↑,
P53↑, thymoquinone can induce apoptosis in MCF-7 breast cancer cells via the up-regulation of p53 expression
miR-34a↑, Thymoquinone significantly increased the expression of miR-34a via p53, and down-regulated Rac1 expression
Rac1↓,
TumCCA↑, In hepatic carcinoma, thymoquinone induced cell cycle arrest and apoptosis by repressing the Notch signaling pathway
NOTCH↓,
NF-kB↓, Evidence revealed that thymoquinone suppresses tumor necrosis factor (TNF-α)-induced NF-kappa B (NF-κB) activation
IκB↓, consequently inhibits the activation of I kappa B alpha (I-κBα) kinase, I-κBα phosphorylation, I-κBα degradation, p65 phosphorylation
p‑p65↓,
IAP1↓, down-regulated the expression of NF-κB -regulated antiapoptotic gene products, like IAP1, IAP2, XIAP Bcl-2, Bcl-xL;
IAP2↑,
XIAP↓,
TNF-α↓, It also inhibited monocyte chemo-attractant protein-1 (MCP-1), TNF-α, interleukin (IL)-1β and COX-2, ultimately reducing the NF-κB activation in pancreatic ductal adenocarcinoma cells
COX2↓,
Inflam↓, indicating its role as an inhibitor of proinflammatory pathways
α-tubulin↓, Without affecting the tubulin levels in normal human fibroblast, thymoquinone induces degradation of α and β tubulin proteins in human astrocytoma U87 cells and in T lymphoblastic leukaemia Jurkat cells, and thus exerts anticancer activity
Twist↓, thymoquinone treatment inhibits TWIST1 promoter activity and decreases its expression in breast cancer cell lines; leading to the inhibition of epithelial-mesenchymal transition (EMT)
EMT↓,
mTOR↓, thymoquinone also attenuated mTOR activity, and inhibited PI3K/Akt signaling in bladder cancer
PI3K↓,
Akt↓,
BioAv↓, Thymoquinone is chemically hydrophobic, which causes its poor solubility, and thus bioavailability. bioavailability of thymoquinone was reported ~58% with a lag time of ~23 min
ChemoSen↑, Some studies revealed that thymoquinone in combination with other chemotherapeutic drugs can show better anticancer activities
BioAv↑, Thymoquinone-loaded liposomes (TQ-LP) and thymoquinone loaded in liposomes modified with Triton X-100 (XLP) with diameters of about 100 nm were found to maintain stability, improve bioavailability and maintain thymoquinone’s anticancer activity
PTEN↑, Thymoquinone also induces apoptosis by up-regulating PTEN
chemoP↑, A recent study showed that thymoquinone can potentiate the chemopreventive effect of vitamin D during the initiation phase of colon cancer in rat model
RadioS↑, thymoquinone also mediates radiosensitization and cancer chemo-radiotherapy
*Half-Life↝, Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) has been developed to improve its bioavailability (elimination half-life ~5 hours)
*BioAv↝, calculated absolute bioavailability of thymoquinone was reported ~58% with a lag time of ~23 min by Alkharfy et al.

2353- TQ,    The effects of thymoquinone on pancreatic cancer: Evidence from preclinical studies
- Review, PC, NA
BioAv↝, Along with its high lipophilicity, TQ has slow absorption, rapid metabolism, rapid elimination, low bioavailability, and low physicochemical stability.
BioAv↑, TQ encapsulation passively directs the drug to the liver and releases the drug in a controlled and effective manner, improving the oral bioavailability of this hydrophobic molecule.
MUC4↓, TQ can decrease the expression of mucin 4 glycoprotein (MUC4), expressed in an exacerbated way in pancreatic cancer cells,
PKM2↓, The pyruvate kinase M2 isoform (PKM2), involved in the metabolism of cancer cells, showed a negative regulation in the presence of a TQ + GEM CI of 36 ± 0.66 and 25 ± 5.25 on the MIA PaCa-2 and PANC-1 cells, respectively.
eff↑, TQ can exert a synergistic effect with juglone, another cytotoxic dietary molecule for pancreatic cancer cells
TumVol↓, TQ significantly reduced by 67 % of the tumour size of the animals
HDAC↓, TQ modifies the H4 acetylation by decreased histone deacetylases (HDACs) expression inducing the pro-apoptotic signalling pathway
NF-kB↓, 10 µM MiaPaCa-2, BxPC-3, AsPC-1, HPAC ↓cell growth, ↑apoptosis, ↑NF-κB, ↓Bcl-2, ↓Bcl-xL, ↓survivin, ↓XIAP, ↓COX-2, ↓PGE
Bcl-2↓,
Bcl-xL↓,
survivin↓,
XIAP↓,
COX2↓,
PGE1↓,

