| Source: |
| Type: |
| The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues. Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance Factors that affect selectivity: 1. Ability of Cancer cells to preferentially absorb a product/drug -EPR-enhanced permeability and retention of cancer cells -nanoparticle formations/carriers may target cancer cells over normal cells -Liposomal formations. Also negatively/positively charged affects absorbtion 2. Product/drug effect may be different for normal vs cancer cells - hypoxia - transition metal content levels (iron/copper) change probability of fenton reaction. - pH levels - antiOxidant levels and defense levels 3. Bio-availability |
| 234- | AL, | Allicin Induces Anti-human Liver Cancer Cells through the p53 Gene Modulating Apoptosis and Autophagy |
| - | in-vitro, | HCC, | Hep3B |
| 2000- | AL, | Exploring the ROS-mediated anti-cancer potential in human triple-negative breast cancer by garlic bulb extract: A source of therapeutically active compounds |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | NA |
| 278- | ALA, | The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment |
| - | Review, | NA, | NA |
| 3442- | ALA, | α‑lipoic acid modulates prostate cancer cell growth and bone cell differentiation |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | C4-2B | - | in-vitro, | Nor, | 3T3 |
| 3454- | ALA, | Lipoic acid blocks autophagic flux and impairs cellular bioenergetics in breast cancer and reduces stemness |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 2584- | Api, | Chemo, | The versatility of apigenin: Especially as a chemopreventive agent for cancer |
| - | Review, | Var, | NA |
| 2316- | Api, | The interaction between apigenin and PKM2 restrains progression of colorectal cancer |
| - | in-vitro, | CRC, | LS174T | - | in-vitro, | CRC, | HCT8 | - | in-vivo, | CRC, | NA |
| 1999- | Api, | doxoR, | Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation |
| - | in-vitro, | Nor, | NRK52E | - | in-vitro, | Nor, | MPC5 | - | in-vitro, | BC, | 4T1 | - | in-vivo, | NA, | NA |
| 1548- | Api, | A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms |
| - | Review, | Colon, | NA |
| 1559- | Api, | Dually Active Apigenin-Loaded Nanostructured Lipid Carriers for Cancer Treatment |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 1563- | Api, | MET, | Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells |
| - | in-vitro, | Nor, | HDFa | - | in-vitro, | PC, | AsPC-1 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | LNCaP | - | in-vivo, | NA, | NA |
| 3391- | ART/DHA, | Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug |
| - | Review, | Var, | NA |
| 2570- | ART/DHA, | Discovery, mechanisms of action and combination therapy of artemisinin |
| - | Review, | Nor, | NA |
| 2582- | ART/DHA, | 5-ALA, | Mechanistic Investigation of the Specific Anticancer Property of Artemisinin and Its Combination with Aminolevulinic Acid for Enhanced Anticolorectal Cancer Activity |
| - | in-vivo, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT116 |
| 2581- | ART/DHA, | PB, | Synergistic cytotoxicity of artemisinin and sodium butyrate on human cancer cells |
| - | in-vitro, | AML, | NA |
| 2572- | ART/DHA, | SRF, | Antileukemic efficacy of a potent artemisinin combined with sorafenib and venetoclax |
| - | in-vitro, | AML, | NA |
| 2574- | ART/DHA, | Artemisinin: A Promising Adjunct for Cancer Therapy |
| - | Review, | Var, | NA |
| 2003- | Ash, | Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Nor, | TIG-1 | - | in-vitro, | PC, | LNCaP |
| 1142- | Ash, | Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer |
| - | Review, | BC, | MCF-7 | - | NA, | BC, | MDA-MB-231 | - | NA, | Nor, | HMEC |
| 3163- | Ash, | Rad, | Withaferin A, a steroidal lactone, selectively protects normal lymphocytes against ionizing radiation induced apoptosis and genotoxicity via activation of ERK/Nrf-2/HO-1 axis |
| 3172- | Ash, | Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | Nor, | HL7702 |
| 1533- | Ba, | Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species Generation |
| - | in-vitro, | BrCC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
| 1523- | Ba, | Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | Nor, | hFOB1.19 |
| 2615- | Ba, | The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling Pathways |
| - | Review, | Var, | NA |
| 2479- | Ba, | Baicalein Overcomes Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Resistance via Two Different Cell-Specific Pathways in Cancer Cells but not in Normal Cells |
| - | in-vitro, | HCC, | SW480 | - | in-vitro, | Pca, | PC3 |
| 2023- | BBR, | Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor |
| - | in-vitro, | Colon, | NA | - | in-vitro, | Nor, | YAMC |
| 2022- | BBR, | GoldNP, | Rad, | Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibition |
| - | in-vitro, | Liver, | SMMC-7721 cell | - | in-vitro, | Nor, | HL7702 |
| 2021- | BBR, | Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways |
| - | Review, | NA, | NA |
| 2700- | BBR, | Cell-specific pattern of berberine pleiotropic effects on different human cell lines |
| - | in-vitro, | GBM, | U343 | - | in-vitro, | GBM, | MIA PaCa-2 | - | in-vitro, | Nor, | HDFa |
| 2707- | BBR, | Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 |
| 2686- | BBR, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | Nor, | NA |
| 943- | BetA, | Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 2752- | BetA, | Betulinic acid: a natural product with anticancer activity |
| - | Review, | Var, | NA |
| 2747- | BetA, | Betulinic acid, a natural compound with potent anticancer effects |
| - | Review, | Var, | NA |
| 2718- | BetA, | The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis |
| - | in-vitro, | AML, | U937 |
| 2719- | BetA, | Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential |
| - | in-vitro, | CRC, | T24 | - | in-vitro, | Bladder, | UMUC3 | - | in-vitro, | Bladder, | 5637 |
| 2729- | BetA, | Betulinic acid in the treatment of tumour diseases: Application and research progress |
| - | Review, | Var, | NA |
| 2735- | BetA, | Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications |
| - | Review, | Var, | NA |
| 2732- | BetA, | Chemo, | Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78 |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | MCF10 |
| 3513- | Bor, | Boric Acid Activation of eIF2α and Nrf2 Is PERK Dependent: a Mechanism that Explains How Boron Prevents DNA Damage and Enhances Antioxidant Status |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Nor, | MEF |
| 3506- | Bor, | Boron Chemistry for Medical Applications |
| - | Review, | NA, | NA |
| 738- | Bor, | Borax induces ferroptosis of glioblastoma by targeting HSPA5/NRF2/GPx4/GSH pathways |
| - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | A172 | - | in-vitro, | Nor, | SVGp12 |
| 696- | Bor, | Nothing Boring About Boron |
| - | Review, | Var, | NA |
| 2024- | Bos, | Antiproliferative and cell cycle arrest potentials of 3-O-acetyl-11-keto-β-boswellic acid against MCF-7 cells in vitro |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
| 3032- | CA, | Carnosic Acid Induces Apoptosis Through Reactive Oxygen Species-mediated Endoplasmic Reticulum Stress Induction in Human Renal Carcinoma Caki Cells |
| - | in-vitro, | Kidney, | Caki-1 |
| 1646- | CA, | Caffeic acid: a brief overview of its presence, metabolism, and bioactivity |
| - | Review, | Nor, | NA |
| 1650- | CA, | Adjuvant Properties of Caffeic Acid in Cancer Treatment |
| - | Review, | Var, | NA |
| 2014- | CAP, | Role of Mitochondrial Electron Transport Chain Complexes in Capsaicin Mediated Oxidative Stress Leading to Apoptosis in Pancreatic Cancer Cells |
| - | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | Nor, | HPDE-6 | - | in-vivo, | PC, | AsPC-1 |
| 2015- | CAP, | CUR, | urea, | Anti-cancer Activity of Sustained Release Capsaicin Formulations |
| - | Review, | Var, | NA |
| 2018- | CAP, | MF, | Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma |
| - | Review, | HCC, | NA |
| 2019- | CAP, | Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer |
| - | Review, | Var, | NA |
| 2020- | CAP, | Capsaicinoids and Their Effects on Cancer: The “Double-Edged Sword” Postulate from the Molecular Scale |
| - | Review, | Var, | NA |
| 4489- | Chit, | Se, | Inhibiting Metastasis and Improving Chemosensitivity via Chitosan-Coated Selenium Nanoparticles for Brain Cancer Therapy |
| - | in-vitro, | GBM, | U87MG |
| 4481- | Chit, | Antioxidant Properties and Redox-Modulating Activity of Chitosan and Its Derivatives: Biomaterials with Application in Cancer Therapy |
| - | Review, | Var, | NA |
| 4478- | Chit, | Chitosan promotes ROS-mediated apoptosis and S phase cell cycle arrest in triple-negative breast cancer cells: evidence for intercalative interaction with genomic DNA |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | T47D |
| 2806- | CHr, | Se, | Selenium-containing chrysin and quercetin derivatives: attractive scaffolds for cancer therapy |
| - | in-vitro, | Var, | NA |
| 2784- | CHr, | Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review) |
| - | Review, | Var, | NA |
| 2786- | CHr, | Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives |
| - | Review, | Var, | NA |
| 1574- | Citrate, | Citrate Suppresses Tumor Growth in Multiple Models through Inhibition of Glycolysis, the Tricarboxylic Acid Cycle and the IGF-1R Pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Melanoma, | WM983B | - | in-vivo, | NA, | NA |
| 1586- | Citrate, | Extracellular Citrate Is a Trojan Horse for Cancer Cells |
| - | in-vitro, | Liver, | HepG2 |
| 1580- | Citrate, | Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway |
| - | in-vitro, | Pca, | PC3 | - | in-vivo, | PC, | NA | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | WPMY-1 |
| 1596- | Cu, | CDT, | Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review |
| - | Review, | NA, | NA |
| 1600- | Cu, | Cu(II) complex that synergistically potentiates cytotoxicity and an antitumor immune response by targeting cellular redox homeostasis |
| - | Review, | NA, | NA |
| 1602- | Cu, | A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy† |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | 4T1 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 |
| 1642- | Cu, | HCAs, | Copper-assisted anticancer activity of hydroxycinnamic acid terpyridine conjugates on triple-negative breast cancer |
| - | in-vitro, | BC, | 4T1 | - | in-vitro, | Nor, | L929 |
| 1572- | Cu, | Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy |
| - | Review, | NA, | NA |
| 1570- | Cu, | Development of copper nanoparticles and their prospective uses as antioxidants, antimicrobials, anticancer agents in the pharmaceutical sector |
| - | Review, | NA, | NA |
| 1979- | CUR, | Rad, | Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase |
| - | in-vitro, | Lung, | A549 |
| 1980- | CUR, | Rad, | Thioredoxin reductase-1 (TxnRd1) mediates curcumin-induced radiosensitization of squamous carcinoma cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Laryn, | FaDu |
| 2304- | CUR, | Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition |
| - | in-vitro, | Lung, | H1299 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Pca, | PC3 | - | in-vitro, | Nor, | HEK293 |