3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, TQ selectively inhibits the cancer cells’ proliferation in leukemia [9], breast [10], lungs [11], larynx [12], colon [13,14], and osteosarcoma [15]. However, there is no effect against healthy cells
P53↑, It also re-expressed tumor suppressor genes (TSG), such as p53 and Phosphatase and tensin homolog (PTEN) in lung cancer
PTEN↑,
NF-kB↓, antitumor properties by regulating different targets, such as nuclear factor kappa B (NF-Kb), peroxisome proliferator-activated receptor-γ (PPARγ), and c-Myc [1], which resulted in caspases protein activation
PPARγ↓,
cMyc↓,
Casp↑,
*BioAv↓, Due to hydrophobicity, there are limitations in the bioavailability and drug formation of TQ.
BioAv↝, TQ is sensitive to light; a short period of exposure results in severe degradation, regardless of the solution’s acidity and solvent type [27]. It is also unstable in alkaline solutions because TQ’s stability decreases with rising pH
eff↑, Encapsulating TQ with CS improves the uptake and bioavailability of TQ but has low encapsulation efficiency (35%)
survivin↓, TQ showed antiproliferative and pro-apoptotic potency on breast cancer through the suppression of anti-apoptotic proteins, such as survivin, Bcl-xL, and Bcl-2
Bcl-xL↓,
Bcl-2↓,
Akt↓, treating doxorubicin-resistant MCF-7/DOX cells with TQ inhibited Akt and Bcl2 phosphorylation and increased the expression of PTEN and apoptotic regulators such as Bax, cleaved PARP, cleaved caspases, p53, and p21 [
BAX↑,
cl‑PARP↑,
CXCR4↓, inhibited metastasis with significant inhibition of chemokine receptor Type 4 (CXCR4), which is considered a poor prognosis indicator, matrix metallopeptidase 9 (MMP9), vascular endothelial growth factor Receptor 2 (VEGFR2), Ki67, and COX2
MMP9↓,
VEGFR2↓,
Ki-67↓,
COX2↓,
JAK2↓, TQ at 25, 50 and 75 µM inhibited JAK2 and c-Src activity and induced apoptosis by inhibiting the phosphorylation of STAT3 and STAT3 downstream genes, such as Bcl-2, cyclin D, survivin, and VEGF, and upregulating caspases-3, caspases-7, and caspases-9
cSrc↓,
Apoptosis↑,
p‑STAT3↓,
cycD1↓,
Casp3↑,
Casp7↑,
Casp9↑,
N-cadherin↓, downregulated the mesenchymal genes expression N-cadherin, vimentin, and TWIST, while upregulating epithelial genes like E-cadherin and cytokeratin-19.
Vim↓,
Twist↓,
E-cadherin↑,
ChemoSen↑, The combined treatment of 5 μM TQ and 2 μg/mL cisplatin was more effective in cancer growth and progression than either agent alone in a xenograft tumor mouse model.
eff↑, TQ–artemisinin hybrid therapy (2.6 μM) showed an enhanced ROS generation level and concomitant DNA damage induction in human colon cancer cells, while not affecting nonmalignant colon epithelial at 100 μM
EMT↓, TQ inhibits the survival signaling pathways to reduce carcinogenesis progress rate, and decreases cancer metastasis through regulation of epithelial to mesenchymal transition (EMT).
ROS↑, Apoptosis is induced by TQ in cancer cells through producing ROS, demethylating and re-expressing the TSG
DNMT1↓, inhibits DNMT1, figure 2
eff↑, TQ–vitamin D3 combination significantly reduced pro-cancerous molecules (Wnt, β-catenin, NF-κB, COX-2, iNOS, VEGF and HSP-90) a
EZH2↓, reduced angiogenesis by downregulating significant angiogenic genes such as versican (VCAN), the growth factor receptor-binding protein 2 (Grb2), and enhancer of zeste homolog 2 (EZH2), which participates in histone methylatio
hepatoP↑, Moreover, TQ improved liver function as well as reduced hepatocellular carcinoma progression
Zeb1↓, TQ decreases the Twist1 and Zeb1 promoter activities,
RadioS↑, TQ combined with radiation inhibited proliferation and induced apoptosis more than a TQ–cisplatin combination against SCC25 and CAL27 cell lines
HDAC↓, TQ has inhibited the histone deacetylase (HDAC) enzyme and reduced its total activity.
HDAC1↓, as well as decreasing the expression of HDAC1, HDAC2, and HDAC3 by 40–60%
HDAC2↓,
HDAC3↓,
*NAD↑, In non-cancer cells, TQ can increase cellular NAD+
*SIRT1↑, An increase in the levels of intracellular NAD+ led to the activation of the SIRT1-dependent metabolic pathways
SIRT1↓, On the other hand, TQ induced apoptosis by downregulating SIRT1 and upregulating p73 in the T cell leukemia Jurkat cell line
*Inflam↓, TQ treatment of male Sprague–Dawley rats has reduced the inflammatory markers (CRP, TNF-α, IL-6, and IL-1β) and anti-inflammatory cytokines (IL-10 and IL-4) triggered by sodium nitrite
*CRP↓,
*TNF-α↓,
*IL6↓,
*IL1β↓,
*eff↑, The TQ–piperin combination has also decreased the oxidative damage triggered by microcystin in liver tissue and reduced malondialdehyde (MDA) and NO, while inducing glutathione (GSH) levels and superoxide dismutase (SOD), catalase (CAT), and glutathi
*MDA↓,
*NO↓,
*GSH↑,
*SOD↑,
*Catalase↑,
*GPx↑,
PI3K↓, repressing the activation of vital pathways, such as JAK/STAT and PI3K/AKT/mTOR.
mTOR↓,

3424- TQ,    Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex
- Review, Var, NA
DNMT1↓, In this review, we highlight TQ as a potential multitarget single epidrug that functions by targeting the UHRF1/DNMT1/HDAC1/G9a complex
HDAC1↓,
TumCCA↑, inhibition of cell division, promotion of cell cycle arrest, activation of ROS production, induction of apoptosis and inhibition of tumor angiogenesis and metastasis
ROS↑,
Apoptosis↑,
angioG↓,
TumMeta↓,
selectivity↑, When compared to its effects on cancer cells, TQ has no or only mild cytotoxic effects on matched normal cells, such as normal human fibroblast cells [
BioAv↓, poor pharmacokinetics and chemical stability of TQ
BioAv↓, TQ is heat and light-sensitive, and it has poor solubility in aqueous media, which affects its biodistribution
HDAC1↓, T-ALL TQ decreased in the expression of HDAC1, 4 and 9
HDAC4↓,
UHRF1↓, TQ induces auto-ubiquitination of UHRF1 and subsequent degradation in cancer cells [23] by targeting its RING domain, which is the only domain of the UHRF1 structure that exhibits enzymatic activity
selectivity↑, via a specific inhibition of UHRF1 expression levels in cancer cells without affecting its expression in normal human cells.
G9a↓, TQ could quite possibly inhibit G9a and/or delocalize it from chromatin through its effects on UHRF1.