| 1881- | DCA, | Chemo, | Co-treatment of dichloroacetate, omeprazole and tamoxifen exhibited synergistically antiproliferative effect on malignant tumors: in vivo experiments and a case report |
| - | in-vitro, | NA, | HT1080 | - | in-vitro, | NA, | WI38 | - | Case Report, | Var, | NA |
| 1875- | DCA, | Dichloroacetate inhibits neuroblastoma growth by specifically acting against malignant undifferentiated cells |
| - | in-vitro, | neuroblastoma, | NA | - | in-vivo, | NA, | NA |
| 1873- | DCA, | Dual-targeting of aberrant glucose metabolism in glioblastoma |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 |
| 1864- | DCA, | MET, | Dichloroacetate Enhances Apoptotic Cell Death via Oxidative Damage and Attenuates Lactate Production in Metformin-Treated Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | T47D | - | in-vitro, | Nor, | MCF10 |
| 1868- | DCA, | MET, | Long-term stabilization of stage 4 colon cancer using sodium dichloroacetate therapy |
| - | Case Report, | NA, | NA |
| 4455- | DFE, | Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | 3T3 |
| 4454- | DFE, | Cytostatic and Anti-tumor Potential of Ajwa Date Pulp against Human Hepatocellular Carcinoma HepG2 Cells |
| - | in-vitro, | Liver, | HepG2 |
| 1851- | dietFMD, | Chemo, | Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy |
| - | in-vitro, | GBM, | LN229 | - | in-vitro, | neuroblastoma, | SH-SY5Y |
| 1849- | dietFMD, | The emerging role of fasting-mimicking diets in cancer treatment |
| - | Review, | Var, | NA |
| 1845- | dietFMD, | Fasting and fasting mimicking diets in cancer prevention and therapy |
| - | Review, | Var, | NA |
| 1861- | dietFMD, | Chemo, | Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models |
| - | in-vitro, | Colon, | CT26 | - | in-vivo, | NA, | NA |
| 1810- | dietKeto, | Oxy, | The Ketogenic Diet and Hyperbaric Oxygen Therapy Prolong Survival in Mice with Systemic Metastatic Cancer |
| - | in-vivo, | Var, | NA |
| 2264- | dietMet, | Methionine restriction for cancer therapy: From preclinical studies to clinical trials |
| - | Review, | Var, | NA |
| 2268- | dietMet, | Methionine dependency and cancer treatment |
| - | Review, | Var, | NA |
| 2263- | dietMet, | Methionine Restriction and Cancer Biology |
| - | Review, | Var, | NA |
| 1608- | EA, | Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HUVECs |
| 1613- | EA, | Ellagitannins in Cancer Chemoprevention and Therapy |
| - | Review, | Var, | NA |
| 1605- | EA, | Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence |
| - | Review, | Var, | NA |
| 1514- | EGCG, | Preferential inhibition by (-)-epigallocatechin-3-gallate of the cell surface NADH oxidase and growth of transformed cells in culture |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | MCF10 |
| 1515- | EGCG, | Phen, | Reciprocal Relationship Between Cytosolic NADH and ENOX2 Inhibition Triggers Sphingolipid-Induced Apoptosis in HeLa Cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | MCF10 | - | in-vitro, | BC, | BT20 |
| 1503- | EGCG, | Epigenetic targets of bioactive dietary components for cancer prevention and therapy |
| - | Review, | NA, | NA |
| 3238- | EGCG, | Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications |
| - | Review, | Var, | NA |
| 3214- | EGCG, | EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway |
| - | in-vitro, | Nor, | MRC-5 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | HEK293 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | CRC, | HCT116 |
| 2309- | EGCG, | Chemo, | Targeting Glycolysis with Epigallocatechin-3-Gallate Enhances the Efficacy of Chemotherapeutics in Pancreatic Cancer Cells and Xenografts |
| - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | Nor, | HPNE | - | in-vitro, | PC, | PANC1 | - | in-vivo, | NA, | NA |
| 2497- | Fenb, | In vitro anti-tubulin effects of mebendazole and fenbendazole on canine glioma cells |
| - | in-vitro, | GBM, | NA |
| 2496- | Fenb, | Impairment of the Ubiquitin-Proteasome Pathway by Methyl N-(6-Phenylsulfanyl-1H-benzimidazol-2-yl)carbamate Leads to a Potent Cytotoxic Effect in Tumor Cells |
| - | in-vitro, | NSCLC, | A549 | - | in-vitro, | NSCLC, | H460 |
| 2851- | FIS, | Apoptosis induction in breast cancer cell lines by the dietary flavonoid fisetin |
| - | in-vitro, | BC, | MDA-MB-468 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | SkBr3 | - | in-vitro, | Nor, | NA |
| 2852- | FIS, | A comprehensive view on the fisetin impact on colorectal cancer in animal models: Focusing on cellular and molecular mechanisms |
| - | Review, | CRC, | NA |
| 2860- | FIS, | Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | Nor, | hTERT-HPNE | - | in-vivo, | NA, | NA |
| 2842- | FIS, | Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells |
| - | in-vitro, | GC, | AGS |
| 2824- | FIS, | Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics |
| - | Review, | Var, | NA |
| 2833- | FIS, | SNP, | Glucose-capped fisetin silver nanoparticles induced cytotoxicity and ferroptosis in breast cancer cells: A molecular perspective |
| - | in-vitro, | BC, | MDA-MB-231 |
| 4027- | FulvicA, | Mummy Induces Apoptosis Through Inhibiting of Epithelial-Mesenchymal Transition (EMT) in Human Breast Cancer Cells |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
| 4025- | FulvicA, | Mumio (Shilajit) as a potential chemotherapeutic for the urinary bladder cancer treatment |
| - | in-vitro, | Bladder, | T24 | - | Review, | AD, | NA |
| - | in-vitro, | Oral, | NA |
| 1971- | GamB, | Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis |
| - | in-vitro, | Nor, | MCF10 | - | in-vitro, | BC, | MDA-MB-435 | - | in-vitro, | BC, | MDA-MB-468 | - | in-vivo, | NA, | NA |
| 4513- | GLA, | Antineoplastic Effects of Gamma Linolenic Acid on Hepatocellular Carcinoma Cell Lines |
| - | in-vitro, | Liver, | HUH7 |
| 4510- | GLA, | Gamma-linolenic acid therapy of human glioma-a review of in vitro, in vivo, and clinical studies |
| - | Review, | NA, | NA |
| 4509- | GLA, | Gamma-linolenic Acid (GLA) sensitizes pancreatic cancer cells to gemcitabine |
| - | in-vitro, | PC, | PANC1 |
| 1904- | GoldNP, | SNP, | Unveiling the Potential of Innovative Gold(I) and Silver(I) Selenourea Complexes as Anticancer Agents Targeting TrxR and Cellular Redox Homeostasis |
| - | in-vitro, | Lung, | H157 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Colon, | HCT15 | - | in-vitro, | Melanoma, | A375 |
| - | in-vitro, | CRC, | HT-29 | - | in-vitro, | Nor, | CCD841 |
| 2437- | Gra, | Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | Nor, | PWR-1E |
| 2523- | H2, | Prospects of molecular hydrogen in cancer prevention and treatment |
| - | Review, | Var, | NA |
| 2509- | H2, | Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway |
| - | in-vitro, | Endo, | AN3CA | - | in-vivo, | Endo, | NA |
| 2512- | H2, | Hydrogen Attenuates Allergic Inflammation by Reversing Energy Metabolic Pathway Switch |
| - | in-vivo, | asthmatic, | NA |
| 2516- | H2, | Hydrogen Gas in Cancer Treatment |
| - | Review, | Var, | NA |
| 2526- | H2, | Influence of hydrogen-occluding-silica on migration and apoptosis in human esophageal cells in vitro |
| - | in-vitro, | ESCC, | KYSE-510 |
| 2528- | H2, | Local generation of hydrogen for enhanced photothermal therapy |
| - | in-vitro, | Var, | NA |
| 1638- | HCAs, | Anticancer potential of hydroxycinnamic acids: mechanisms, bioavailability, and therapeutic applications |
| - | Review, | Nor, | NA |
| 2073- | HNK, | Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo |
| - | in-vitro, | OS, | U2OS | - | in-vivo, | NA, | NA |
| 2892- | HNK, | Honokiol Induces Apoptosis, G1 Arrest, and Autophagy in KRAS Mutant Lung Cancer Cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H460 | - | in-vitro, | Lung, | H385 | - | in-vitro, | Nor, | BEAS-2B |
| 2895- | HNK, | Mitochondria-Targeted Honokiol Confers a Striking Inhibitory Effect on Lung Cancer via Inhibiting Complex I Activity |
| - | in-vitro, | Lung, | PC9 |
| 2891- | HNK, | Honokiol, an Active Compound of Magnolia Plant, Inhibits Growth, and Progression of Cancers of Different Organs |
| - | Review, | Var, | NA |
| 2879- | HNK, | Honokiol Inhibits Lung Tumorigenesis through Inhibition of Mitochondrial Function |
| - | in-vitro, | Lung, | H226 | - | in-vivo, | NA, | NA |
| 2864- | HNK, | Honokiol: A Review of Its Anticancer Potential and Mechanisms |
| - | Review, | Var, | NA |
| 2865- | HNK, | Liposomal Honokiol induces ROS-mediated apoptosis via regulation of ERK/p38-MAPK signaling and autophagic inhibition in human medulloblastoma |
| - | in-vitro, | MB, | DAOY | - | vitro+vivo, | NA, | NA |
| 2875- | HNK, | Inhibition of class I histone deacetylases in non-small cell lung cancer by honokiol leads to suppression of cancer cell growth and induction of cell death in vitro and in vivo |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | H460 | - | in-vitro, | SCC, | H226 |
| 1917- | JG, | Inhibition of human leukemia cells growth by juglone is mediated via autophagy induction, endogenous ROS production, and inhibition of cell migration and invasion |
| - | in-vitro, | AML, | HL-60 |
| 2925- | LT, | Luteolin Induces Carcinoma Cell Apoptosis through Binding Hsp90 to Suppress Constitutive Activation of STAT3 |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | HEK293 | - | in-vitro, | BC, | MCF-7 |
| 2904- | LT, | Luteolin from Purple Perilla mitigates ROS insult particularly in primary neurons |
| - | in-vitro, | Park, | SK-N-SH | - | in-vitro, | AD, | NA |
| 1715- | Lyco, | Pro-oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging Evidence |
| - | Review, | Var, | NA |
| 2540- | M-Blu, | Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dots |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 4534- | MAG, | Molecular mechanisms of apoptosis induced by magnolol in colon and liver cancer cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | CRC, | COLO205 |
| 4536- | MAG, | Magnolol suppresses proliferation of cultured human colon and liver cancer cells by inhibiting DNA synthesis and activating apoptosis |
| - | in-vitro, | Liver, | HepG2 | - | in-vivo, | CRC, | COLO205 |
| 4516- | MAG, | Magnolol Induces Apoptosis and Suppresses Immune Evasion in Non-small Cell Lung Cancer Xenograft Models |
| - | in-vivo, | NSCLC, | NA |
| 1898- | MeJa, | Methyl jasmonate and its potential in cancer therapy |
| - | Review, | Var, | NA |
| 1785- | MEL, | Antitumoral melatonin-loaded nanostructured lipid carriers |
| - | in-vitro, | Var, | NA |
| 1781- | MEL, | Melatonin in patients with cancer receiving chemotherapy: a randomized, double-blind, placebo-controlled trial |
| - | Trial, | Lung, | NA |
| 1778- | MEL, | Melatonin: a well-documented antioxidant with conditional pro-oxidant actions |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 1777- | MEL, | Melatonin as an antioxidant: under promises but over delivers |
| - | Review, | NA, | NA |
| 2244- | MF, | Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancer |
| - | Review, | Var, | NA |
| 2237- | MF, | The Effect of Pulsed Electromagnetic Field Stimulation of Live Cells on Intracellular Ca2+ Dynamics Changes Notably Involving Ion Channels |
| - | in-vitro, | AML, | KG-1 | - | in-vitro, | Nor, | HUVECs |
| 2260- | MF, | Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | LN229 | - | in-vivo, | NA, | NA |
| 2261- | MF, | Tumor-specific inhibition with magnetic field |
| - | in-vitro, | Nor, | GP-293 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Lung, | A549 |