3397- TQ,    Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
ChemoSen↑, TQ can be used synergistically with chemotherapeutic agents to enhance their anticancer effects and to influence the expression of signaling pathways and other genes important in cancer development.
*Half-Life↝, These parameters remained associated with an elimination half-life (t1/2) of 63.43 ± 10.69 and 274.61 ± 8.48 min for intravenous and oral administration, respectively
*BioAv↝, TQ is characterized by slow absorption, rapid metabolism, rapid elimination and low physicochemical stability, which limits its pharmaceutical applications
*antiOx↑, Biologically active compounds from Nigella sativa have been shown to have antioxidant, antimicrobial, anti-inflammatory, antidiabetic, hepatoprotective, antiproliferative, proapoptotic, antiepileptic and immunomodulatory activities,
*Inflam↓,
*hepatoP↑,
TumCP↓, TQ exerts tumorigenic effects in a variety of ways, including modulation of the epigenetic machinery and effects on proliferation, the cell cycle, apoptosis, angiogenesis, carcinogenesis and metastasis
TumCCA↑,
Apoptosis↑,
angioG↑,
selectivity↑, TQ has low toxicity to normal cells, as confirmed by several studies, including studies on normal mouse kidney cells, normal human lung fibroblasts and normal human intestinal cells.
JNK↑, activation of c-Jun N-terminal kinases (JNK) and p38, as well as the phosphorylation of nuclear factor-?B (NF-?B) and the reduction of extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K) activi
p38↑,
p‑NF-kB↑,
ERK↓,
PI3K↓,
PTEN↑, showing higher expression of p21/p27/PTEN/BAX/Cyto-C/Casp-3
Akt↓, TQ has also been shown to downregulate the PI3K/PTEN/Akt/mTOR and WNT/?-catenin pathways, which are critical for tumorigenesis
mTOR↓,
EMT↓, downregulating the epithelial to mesenchymal transition (EMT) transcription factors twist-related protein 1 (TWIST1) and E-cadherin
Twist↓,
E-cadherin↓,
ROS⇅, TQ has been shown to act as an antioxidant at low concentrations. Higher concentrations, however, induce apoptosis of cancer cells through the induction of oxidative stress
*Catalase↑, Thymoquinone upregulates the expression of genes encoding specific enzymes, such as catalase, superoxide dismutase, glutathione reductase, glutathione S-transferase and glutathione peroxidase, whose role is to protect against reactive oxygen species
*SOD↑,
*GSTA1↑,
*GPx↑,
*PGE2↓, TQ has the ability to downregulate NF-?B, interleukin-1?, tumor necrosis factor alpha, cyclooxygenase-2 (COX-2,) matrix metalloproteinase 13 (MMP-13), prostaglandin E2 (PGE2), the interferon regulatory factor, which are associated with inflammation a
*IL1β↓,
*COX2↓,
*MMP13↓,
MMPs↓, Figure 2
TumMeta↓,
VEGF↓,
STAT3↓, TQ affects the induction of apoptosis in cancer cells by blocking the signal transducer and activator of transcription 3 (STAT3) signaling
BAX↑, upregulation of Bax and inhibition of Bcl-2 and B-cell lymphoma-extra large (Bcl-xl) expression, as well as activated caspase-9, -7 and -3, and induced cleavage of poly (ADP-ribose) polymerase (PARP).
Bcl-2↑,
Casp9↑,
Casp7↑,
Casp3↑,
cl‑PARP↑,
survivin↓, TQ also attenuated the expression of STAT3 target gene products, such as survivin, c-Myc and cyclin-D1, -D2, and enhanced the expression of cell cycle inhibitory proteins p27 and p21
cMyc↓,
cycD1↓,
p27↑,
P21↑,
GSK‐3β↓, TQ reduces the levels of p-PI3K, p-Akt, p-glycogen synthase kinase 3 (p-GSK3?) and ?-catenin, thereby inhibiting downstream COX-2 expression, which in turn leads to a reduction in PGE2
β-catenin/ZEB1↓,
chemoP↑, results support the potential use of thymoquinone in colorectal cancer chemoprevention, as TQ is effective in protecting and treating the DMH-initiated early phase of colorectal cancer.

3429- TQ,    Thymoquinone exerts potent growth-suppressive activity on leukemia through DNA hypermethylation reversal in leukemia cells
- in-vitro, ALL, NA - in-vivo, NA, NA
DNMT1↓, Further, exposure of leukemia cell lines and patient primary cells to TQ resulted in DNMT1 downregulation, mechanistically, through dissociation of Sp1/NFkB complex from DNMT1 promoter.
Sp1/3/4↓,
NF-kB↓,
Apoptosis↑, led to a reduction of DNA methylation, a decrease of colony formation and an increase of cell apoptosis via the activation of caspases.
Casp↑,
Bcl-xL↓, been shown to downregulate the expression of Bcl-xL [18], COX-2 [19], iNOS [20], 5-LOX [21], TNF [22] and cyclin D1 [16]
COX2↓,
iNOS↓,
5LO↓,
TNF-α↓,
cycD1↓,
BioAv↝, The stability data revealed that the compound was stable at −20°C under dim light condition, but not at 25°C and 37°C. Thus, TQ is more stable in the dark and at cold temperature.
TumCG↓, TQ administration attenuates leukemia growth in mice

3572- TQ,    Enhanced oral bioavailability and hepatoprotective activity of thymoquinone in the form of phospholipidic nano-constructs
- in-vivo, Nor, NA
*BioAv↑, After oral administration of a single dose of PNC, it showed a relative bioavailability of 386.03% vis-à-vis plain TQ suspension
*hepatoP↑, TQ-loaded PNC demonstrated significant enhanced hepato-protective effect vis-à-vis pure TQ suspension and silymarin, as evidenced by reduction in the ALP, ALT, AST, bilirubin, and albumin level and ratified by histopathological analysis.
*ALAT↓,
*ALP↓,
*AST↓,

3571- TQ,    The Role of Thymoquinone in Inflammatory Response in Chronic Diseases
- Review, Var, NA - Review, Stroke, NA
*BioAv↓, TQ has poor bioavailability and is hydrophobic, prohibiting clinical trials with TQ alone.
*BioAv↑, TQ nanoparticle formulation shows better bioavailability than free TQ,
*Inflam↓, anti-inflammatory effects of TQ involve multiple complex signaling pathways as well as molecular mechanisms
*antiOx↑, antioxidant activity from the inhibition of oxidative stress
*ROS↓,
*GSH↑, GSH prevented ROS-mediated oxidative stress damage
*GSTs↑, TQ was found to exhibit antioxidant properties by increasing the levels of GSH and glutathione-S-transferase enzyme alpha-3 (GSTA3)
*MPO↓, TQ significantly reduced the disease activity index (DAI) and myeloperoxidase (MPO) activity, protecting the internal microenvironment of the colon.
*NF-kB↓, TQ reduced NF-κB signaling gene expression while alleviating the increase of COX-2 in skin cells induced by 12-O-tetradecanoylphorbol-13-acetate
*COX2↓,
*IL1β↓, reduced the expression of inflammatory factors such as IL-1β, TNF-α, IFN-γ, and IL-6
*TNF-α↓,
*IFN-γ↓,
*IL6↓,
*cardioP↑, TQ may exhibit substantial effects in the control of inflammation in CVD
*lipid-P↓, TQ reduces lipid accumulation and enhances antioxidant capacity and renal function.
*TAC↑,
*RenoP↑,
Apoptosis↑, Breast cancer TQ induces apoptosis and cell cycle arrest; reduces cancer cell proliferation, colony formation, and migration;
TumCCA↑,
TumCP↓,
TumCMig↓,
angioG↓, Colorectal Cancer (CRC) TQ inhibits the angiogenesis
TNF-α↓, Lung cancer TQ inhibits tumor cell proliferation by causing lung cancer cell apoptosis to significantly arrest the S phase cell cycle and significantly reduce the activity of TNF-a and NF-κB
NF-kB↓,
ROS↑, Pancreatic cancer TQ significantly increases the level of ROS production in human pancreatic cancer cells
EMT↓, TQ initiates the miR-877-5p and PD-L1 signaling pathways, inhibiting the migration and EMT of bladder cancer cells.
*Aβ↓, TQ significantly reduced the expression of Aβ, phosphorylated-tau, and BACE-1 proteins.
*p‑tau↓,
*BACE↓,
*TLR2↓, Parkinson’s disease (PD) TQ inhibits activation of the NF-κB pathway. TQ reduces the expression of TLR-2, TLR-4, MyD88, TNF-α, IL-1β, IFN-β, IRF-3, and NF-κB.
*TLR4↓,
*MyD88↓,
*IRF3↓,
*eff↑, TQ pretreatment produced a dose-dependent reduction in the MI area and significantly reduced the elevation of serum cardiac markers caused by ISO.
eff↑, Curcumin and TQ induced apoptosis and cell cycle arrest and reduced cancer cell proliferation, colony formation, and migration in breast cancer cells
DNAdam↑, nanomedicine with TQ that induced DNA damage and apoptosis, inhibited cell proliferation, and prevented cell cycle progression
*iNOS↓, TQ significantly reduced the expression of COX-2 and inducible nitric oxide synthase (iNOS)

3104- VitC,    Pro- and Antioxidant Effects of Vitamin C in Cancer in correspondence to Its Dietary and Pharmacological Concentrations
*antiOx↑, Vitamin C is an antioxidant that may scavenge reactive oxygen species preventing DNA damage and other effects important in cancer transformation
*ROS↓,
*DNAdam↓,
ROS↑, High pharmacological doses of vitamin C may induce prooxidant effects, detrimental for cancer cells.
TET1↑, Vitamin C may change the metabolomic and epigenetic profiles of cancer cells, and activation of ten-eleven translocation (TET) proteins and downregulation of pluripotency factors by the vitamin may eradicate cancer stem cells.
CSCs↓,
HIF-1↓, Vitamin C induces degradation of hypoxia-inducible factor, HIF-1, essential for the survival of tumor cells in hypoxic conditions
BioAv↑, Flavonoids may modulate bioavailability of vitamin C. Animal studies with flavonoid-rich extracts or purified plant flavonoids showed an enhanced uptake of vitamin C when it was administered together with flavonoids
selectivity↑, Chen et al. demonstrated that intravenous administration of ascorbic acid at high concentrations was toxic for many types of cancer cells in xenografts in mice with no effect on normal cells

3138- VitC,    The Hypoxia-inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-induced Toxicity
- in-vitro, RCC, RCC4 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-435 - in-vitro, Ovarian, SKOV3 - in-vitro, Colon, SW48 - in-vitro, GBM, U251
eff↑, Here, we show that a Warburg effect triggered by activation of the hypoxia-inducible factor (HIF) pathway greatly enhances Vc-induced toxicity in multiple cancer cell lines
Warburg↓,
BioAv↑, HIF increases the intracellular uptake of oxidized Vc through its transcriptional target glucose transporter 1 (GLUT1),
ROS↑, resulting high levels of intracellular Vc induce oxidative stress and massive DNA damage, which then causes metabolic exhaustion by depleting cellular ATP reserves.
DNAdam↑,
ATP↓,
eff↑, Activation of HIF increases the susceptibility to Vc-induced cell toxicity
necrosis↑, High intracellular levels of Vc increase ROS and trigger necrosis in VHL-defective renal cancer cells.
PARP↑, Activation of the PARP Pathway by Vc Depletes Intracellular ATP Reserves in VHL-defective Renal Cancer Cells

596- VitC,    High-Dose Vitamin C in Advanced-Stage Cancer Patients
- Review, NA, NA
ChemoSideEff↓, reducing cancer-related symptoms, such as fatigue and bone pain
ROS↑, is able to reduce catalytic metals such as Fe3+ to Fe2+ and Cu2+ to Cu+, increasing the pro-oxidant chemistry of these metals and facilitating the generation of reactive oxygen species
H2O2↑, Reactions of ascorbate with oxygen or with free transition metal ions lead to the generation of superoxide, H2O2 and highly reactive oxidants, such as the hydroxyl radical by promoting the Fenton chemistry
Fenton↑,
Hif1a↝, Ascorbate regulates the transcription of hypoxia inducible factor-1α (HIF-1α)
Dose↑, Results obtained from in vitro studies revealed that millimolar ascorbate plasma concentrations, achievable only after intravenous vitamin C administration, are cytotoxic to fast-growing malignant cells.
BioAv↓, For this reason, ascorbate concentration in plasma does not exceed 100 μmol/L when it is supplied orally with food; even with oral supplementation approaching maximum tolerated doses, it is always <250 μmol/L
Dose↝, 100 mg, the concentration of ascorbate in daily fasting plasma reaches a plateau between 50–60 µmol/L [24]. Whereas increasing the daily dose ten times to 1000 mg gives only a slight increase in plasma concentration to 70–85 μmol/L
Half-Life↝, high concentrations are relatively transient due to the rapid clearance by the kidneys resulting in a half-life of about 2 h in circulation
IL1β↓, IVC (15–50 g up to three times a week) resulted in reduced CRP levels (in 76 ± 13% of study participants) and reduced concentration of pro-inflammatory cytokines (IL-1α, IL-1β, IL-2, IL-8, tumor necrosis factor TNF-α)
IL2↓,
IL8↓,
TNF-α↓,

1738- VitD3,    VITAL study: an incomplete picture?
- Trial, Var, NA
AntiCan↑, normal-weight individuals in the vitamin D group showed a lower cancer incidence compared to those in the placebo group
*BioAv↓, decreased bioactivity of vitamin D associated with obesity
Dose↑, 6,000-10,000 IU/day for 8 weeks, followed by maintenance therapy of 3,000-6,000 IU/day