| 501- | MF, | Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
| 526- | MF, | Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Pca, | HeLa | - | vitro+vivo, | Melanoma, | B16-BL6 | - | in-vitro, | Nor, | HEK293 |
| 534- | MF, | Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | Nor, | MCF10 |
| 532- | MF, | A 50 Hz magnetic field influences the viability of breast cancer cells 96 h after exposure |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
| 507- | MF, | Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | GP-293 |
| 512- | MF, | Pulsed Electromagnetic Fields (PEMFs) Trigger Cell Death and Senescence in Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | FF95 |
| - | in-vitro, | BC, | 4T1 | - | in-vitro, | BC, | MCF-7 |
| 3478- | MF, | One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study |
| - | Trial, | BC, | NA | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | C2C12 |
| 3480- | MF, | Cellular and Molecular Effects of Magnetic Fields |
| - | Review, | NA, | NA |
| 3465- | MF, | Magnetic fields and angiogenesis |
| - | Review, | Var, | NA |
| 4354- | MF, | doxoR, | Modulated TRPC1 Expression Predicts Sensitivity of Breast Cancer to Doxorubicin and Magnetic Field Therapy: Segue Towards a Precision Medicine Approach |
| - | in-vivo, | BC, | MDA-MB-231 | - | in-vivo, | BC, | MCF-7 |
| 4092- | MF, | Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology |
| - | Review, | Var, | NA |
| 187- | MFrot, | MF, | Method for noninvasive whole-body stimulation with spinning oscillating magnetic fields and its safety in mice |
| - | in-vivo, | GBM, | NA |
| 205- | MFrot, | MF, | Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer Metastasis |
| - | vitro+vivo, | BC, | MDA-MB-231 |
| 184- | MFrot, | MF, | Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells |
| - | in-vitro, | GBM, | GBM |
| 186- | MFrot, | MF, | Selective induction of rapid cytotoxic effect in glioblastoma cells by oscillating magnetic fields |
| - | in-vitro, | GBM, | GBM | - | in-vitro, | Lung, | NA |
| 2258- | MFrot, | MF, | EXTH-68. ONCOMAGNETIC TREATMENT SELECTIVELY KILLS GLIOMA CANCER CELLS BY INDUCING OXIDATIVE STRESS AND DNA DAMAGE |
| - | in-vitro, | GBM, | GBM | - | in-vitro, | Nor, | SVGp12 |
| 2259- | MFrot, | MF, | Method and apparatus for oncomagnetic treatment |
| - | in-vitro, | GBM, | NA |
| 1891- | MGO, | Methylglyoxal induces mitochondria-dependent apoptosis in sarcoma |
| - | in-vitro, | SCC, | NA |
| 1812- | Oxy, | Hyperbaric oxygen suppressed tumor progression through the improvement of tumor hypoxia and induction of tumor apoptosis in A549-cell-transferred lung cancer |
| - | in-vitro, | Lung, | A549 | - | in-vivo, | Lung, | NA | - | in-vitro, | NA, | BEAS-2B |
| 1987- | Part, | Rad, | A NADPH oxidase dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Nor, | PrEC |
| 2037- | PB, | Selective activity of phenylacetate against malignant gliomas: resemblance to fetal brain damage in phenylketonuria |
| - | in-vitro, | GBM, | NA | - | in-vivo, | GBM, | NA |
| 2061- | PB, | Chemo, | Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | COLO357 | - | in-vitro, | PC, | Bxpc-3 |
| 2046- | PB, | Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-468 | - | in-vitro, | Nor, | MCF10 |
| 1670- | PBG, | Lung response to propolis treatment during experimentally induced lung adenocarcinoma |
| - | in-vivo, | Lung, | NA |
| 1666- | PBG, | Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer |
| - | Review, | Var, | NA |
| 1668- | PBG, | Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms |
| - | Review, | Var, | NA |
| 1663- | PBG, | Propolis and Their Active Constituents for Chronic Diseases |
| - | Review, | Var, | NA |
| 1681- | PBG, | Propolis: Its Role and Efficacy in Human Health and Diseases |
| - | Review, | Nor, | NA |
| 1684- | PBG, | Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | HUVECs |
| 1685- | PBG, | Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells |
| - | in-vitro, | BC, | MCF-7 |
| 1674- | PBG, | SDT, | HPT, | Study on the effect of a triple cancer treatment of propolis, thermal cycling-hyperthermia, and low-intensity ultrasound on PANC-1 cells |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | Nor, | H6c7 |
| 1950- | PL, | Increased Expression of FosB through Reactive Oxygen Species Accumulation Functions as Pro-Apoptotic Protein in Piperlongumine Treated MCF7 Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 |
| 1939- | PL, | Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | HUH7 | - | in-vivo, | NA, | NA |
| 1941- | PL, | Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer |
| - | in-vitro, | HNSCC, | NA |
| 1943- | PL, | Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells |
| - | in-vitro, | GBM, | NA | - | in-vivo, | NA, | NA |
| 1944- | PL, | Piperlongumine, a Novel TrxR1 Inhibitor, Induces Apoptosis in Hepatocellular Carcinoma Cells by ROS-Mediated ER Stress |
| - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | HepG2 |
| 1947- | PL, | Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer |
| - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | GC, | NA |
| 1948- | PL, | born, | Natural borneol serves as an adjuvant agent to promote the cellular uptake of piperlongumine for improving its antiglioma efficacy |
| - | in-vitro, | GBM, | NA |
| 1949- | PL, | Design, synthesis, and biological evaluation of a novel indoleamine 2,3-dioxigenase 1 (IDO1) and thioredoxin reductase (TrxR) dual inhibitor |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Cerv, | HeLa |
| 1953- | PL, | Designing piperlongumine-directed anticancer agents by an electrophilicity-based prooxidant strategy: A mechanistic investigation |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | WI38 |
| 2955- | PL, | Heme Oxygenase-1 Determines the Differential Response of Breast Cancer and Normal Cells to Piperlongumine |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
| 2954- | PL, | The metabolites from traditional Chinese medicine targeting ferroptosis for cancer therapy |
| - | Review, | Var, | NA |
| 2949- | PL, | Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation |
| - | in-vitro, | GBM, | LN229 | - | in-vitro, | GBM, | U87MG |
| 2946- | PL, | Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent |
| - | Review, | Var, | NA |
| 2944- | PL, | Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells |
| - | in-vitro, | Thyroid, | IHH4 | - | in-vitro, | Thyroid, | 8505C | - | in-vivo, | NA, | NA |
| 2941- | PL, | Selective killing of cancer cells by a small molecule targeting the stress response to ROS |
| - | in-vivo, | BC, | MDA-MB-231 | - | in-vitro, | OS, | U2OS | - | in-vitro, | BC, | MDA-MB-453 |
| 3000- | PL, | Biological and physical approaches on the role of piplartine (piperlongumine) in cancer |
| - | in-vitro, | Nor, | HUVECs | - | in-vitro, | Laryn, | HEp2 |
| 2973- | PL, | The Natural Alkaloid Piperlongumine Inhibits Metastatic Activity and Epithelial-to-Mesenchymal Transition of Triple-Negative Mammary Carcinoma Cells |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | 4T1 |
| 2006- | Plum, | Plumbagin induces apoptosis in human osteosarcoma through ROS generation, endoplasmic reticulum stress and mitochondrial apoptosis pathway |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | Nor, | hFOB1.19 |
| 2409- | PTS, | Pterostilbene Induces Pyroptosis in Breast Cancer Cells through Pyruvate Kinase 2/Caspase-8/Gasdermin C Signaling Pathway |
| - | in-vitro, | BC, | EMT6 | - | in-vitro, | BC, | 4T1 | - | in-vitro, | Nor, | HC11 |
| 2303- | QC, | doxoR, | Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells |
| - | in-vitro, | BC, | 4T1 | - | in-vivo, | NA, | NA |
| 3353- | QC, | Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells |
| - | in-vitro, | Oral, | KON | - | in-vitro, | Nor, | MRC-5 |
| 3344- | QC, | Quercetin induced ROS production triggers mitochondrial cell death of human embryonic stem cells |
| - | in-vitro, | Nor, | hESC |
| 3343- | QC, | Quercetin, a Flavonoid with Great Pharmacological Capacity |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Arthritis, | NA |
| 3380- | QC, | Quercetin as a JAK–STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases |
| - | Review, | Var, | NA | - | Review, | Park, | NA | - | Review, | AD, | NA |
| 2991- | RES, | Chemo, | Synergistic anti-cancer effects of resveratrol and chemotherapeutic agent clofarabine against human malignant mesothelioma MSTO-211H cells |
| - | in-vitro, | Melanoma, | MSTO-211H | - | in-vitro, | Nor, | MeT5A |
| 1744- | RosA, | Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity |
| - | Review, | Var, | NA |
| 3033- | RosA, | Rosemary (Rosmarinus officinalis) Extract Modulates CHOP/GADD153 to Promote Androgen Receptor Degradation and Decreases Xenograft Tumor Growth |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | LNCaP | - | vitro+vivo, | NA, | NA |
| 3008- | RosA, | Rosmarinic acid decreases viability, inhibits migration and modulates expression of apoptosis-related CASP8/CASP3/NLRP3 genes in human metastatic melanoma cells |
| - | in-vitro, | Melanoma, | SK-MEL-28 |
| 3011- | RosA, | Rosmarinic Acid Exhibits Anticancer Effects via MARK4 Inhibition |
| - | in-vitro, | GBM, | SH-SY5Y | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HEK293 | - | in-vitro, | Nor, | MCF10 |
| 2549- | SDT, | Landscape of Cellular Bioeffects Triggered by Ultrasound-Induced Sonoporation |
| - | Review, | Var, | NA |
| 1688- | Se, | Potential Role of Selenium in the Treatment of Cancer and Viral Infections |
| - | Review, | Var, | NA |
| 4469- | Se, | Selenium Nanoparticles in Cancer Therapy: Unveiling Cytotoxic Mechanisms and Therapeutic Potential |
| - | Review, | Var, | NA |
| 4501- | Se, | Mechanisms of the Cytotoxic Effect of Selenium Nanoparticles in Different Human Cancer Cell Lines |
| - | in-vitro, | GBM, | A172 | - | in-vitro, | Colon, | Caco-2 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | L929 |
| 4453- | Se, | Selenium Nanoparticles: Green Synthesis and Biomedical Application |
| - | Review, | NA, | NA |
| 4449- | Se, | PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction |
| - | in-vitro, | Liver, | HepG2 |
| 4448- | Se, | Selenium Nanoparticles: A Comprehensive Examination of Synthesis Techniques and Their Diverse Applications in Medical Research and Toxicology Studies |
| - | Review, | Nor, | NA |
| 4471- | Se, | Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis |
| - | in-vitro, | Liver, | HepG2 |
| 4472- | Se, | Therapeutic potential of selenium nanoparticles |
| - | Review, | Var, | NA |
| 4480- | Se, | Chit, | Biogenic synthesized selenium nanoparticles combined chitosan nanoparticles controlled lung cancer growth via ROS generation and mitochondrial damage pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HK-2 |
| 4457- | Se, | Selenium nanoparticles: a review on synthesis and biomedical applications |
| - | Review, | Var, | NA | - | NA, | Diabetic, | NA |
| 4488- | Se, | Chit, | PEG, | Anticancer effect of selenium/chitosan/polyethylene glycol/allyl isothiocyanate nanocomposites against diethylnitrosamine-induced liver cancer in rats |
| - | in-vivo, | Liver, | HepG2 | - | in-vivo, | Nor, | HL7702 |
| 4484- | Se, | Chit, | PEG, | Anti-cancer potential of selenium-chitosan-polyethylene glycol-carvacrol nanocomposites in multiple myeloma U266 cells |
| - | in-vitro, | Melanoma, | U266 |