1818- VitK2,    New insights on vitamin K biology with relevance to cancer
- Review, Var, NA
TumCG↓, A few small randomized trials support the concept that vitamin K supplementation can retard cancer development and/or progression
ChemoSen↑, phase 2 randomized placebo-controlled trial in HCC patients demonstrated that MK4 supplementation (45 mg/day orally) enhanced the efficacy of the multi-kinase inhibitor sorafenib
toxicity∅, long term vitamin K supplementation is safe and may offer survival benefit in HCC patients.
OS↑,
BMD↑, Primary Outcomes: Bone density
eff↑, In studies where both forms of the vitamin have been compared, MKs generally exerted more potent anticancer effects than PK.
MMP↓, direct effects on mitochondrial membrane depolarization and reactive oxygen species (ROS)
ROS↑,
eff↓, ROS neutralization by antioxidants (N-acetyl cysteine (NAC) and alpha-tocopherol) or BAK knockdown prevented MK4 mediated mitochondrial disruption and apoptosis
ERK↑, activates ERK, JNK/p38 MAPK
JNK↑,
p38↑,
Cyt‑c↑, cytochrome c release
Casp↑, caspase activation
ATP↓, reducing ATP production and increasing lactate production
lactateProd↑,
AMPK↑, which activates AMPK
Rho↓, via inhibition of RhoA
TumCG↓, mouse xenograft studies, treatment with MK4 administered in water at a calculated dose of 20 mg/kg/d significantly reduced growth of established HCCs
BioAv↑, Phylloquinone (K1) is the major dietary form, but it is converted into menaquinone (K2) in tissues.
cardioP↑, optimal vitamin K status is common in adults and may contribute to chronic diseases such as osteoporosis, type 2 diabetes and cardiovascular disease.
Risk↓, Observational studies suggest that low vitamin K intake increases cancer risk(more lowers risk)