| 1734- | SFN, | Sulforaphane Inhibits Nonmuscle Invasive Bladder Cancer Cells Proliferation through Suppression of HIF-1α-Mediated Glycolysis in Hypoxia |
| - | in-vitro, | Bladder, | RT112 |
| 1497- | SFN, | Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells |
| - | in-vitro, | Nor, | PrEC | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 |
| 1498- | SFN, | Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Nor, | NCM460 |
| 1502- | SFN, | Epigenetic targets of bioactive dietary components for cancer prevention and therapy |
| - | Review, | NA, | NA |
| 2166- | SFN, | Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction |
| - | in-vitro, | Oral, | NA | - | in-vivo, | NA, | NA |
| 3192- | SFN, | Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention |
| - | in-vitro, | Pca, | PC3 |
| 3182- | SFN, | Sulforaphane Modulates AQP8-Linked Redox Signalling in Leukemia Cells |
| - | in-vitro, | AML, | NA |
| 3282- | SIL, | Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions |
| - | Review, | NA, | NA |
| 3299- | SIL, | Silymarin Effect on Mitophagy Pathway in the Human Colon Cancer HT-29 Cells |
| - | in-vitro, | Colon, | HT29 |
| 2230- | SK, | Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vivo, | NA, | NA |
| 2227- | SK, | Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species |
| - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | Nor, | GES-1 |
| 2226- | SK, | Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: A potential new treatment for hepatocellular carcinoma |
| - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | Bel-7402 |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | 4T1 | - | in-vitro, | Nor, | MCF12A | - | in-vivo, | NA, | NA |
| 977- | SK, | A novel antiestrogen agent Shikonin inhibits estrogen-dependent gene transcription in human breast cancer cells |
| - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | HMEC |
| 2010- | SK, | Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway |
| - | in-vitro, | Lung, | H1975 | - | in-vitro, | Lung, | H1650 | - | in-vitro, | Nor, | CCD19 |
| 2009- | SK, | Necroptosis inhibits autophagy by regulating the formation of RIP3/p62/Keap1 complex in shikonin-induced ROS dependent cell death of human bladder cancer |
| - | in-vitro, | Bladder, | NA |
| 2008- | SK, | Cisplatin, | Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo |
| - | in-vitro, | CRC, | HCT116 | - | in-vivo, | NA, | NA |
| 2007- | SK, | Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells |
| - | in-vitro, | lymphoma, | U937 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | SkBr3 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | OS, | U2OS | - | NA, | Nor, | RPE-1 |
| 2185- | SK, | Shikonin Inhibits Tumor Growth in Mice by Suppressing Pyruvate Kinase M2-mediated Aerobic Glycolysis |
| - | in-vitro, | Lung, | LLC1 | - | in-vitro, | Melanoma, | B16-BL6 | - | in-vivo, | NA, | NA |
| 375- | SNP, | ALA, | Alpha-Lipoic Acid Prevents Side Effects of Therapeutic Nanosilver without Compromising Cytotoxicity in Experimental Pancreatic Cancer |
| - | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vivo, | NA, | NA |
| 4558- | SNP, | Role of Oxidative and Nitro-Oxidative Damage in Silver Nanoparticles Cytotoxic Effect against Human Pancreatic Ductal Adenocarcinoma Cells |
| - | in-vitro, | PC, | PANC1 |
| 4561- | SNP, | VitC, | Cellular Effects Nanosilver on Cancer and Non-cancer Cells: Potential Environmental and Human Health Impacts |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Nor, | HEK293 |
| 4376- | SNP, | Interaction of multi-functional silver nanoparticles with living cells |
| - | in-vitro, | Nor, | L929 | - | in-vitro, | Lung, | A549 |
| 4371- | SNP, | Effects of Green Silver Nanoparticles on Apoptosis and Oxidative Stress in Normal and Cancerous Human Hepatic Cells in vitro |
| - | in-vitro, | Liver, | HUH7 |
| 4403- | SNP, | Silver Nanoparticles Decorated UiO-66-NH2 Metal-Organic Framework for Combination Therapy in Cancer Treatment |
| - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | GL26 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | CRC, | RKO |
| 4402- | SNP, | Enhancement of Triple-Negative Breast Cancer-Specific Induction of Cell Death by Silver Nanoparticles by Combined Treatment with Proteotoxic Stress Response Inhibitors |
| - | in-vitro, | BC, | BT549 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | MCF10 |
| 4400- | SNP, | Rad, | Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vivo, | BC, | MDA-MB-231 |
| 4397- | SNP, | Synthesis and Characterization of Silver Nanoparticles from Rhizophora apiculata and Studies on Their Wound Healing, Antioxidant, Anti-Inflammatory, and Cytotoxic Activity |
| - | NA, | Wounds, | NA |
| 4388- | SNP, | Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells |
| - | in-vitro, | Cerv, | NA |
| 4413- | SNP, | Anzaroot, | Green synthesis of silver nanoparticles from plant Astragalus fasciculifolius Bioss and evaluating cytotoxic effects on MCF7 human breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 4411- | SNP, | Eco-friendly synthesis of silver nanoparticles using Anemone coronaria bulb extract and their potent anticancer and antibacterial activities |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | Nor, | HEK293 |
| 4410- | SNP, | Green-synthesized silver nanoparticles: a sustainable nanoplatform for targeted colon cancer therapy |
| - | Review, | Colon, | NA |
| 4365- | SNP, | Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview |
| - | Review, | Var, | NA |
| 4364- | SNP, | Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties |
| - | in-vitro, | BC, | MCF-7 |
| 4363- | SNP, | Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma |
| - | in-vivo, | fibroS, | NA |
| 4421- | SNP, | Effect of Biologically Synthesized Silver Nanoparticles on Human Cancer Cells |
| - | in-vitro, | Cerv, | NA |
| 4555- | SNP, | Silver nanoparticles from Dendropanax morbifera Léveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 |
| 4541- | SNP, | RosA, | Eco-friendly synthesis of silver nanoparticles: multifaceted antioxidant, antidiabetic, anticancer, and antimicrobial activities |
| - | in-vitro, | Nor, | WI38 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | PC, | PANC1 |
| 4540- | SNP, | VitC, | Silver nanoparticles from ascorbic acid: Biosynthesis, characterization, in vitro safety profile, antimicrobial activity and phytotoxicity |
| - | in-vitro, | Nor, | NA |
| 4422- | SNP, | Bioengineering of Piper longum L. extract mediated silver nanoparticles and their potential biomedical applications |
| - | in-vitro, | Cerv, | HeLa |
| 4429- | SNP, | Comparative proteomic analysis reveals the different hepatotoxic mechanisms of human hepatocytes exposed to silver nanoparticles |
| - | in-vitro, | Liver, | HepG2 |
| 4431- | SNP, | doxoR, | Oxidative Stress-Induced Silver Nano-Carriers for Chemotherapy |
| - | in-vitro, | BC, | 4T1 | - | in-vivo, | BC, | 4T1 | - | in-vitro, | Nor, | 3T3 |
| 4433- | SNP, | Advancements in metal and metal oxide nanoparticles for targeted cancer therapy and imaging: Mechanisms, applications, and safety concerns |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Nor, | L02 |
| 4435- | SNP, | Gluc, | Glucose-Functionalized Silver Nanoparticles as a Potential New Therapy Agent Targeting Hormone-Resistant Prostate Cancer cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | DU145 |
| 1936- | TQ, | Thymoquinone induces apoptosis and increase ROS in ovarian cancer cell line |
| - | in-vitro, | Ovarian, | CaOV3 | - | in-vitro, | Nor, | WRL68 |
| 1935- | TQ, | Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis |
| - | Review, | OS, | NA |
| 2124- | TQ, | Thymoquinone: an emerging natural drug with a wide range of medical applications |
| - | Review, | Var, | NA |
| 2097- | TQ, | Crude extract of Nigella sativa inhibits proliferation and induces apoptosis in human cervical carcinoma HeLa cells |
| - | in-vitro, | Cerv, | HeLa |
| 2096- | TQ, | Effect of total hydroalcholic extract of Nigella sativa and its n-hexane and ethyl acetate fractions on ACHN and GP-293 cell lines |
| - | in-vitro, | Nor, | GP-293 | - | in-vitro, | Kidney, | ACHN |
| 2106- | TQ, | Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy |
| - | Review, | Var, | NA |
| 2093- | TQ, | Regulation of NF-κB Expression by Thymoquinone; A Role in Regulating Pro-Inflammatory Cytokines and Programmed Cell Death in Hepatic Cancer Cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Nor, | NA |
| 2084- | TQ, | Thymoquinone, as an anticancer molecule: from basic research to clinical investigation |
| - | Review, | Var, | NA |
| 2110- | TQ, | Nigella sativa seed oil suppresses cell proliferation and induces ROS dependent mitochondrial apoptosis through p53 pathway in hepatocellular carcinoma cells |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HEK293 |
| 3421- | TQ, | Insights into the molecular interactions of thymoquinone with histone deacetylase: evaluation of the therapeutic intervention potential against breast cancer |
| - | Analysis, | Nor, | NA | - | in-vivo, | Nor, | NA | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | HaCaT |
| 3397- | TQ, | Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer |
| - | Review, | CRC, | NA |
| 3424- | TQ, | Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex |
| - | Review, | Var, | NA |
| 3422- | TQ, | Thymoquinone, as a Novel Therapeutic Candidate of Cancers |
| - | Review, | Var, | NA |
| 1888- | VitB1/Thiamine, | DCA, | High Dose Vitamin B1 Reduces Proliferation in Cancer Cell Lines Analogous to Dichloroacetate |
| - | in-vitro, | PC, | SK-N-BE | - | NA, | PC, | PANC1 |
| 1836- | VitC, | VitK3, | Chemo, | Vitamins C and K3: A Powerful Redox System for Sensitizing Leukemia Lymphocytes to Everolimus and Barasertib |
| - | in-vitro, | AML, | NA |
| 1819- | VitC, | VitK3, | The association of vitamins C and K3 kills cancer cells mainly by autoschizis, a novel form of cell death. Basis for their potential use as coadjuvants in anticancer therapy |
| - | Review, | Var, | NA |
| 3104- | VitC, | Pro- and Antioxidant Effects of Vitamin C in Cancer in correspondence to Its Dietary and Pharmacological Concentrations |
| 3109- | VitC, | Vitamin C Inhibited Pulmonary Metastasis through Activating Nrf2/HO-1 Pathway |
| - | in-vitro, | Lung, | H1299 |
| 3145- | VitC, | Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose‐induced oncogenic effect by downregulating the Warburg effect |
| - | in-vitro, | CRC, | HCT116 |
| 3133- | VitC, | Vitamin C supplementation had no side effect in non-cancer, but had anticancer properties in ovarian cancer cells |
| - | in-vitro, | Ovarian, | NA |
| 1215- | VitC, | immuno, | Metabolomics reveals ascorbic acid inhibits ferroptosis in hepatocytes and boosts the effectiveness of anti-PD1 immunotherapy in hepatocellular carcinoma |
| - | ex-vivo, | HCC, | NA | - | in-vivo, | HCC, | NA |
| 2279- | VitK2, | Vitamin K2 Induces Mitochondria-Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | J82 | - | in-vitro, | Nor, | HEK293 | - | in-vitro, | Nor, | L02 | - | in-vivo, | NA, | NA |
| 1820- | VitK3, | Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells |
| - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | SW-620 |
| - | in-vitro, | Oral, | NA | - | in-vitro, | Nor, | HEK293 | - | in-vitro, | Nor, | HaCaT |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:1 prod#:% Target#:1110 State#:0 Dir#:2
wNotes=0 sortOrder:rid,rpid