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 241

Results for Effect on Cancer/Diseased Cells:
12LOX?,1,   5HT↓,1,   5LO↓,3,   ACLY↓,1,   ADP:ATP↑,2,   AEG1↓,1,   AIF↑,6,   Akt↓,39,   Akt↑,4,   p‑Akt↓,12,   AKT1↓,3,   Akt2↓,1,   ALAT↓,3,   ALDH↓,2,   ALDH1A1↓,1,   ALP↓,1,   AMPK↑,9,   AMPK↝,1,   AMPKα↑,1,   angioG↓,44,   angioG↑,1,   annexin II↓,1,   AntiCan↑,21,   antiOx↓,4,   antiOx↑,9,   AntiTum↑,2,   AP-1↓,5,   APAF1↑,2,   Apoptosis↑,50,   mt-Apoptosis↑,1,   AR↓,10,   ASC↓,1,   ascitic↓,1,   AST↓,2,   ATF3↓,1,   ATF4↑,3,   ATF4↝,1,   ATG5↑,1,   ATG7↑,2,   ATM↑,1,   ATP↓,7,   ATP↑,1,   mt-ATP↓,1,   AXL↓,1,   BAD↑,1,   Bak↑,4,   BAX↓,3,   BAX↑,33,   Bax:Bcl2↑,6,   BBB↑,7,   Bcl-2↓,30,   Bcl-2↑,3,   Bcl-xL↓,15,   BCR-ABL↓,1,   Beclin-1↓,1,   Beclin-1↑,4,   BID↑,1,   BIM↓,1,   BIM↑,2,   BioAv↓,62,   BioAv↑,82,   BioAv↝,23,   BioAv∅,1,   BioEnh?,1,   BioEnh↑,2,   BMD↑,1,   BMPs↑,1,   BNIP3↑,1,   BOK↑,1,   BP↓,1,   CA↓,1,   Ca+2↓,1,   Ca+2↑,10,   Ca+2↝,1,   cachexia↓,1,   CAIX↓,1,   CAIX↑,1,   cardioP↑,9,   CardioT↓,1,   Casp↑,13,   Casp1↓,1,   Casp12?,1,   Casp12↑,1,   cl‑Casp12↑,1,   Casp3↓,2,   Casp3↑,37,   Casp3↝,1,   cl‑Casp3↑,2,   proCasp3↑,1,   Casp7↑,5,   Casp8↑,10,   cl‑Casp8↑,1,   pro‑Casp8↑,1,   Casp9↑,22,   cl‑Casp9↑,1,   proCasp9↓,1,   Catalase↓,4,   Catalase↑,5,   Cav1↓,1,   CD133↓,2,   CD31↓,2,   CD34↓,1,   CD4+↓,1,   CD4+↑,1,   CD44↓,5,   CDC2↓,3,   CDC25↓,4,   Cdc42↓,1,   Cdc42↑,1,   CDK1↓,3,   CDK1↑,3,   CDK2↓,17,   CDK2↑,1,   CDK4↓,21,   CDK6↓,9,   CDK8↓,1,   CDKN1C↑,1,   CEA↓,1,   cFLIP↓,1,   cFos↑,1,   chemoP↑,16,   chemoR↓,1,   ChemoSen↓,1,   ChemoSen↑,65,   ChemoSen⇅,1,   ChemoSideEff↓,7,   CHK1↓,1,   Chk2↓,1,   CHOP↑,5,   cl‑CHOP↑,1,   cJun↑,1,   CK2↓,2,   CLDN1↓,3,   cMET↓,1,   cMYB↓,2,   cMyc↓,17,   p‑cMyc↑,1,   cognitive?,1,   cognitive↑,3,   COX1↓,1,   COX2↓,38,   COX2↑,3,   CRP↓,2,   CSCs↓,13,   cSrc↓,2,   CXCL12↓,1,   CXCR4↓,5,   Cyc↓,1,   cycA1↓,1,   cycA1↑,2,   CycB↓,10,   cycD1↓,29,   cycD1↑,1,   cycE↓,6,   CYP1A1↓,2,   CYP1A2↓,1,   CYP2C9↓,1,   CYP3A4↓,1,   Cyt‑c↓,1,   Cyt‑c↑,25,   Diablo↑,2,   DNAdam↓,2,   DNAdam↑,21,   DNArepair↑,1,   DNMT1↓,6,   DNMT3A↓,1,   DNMTs↓,3,   Dose?,1,   Dose↑,8,   Dose↝,18,   Dose∅,11,   DR4↑,1,   DR5↑,10,   E-cadherin↓,5,   E-cadherin↑,15,   E2Fs↓,1,   E6↓,2,   E7↓,2,   ECAR↓,3,   ECAR↝,1,   EF-1α↓,1,   eff↓,12,   eff↑,96,   eff⇅,1,   eff↝,6,   EGF↓,2,   EGFR↓,18,   EGFR↑,1,   p‑EGFR↓,1,   EGR1↑,1,   EGR4↓,1,   eIF2α↓,1,   eIF2α↑,2,   p‑eIF2α↑,2,   EMT↓,37,   EMT↑,1,   Endoglin↑,1,   Endon↑,1,   EPR↑,1,   ER Stress↓,1,   ER Stress↑,12,   ER(estro)↓,1,   ERK↓,24,   ERK↑,3,   p‑ERK↓,3,   EZH2↓,2,   FADD↑,2,   FAK↓,7,   p‑FAK↓,2,   m-FAM72A↓,1,   Fas↑,5,   FasL↓,1,   FasL↑,3,   FASN↓,3,   FDG↓,1,   Fenton↑,3,   Ferritin↓,1,   Ferroptosis↑,6,   FGF↓,1,   FGFR1↓,3,   FGFR2↓,1,   Fibronectin↓,1,   Foxm1↓,2,   FOXO3↑,2,   FOXO4↑,1,   FOXP3↓,2,   frataxin↑,1,   G9a↓,1,   GAPDH↓,1,   Gli1↓,3,   GLI2↓,1,   GLO-I↓,1,   glucoNG↓,1,   GlucoseCon↓,9,   GLUT1↓,7,   GLUT1↑,1,   GLUT3↑,1,   GlutaM↓,1,   GlutMet↓,1,   Glycolysis↓,17,   GPx↓,2,   GPx↑,5,   GPx4↓,4,   GPx4↑,1,   GRP78/BiP↓,1,   GRP78/BiP↑,5,   GRP78/BiP↝,1,   GSH↓,15,   GSH↑,5,   GSK‐3β↓,7,   GSK‐3β↑,1,   p‑GSK‐3β↓,1,   GSR↓,1,   GSR↑,1,   GSTA1↑,2,   GSTs↓,1,   GSTs↑,1,   GutMicro↑,4,   GutMicro↝,1,   H2O2↑,2,   e-H2O2↓,1,   i-H2O2∅,1,   H3↓,2,   H3↑,2,   H4↓,1,   H4↑,2,   Half-Life↓,9,   Half-Life↑,1,   Half-Life↝,16,   Half-Life∅,6,   HATs↓,1,   HATs↑,3,   HCAR1↓,1,   HDAC↓,22,   HDAC1↓,5,   HDAC10↓,1,   HDAC2↓,3,   HDAC3↓,1,   HDAC4↓,1,   HDAC8↓,2,   hepatoP↓,1,   hepatoP↑,5,   HER2/EBBR2↓,1,   HGF/c-Met↓,2,   HH↓,2,   HIF-1↓,1,   Hif1a↓,35,   Hif1a↝,1,   HK2↓,12,   HLA↑,1,   HO-1↓,5,   HO-1↑,7,   HO-2↓,1,   HSP27↝,1,   HSP70/HSPA5↓,1,   HSP70/HSPA5↑,1,   HSP70/HSPA5↝,1,   HSP90↓,4,   hTERT↓,10,   IAP1↓,4,   IAP2↓,1,   IAP2↑,1,   ICAM-1↓,2,   IFN-γ↓,1,   IFN-γ↑,2,   IGF-1↓,2,   IGF-1R↓,2,   IGFBP3↑,1,   Igs↑,2,   IKKα↓,3,   p‑IKKα↓,1,   IL1↓,4,   IL1↑,1,   IL10↓,3,   IL10↑,1,   IL1α↓,1,   IL1β↓,10,   IL1β↑,1,   IL2↓,2,   IL2↑,5,   IL4↑,1,   IL6↓,21,   IL8↓,5,   INF-γ↓,1,   Inflam↓,17,   Inflam↑,1,   iNOS↓,6,   Iron↑,2,   IronCh↑,3,   ITGB1↓,2,   ITGB3↓,1,   IκB↓,1,   JAK↓,1,   JAK1↓,2,   JAK2↓,4,   p‑JAK2↓,1,   JNK↓,2,   JNK↑,8,   p‑JNK↑,1,   Keap1↓,1,   Ki-67↓,4,   KRAS↓,1,   lactateProd↓,8,   lactateProd↑,1,   LAMP1?,1,   LAMs↓,1,   LC3‑Ⅱ/LC3‑Ⅰ↓,1,   LC3B-II↑,1,   LC3II↓,2,   LC3II↑,10,   LDH↓,3,   LDH↑,1,   LDH↝,1,   LDHA↓,1,   LDL↓,3,   Let-7↑,2,   lipid-P?,1,   lipid-P↓,6,   lipid-P↑,5,   LOX1↓,2,   MALAT1↓,2,   MAPK↓,11,   MAPK↑,8,   MARK4↓,1,   Mcl-1↓,9,   Mcl-1↑,1,   MCP1↓,2,   MCT1↓,1,   MCT4↓,1,   MDA↓,1,   MDM2↓,6,   p‑MDM2↓,1,   MDR1↓,7,   MDSCs↓,1,   MEK↓,2,   memory↑,2,   MET↓,1,   p‑MET↓,1,   MGMT↓,2,   MIP2↓,1,   miR-155↓,1,   miR-200b↑,1,   miR-203↑,1,   miR-21↓,2,   miR-27a-3p↓,1,   miR-30a-5p↑,1,   miR-34a↑,2,   MMP↓,30,   MMP↑,1,   MMP-10↓,1,   MMP1↓,5,   MMP13↓,3,   MMP2↓,37,   MMP3↓,2,   MMP7↓,4,   MMP9↓,38,   MMP9↑,2,   MMPs↓,16,   Mortalin↓,1,   MRP1↓,1,   mtDam↑,3,   mTOR↓,24,   mTOR⇅,1,   mTOR↝,1,   p‑mTOR↓,3,   mTORC1↓,1,   MUC4↓,2,   Myc↓,1,   N-cadherin↓,8,   NADPH↓,4,   NAF1↓,1,   NAIP↓,1,   Nanog↓,6,   Necroptosis↑,2,   necrosis↑,2,   Nestin↓,2,   neuroP↑,9,   NF-kB↓,60,   NF-kB↑,1,   p‑NF-kB↓,1,   p‑NF-kB↑,2,   NHE1↓,2,   NICD↓,1,   NK cell↑,3,   NLRP3↓,1,   NO↓,4,   NO↑,1,   NOTCH↓,5,   NOTCH1↓,5,   NOTCH1↑,3,   NOTCH3↓,2,   NOX↓,1,   NOX4↓,1,   NOXA↑,2,   NQO1↓,1,   NQO1↑,2,   NRF2↓,8,   NRF2↑,18,   NSE↓,1,   OCR↑,2,   OCT4↓,3,   OS↑,7,   other↓,1,   other↑,2,   other↝,2,   other∅,1,   OXPHOS↓,1,   mt-OXPHOS↓,1,   P-gp↓,8,   P-gp↑,1,   p16↑,2,   p19↑,1,   P21?,1,   P21↑,21,   p27↑,10,   p38↑,7,   p‑p38↑,1,   P450↓,3,   P53?,1,   P53↓,2,   P53↑,29,   p53 Wildtype∅,1,   p62↓,2,   p62↑,2,   p65↓,3,   p‑p65↓,2,   p‑P70S6K↓,1,   PARP↑,6,   cl‑PARP↓,1,   cl‑PARP↑,19,   PCNA↓,8,   PD-1↓,1,   PD-1↝,1,   PD-L1↓,5,   PDGF↓,4,   p‑PDGFR-BB↓,1,   PDH↑,2,   PDK1?,2,   PDK1↓,3,   PDK3↑,1,   PERK↑,3,   PFK1↓,1,   PGE1↓,1,   PGE2↓,10,   pH↑,1,   PI3K↓,32,   PI3K↑,2,   p‑PI3K↓,1,   p‑PI3K↑,1,   PKA↓,2,   PKCδ↓,4,   PKM2↓,8,   PPARα↓,2,   PPARγ↓,1,   PPARγ↑,1,   Prx4↑,1,   Prx6↑,1,   PSA↓,4,   PTEN↓,1,   PTEN↑,19,   PUMA↑,2,   PYCR1↓,1,   Rac1↓,2,   radioP↑,3,   RadioS↑,27,   Raf↓,3,   c-Raf↓,1,   RANKL↓,1,   RAS↓,8,   RB1↑,1,   p‑RB1↓,5,   RenoP↑,2,   RET↓,1,   Rho↓,4,   Rho↑,1,   RIP1↑,1,   RIP3↑,1,   Risk↓,1,   ROCK1↓,5,   ROCK1↑,1,   ROS?,1,   ROS↓,13,   ROS↑,90,   ROS⇅,6,   ROS↝,2,   mt-ROS↑,1,   SD↑,1,   SDH↑,1,   selectivity↑,37,   Sepsis↓,1,   Shh↓,4,   SHP1↑,1,   SIRT1↓,5,   SIRT1↑,4,   SIRT2↓,1,   SIRT2↑,1,   SIRT3↑,1,   SIRT6↑,1,   Slug↓,3,   SMAD3↓,1,   Smo↓,2,   Snail↓,8,   SOD↓,5,   SOD↑,7,   SOD1↓,1,   SOD2↓,1,   SOX2↓,3,   SOX4↓,1,   SOX4↑,1,   SOX9?,1,   Sp1/3/4↓,6,   Sp1/3/4↑,1,   p‑Src↓,1,   SREBP1↓,1,   STAT1↓,1,   STAT3↓,27,   STAT3↑,1,   p‑STAT3↓,7,   p‑STAT3↑,1,   STAT6↓,2,   p‑STAT6↓,1,   survivin↓,19,   T-Cell↑,1,   TAMS↝,1,   TAZ↓,1,   TCA↓,1,   TCF↓,1,   Telomerase↓,13,   TET1↑,3,   Tf↓,1,   Tf↑,1,   TFEB↑,1,   TfR1/CD71↑,1,   TGF-β↓,5,   Th1 response↑,1,   TIMP1↑,4,   TIMP2↑,4,   TLR4↓,2,   TNF-α↓,20,   TNF-α↑,2,   TOP1?,1,   TOP1↓,6,   TOP2↓,4,   TOP2↑,1,   toxicity↓,4,   toxicity↑,1,   toxicity↝,2,   toxicity∅,4,   TP53↑,3,   TRAIL↑,1,   Treg lymp↓,2,   Trx↓,1,   Trx1↑,1,   TrxR↓,3,   TSC1↑,1,   TumAuto↑,9,   TumCCA↓,2,   TumCCA↑,56,   TumCD↑,2,   TumCG↓,15,   TumCG↑,1,   TumCI↓,18,   TumCMig↓,15,   TumCMig↑,1,   TumCP↓,38,   TumCP↑,1,   tumCV↓,6,   TumMeta↓,24,   TumMeta↑,2,   TumVol↓,5,   TumW↓,2,   Twist↓,11,   Tyro3↓,1,   tyrosinase↓,1,   UHRF1↓,1,   uPA↓,10,   UPR↑,3,   VEGF↓,51,   VEGF↑,1,   VEGFR2↓,4,   Vim↓,13,   Vim↑,1,   VitC↓,1,   VitE↓,1,   Warburg↓,6,   Wnt↓,20,   Wnt/(β-catenin)↓,2,   XBP-1↓,1,   XBP-1↑,1,   xCT↓,1,   XIAP↓,10,   YAP/TEAD↓,2,   ZBTB10↑,1,   Zeb1↓,6,   ZO-1↑,1,   α-SMA↓,2,   α-SMA↑,1,   α-tubulin↓,1,   β-catenin/ZEB1↓,18,   β-catenin/ZEB1↑,1,   γH2AX↓,1,   γH2AX↑,1,  
Total Targets: 642

Results for Effect on Normal Cells:
12LOX↓,1,   5HT↑,2,   ACC↓,1,   Acetyl-CoA↑,1,   Ach↑,4,   AChE↓,5,   adiP↑,1,   Akt↓,2,   Akt↑,4,   ALAT↓,3,   ALP↓,1,   AMPK↓,1,   AMPK↑,6,   angioG↓,1,   angioG↑,2,   AntiAg↑,7,   AntiAge↑,3,   AntiCan↑,3,   antiOx?,1,   antiOx↓,4,   antiOx↑,49,   AP-1↓,4,   Apoptosis↓,1,   AST↓,4,   ATP↑,2,   Aβ↓,14,   BACE↓,1,   BAX↓,1,   BBB↓,1,   BBB↑,17,   BChE↓,1,   Bcl-2↑,2,   Beclin-1↓,1,   BG↓,2,   BioAv?,3,   BioAv↓,71,   BioAv↑,82,   BioAv↝,40,   BioAv∅,1,   BioEnh↑,1,   BP↓,5,   BP↝,1,   Ca+2↓,3,   Ca+2↑,1,   Ca+2↝,1,   cAMP↑,2,   cardioP↓,1,   cardioP↑,20,   cardioP⇅,1,   CardioT↓,2,   Casp3↓,4,   Casp6↓,1,   Casp9↓,2,   Catalase↑,25,   ChAT↑,5,   chemoP↑,5,   Choline↑,1,   cognitive↑,19,   cognitive∅,1,   cortisol↑,1,   COX2↓,18,   creat↓,1,   CRP↓,2,   Cyt‑c∅,1,   DHT↑,1,   DNAdam↓,4,   Dose↑,3,   Dose⇅,1,   Dose↝,13,   Dose∅,4,   E2Fs↑,1,   eff↓,2,   eff↑,28,   eff↝,1,   ER Stress↓,2,   ERK↓,2,   ERK↑,2,   FAO↑,1,   FASN↓,1,   Ferritin↑,1,   FGF↑,1,   FOXO↑,1,   G6PD↑,1,   GlucoseCon↑,2,   GLUT4↑,1,   GlutMet↑,1,   GPx↑,19,   GR↑,1,   GSH↑,30,   GSK‐3β↓,2,   GSK‐3β↑,1,   GSR↑,2,   GSTA1↓,1,   GSTA1↑,1,   GSTs↓,1,   GSTs↑,5,   GutMicro↑,3,   H2O2↓,4,   H2O2↑,1,   H2O2∅,1,   H2S↑,1,   Half-Life?,2,   Half-Life↓,12,   Half-Life↑,7,   Half-Life↝,14,   Half-Life∅,5,   HATs↓,1,   HDAC↓,3,   HDAC↑,1,   HDAC3↓,1,   HDL↑,1,   hepatoP↓,1,   hepatoP↑,19,   HMGCR↓,1,   HO-1↑,18,   HO-2↓,1,   hs-CRP↓,1,   HSP70/HSPA5↝,1,   HSPs↑,1,   ICAM-1↓,3,   IFN-γ↓,1,   IFN-γ↑,1,   IGF-1↓,1,   IGF-1R↓,1,   IGFBP3↑,1,   IKKα↓,1,   IL10↓,1,   IL10↑,3,   IL17↓,1,   IL18↓,1,   IL1β↓,18,   IL2↓,2,   IL22↓,1,   IL6↓,14,   IL6↑,2,   IL8↓,4,   INF-γ↓,1,   Inflam?,1,   Inflam↓,46,   Inflam↑,1,   iNOS↓,7,   iNOS↑,1,   Insulin↑,1,   IRF3↓,1,   Iron↓,1,   IronCh↑,10,   JAK↓,1,   JNK↓,3,   p‑JNK↓,1,   Keap1↑,1,   Ki-67↓,2,   LDH↓,2,   LDHA↑,1,   LDL↓,2,   lipid-P↓,13,   mt-lipid-P↓,1,   lipidLev↓,2,   lipoGen↓,1,   MAPK↓,4,   MAPK↑,2,   MCP1↓,1,   MCP1↑,1,   MDA↓,11,   memory↑,17,   Mets↝,1,   MMP↓,1,   MMP↑,6,   MMP∅,1,   MMP13↓,1,   MMP2↓,2,   MMP2↑,2,   MMP3↓,1,   MMP9↓,4,   MMPs↓,2,   motorD↓,1,   motorD↑,3,   MPO↓,5,   mtDam↓,3,   MyD88↓,1,   NA↓,1,   NAD↑,1,   NADH:NAD↑,1,   NADPH↓,1,   NADPH↑,1,   necrosis↓,1,   neuroP↓,1,   neuroP↑,43,   neuroP↝,1,   NF-kB↓,24,   NF-kB↑,3,   p‑NF-kB↓,1,   NLRP3↓,1,   NO↓,7,   NO↑,3,   NOS2↓,1,   NOX↓,1,   NQO1↑,5,   Nrf1↑,1,   NRF2↓,1,   NRF2↑,23,   NRF2⇅,1,   OCR↓,1,   OS↑,2,   other↓,2,   other↑,4,   other↝,4,   p38↓,1,   P450↓,1,   P450↑,2,   P53↓,1,   p65↓,2,   Pain↓,1,   PCNA↓,1,   PDGFR-BB↓,1,   PGC-1α↑,2,   PGE2↓,5,   PI3K↓,1,   PI3K↑,3,   PKCδ↓,1,   PKCδ↑,1,   PPARα↑,1,   PPARγ↑,3,   p‑PPARγ↓,1,   Prx↑,1,   PTEN↓,1,   PTEN↑,1,   RAGE↓,1,   RenoP↑,3,   Rho↓,1,   RNS↓,1,   ROCK1↓,1,   ROS?,1,   ROS↓,72,   ROS↑,4,   ROS⇅,3,   ROS∅,2,   SHBG↓,1,   SIRT1↑,9,   SIRT2↑,1,   SIRT3↑,1,   SOD↓,2,   SOD↑,30,   SOD1↑,1,   SOD2↑,2,   SREBF2↓,1,   SREBP1↓,1,   STAT3↓,1,   STAT3↑,1,   TAC↑,2,   tau↓,3,   p‑tau↓,1,   TGF-β↑,1,   TGF-β1↑,1,   TIMP1↓,1,   TLR2↓,2,   TLR4↓,3,   TLR4↑,1,   TNF-α↓,25,   toxicity?,1,   toxicity↓,13,   toxicity↑,3,   toxicity↝,4,   toxicity∅,7,   Trx↑,2,   TrxR↑,1,   TXNIP↓,1,   VCAM-1↓,3,   VEGF↓,1,   VEGF↑,1,   VitC↑,4,   VitD↑,1,   VitE↑,4,   α-SMA↓,1,   β-Amyloid↓,1,  
Total Targets: 274

Scientific Paper Hit Count for: BioAv, bioavailability
15 Apigenin (mainly Parsley)
15 Sulforaphane (mainly Broccoli)
13 Thymoquinone
12 Resveratrol
11 Curcumin
10 Alpha-Lipoic-Acid
10 Berberine
8 Chrysin
8 EGCG (Epigallocatechin Gallate)
8 Honokiol
8 Piperlongumine
8 Silymarin (Milk Thistle) silibinin
7 Artemisinin
7 Rosmarinic acid
6 Baicalein
6 Propolis -bee glue
6 Quercetin
6 Luteolin
6 Lycopene
5 Fisetin
5 Naringin
4 Allicin (mainly Garlic)
4 Ashwagandha
4 Betulinic acid
4 Ellagic acid
4 Phenylbutyrate
4 Shikonin
3 Baicalin
3 chitosan
3 Boron
3 Boswellia (frankincense)
3 Lecithin
3 Magnetic Fields
3 Vitamin C (Ascorbic Acid)
2 Capsaicin
2 Ferulic acid
2 Gallic acid
2 Hydroxycinnamic-acid
2 magnetic nanoparticles
2 nicotinamide adenine dinucleotide
1 5-Hydroxytryptophan
1 Ascorbyl Palmitate
1 Chemotherapy
1 Gold NanoParticles
1 Radiotherapy/Radiation
1 Caffeic acid
1 urea
1 Copper and Cu NanoParticlex
1 Piperine
1 Citric Acid
1 Emodin
1 Fenbendazole
1 flavonoids
1 Kaempferol
1 MCToil
1 Genistein
1 Paclitaxel
1 HydroxyCitric Acid
1 itraconazole
1 Folic Acid
1 Methylene blue
1 Melatonin
1 Magnesium
1 Oxygen, Hyperbaric
1 borneol
1 Selenite
1 Vitamin D3
1 Vitamin K2
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:792  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page