| Source: |
| Type: type of cell death |
| Type of programmed cell death dependent on iron. Ferroptosis is a form of regulated cell death characterized by the accumulation of lipid peroxides to lethal levels. It is distinct from other forms of cell death, such as apoptosis, necrosis, and autophagy. The process of ferroptosis is heavily dependent on iron metabolism and reactive oxygen species (ROS). The accumulation of lipid peroxides is a hallmark of ferroptosis. This can occur when the antioxidant defenses, such as glutathione and selenoproteins, are overwhelmed or inhibited. Many cancer cells upregulate GPX4 to evade ferroptosis, making it a potential target for therapy. It has been described that GPX4, xCT and ACSL-4 are the main targets in the regulation of ferroptosis. |
| 1069- | AL, | Allicin promotes autophagy and ferroptosis in esophageal squamous cell carcinoma by activating AMPK/mTOR signaling |
| - | vitro+vivo, | ESCC, | TE1 | - | vitro+vivo, | ESCC, | KYSE-510 | - | in-vitro, | Nor, | Het-1A |
| 1009- | And, | 5-FU, | Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways in colorectal cancer |
| - | in-vivo, | CRC, | HCT116 | - | in-vitro, | CRC, | SW480 |
| 1349- | And, | Andrographolide promoted ferroptosis to repress the development of non-small cell lung cancer through activation of the mitochondrial dysfunction |
| - | in-vitro, | Lung, | H460 | - | in-vitro, | Lung, | H1650 |
| 3345- | ART/DHA, | Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells |
| - | in-vitro, | GBM, | NA |
| 3382- | ART/DHA, | Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge? |
| - | Review, | Var, | NA |
| 3384- | ART/DHA, | Dihydroartemisinin triggers ferroptosis in primary liver cancer cells by promoting and unfolded protein response‑induced upregulation of CHAC1 expression |
| - | in-vitro, | Liver, | Hep3B | - | in-vitro, | Liver, | HUH7 | - | in-vitro, | Liver, | HepG2 |
| 3390- | ART/DHA, | Ferroptosis: The Silver Lining of Cancer Therapy |
| 3387- | ART/DHA, | Ferroptosis: A New Research Direction of Artemisinin and Its Derivatives in Anti-Cancer Treatment |
| - | Review, | Var, | NA |
| 3395- | ART/DHA, | Artesunate Induces Ferroptosis in Hepatic Stellate Cells and Alleviates Liver Fibrosis via the ROCK1/ATF3 Axis |
| - | in-vitro, | NA, | HSC-T6 |
| 3396- | ART/DHA, | Progress on the study of the anticancer effects of artesunate |
| - | Review, | Var, | NA |
| 1076- | ART/DHA, | The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of Cancer |
| - | Review, | NA, | NA |
| 1026- | ART/DHA, | Artemisinin improves the efficiency of anti-PD-L1 therapy in T-cell lymphoma |
| 556- | ART/DHA, | Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing |
| - | Review, | NA, | NA |
| 575- | ART/DHA, | Dihydroartemisinin initiates ferroptosis in glioblastoma through GPX4 inhibition |
| - | in-vitro, | GBM, | U87MG |
| 2575- | ART/DHA, | docx, | Artemisia santolinifolia-Mediated Chemosensitization via Activation of Distinct Cell Death Modes and Suppression of STAT3/Survivin-Signaling Pathways in NSCLC |
| - | in-vitro, | Lung, | H23 |
| 1358- | Ash, | Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms |
| - | Review, | Var, | NA |
| 3156- | Ash, | Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug |
| - | Review, | Var, | NA |
| 3173- | Ash, | Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma |
| - | in-vitro, | neuroblastoma, | NA |
| 3172- | Ash, | Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | Nor, | HL7702 |
| 2475- | Ba, | Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | DLD1 | - | in-vivo, | NA, | NA |
| 2756- | BetA, | Betulinic acid inhibits growth of hepatoma cells through activating the NCOA4-mediated ferritinophagy pathway |
| - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | H1299 |
| 2757- | BetA, | Betulinic Acid Inhibits Glioma Progression by Inducing Ferroptosis Through the PI3K/Akt and NRF2/HO-1 Pathways |
| - | in-vitro, | GBM, | U251 |
| 727- | Bor, | RSL3, | erastin, | Enhancement of ferroptosis by boric acid and its potential use as chemosensitizer in anticancer chemotherapy |
| - | in-vitro, | Liver, | HepG2 |
| 738- | Bor, | Borax induces ferroptosis of glioblastoma by targeting HSPA5/NRF2/GPx4/GSH pathways |
| - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | A172 | - | in-vitro, | Nor, | SVGp12 |
| 739- | Bor, | Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | Nor, | HMC3 |
| 1447- | Bos, | Boswellia carterii n-hexane extract suppresses breast cancer growth via induction of ferroptosis by downregulated GPX4 and upregulated transferrin |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vivo, | BC, | 4T1 | - | in-vitro, | Nor, | MCF10 |
| 1585- | Citrate, | Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer |
| - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | A2780S | - | in-vitro, | Nor, | HEK293 |
| 2315- | Citrate, | Why and how citrate may sensitize malignant tumors to immunotherapy |
| - | Review, | Var, | NA |
| 1600- | Cu, | Cu(II) complex that synergistically potentiates cytotoxicity and an antitumor immune response by targeting cellular redox homeostasis |
| - | Review, | NA, | NA |
| 404- | CUR, | Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy |
| - | vitro+vivo, | Lung, | A549 | - | vitro+vivo, | Lung, | H1299 |
| 414- | CUR, | Transcriptome Investigation and In Vitro Verification of Curcumin-Induced HO-1 as a Feature of Ferroptosis in Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 3215- | EGCG, | Epigallocatechin gallate modulates ferroptosis through downregulation of tsRNA-13502 in non-small cell lung cancer |
| - | in-vitro, | NSCLC, | A549 | - | in-vitro, | NSCLC, | H1299 |
| 2204- | erastin, | Regulation of ferroptotic cancer cell death by GPX4 |
| - | in-vitro, | fibroS, | HT1080 |
| 1955- | GamB, | Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer |
| - | in-vitro, | Pca, | NA |
| 2080- | HNK, | Honokiol Induces Ferroptosis by Upregulating HMOX1 in Acute Myeloid Leukemia Cells |
| - | in-vitro, | AML, | THP1 | - | in-vitro, | AML, | U937 | - | in-vitro, | AML, | SK-HEP-1 |
| 2081- | HNK, | Honokiol induces ferroptosis in colon cancer cells by regulating GPX4 activity |
| - | in-vitro, | Colon, | RKO | - | in-vitro, | Colon, | HCT116 | - | in-vitro, | Colon, | SW48 | - | in-vitro, | Colon, | HT-29 | - | in-vitro, | Colon, | LS174T | - | in-vitro, | Colon, | HCT8 | - | in-vitro, | Colon, | SW480 | - | in-vivo, | NA, | NA |
| 2082- | HNK, | Revealing the role of honokiol in human glioma cells by RNA-seq analysis |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 |
| 1921- | JG, | Juglone induces ferroptotic effect on hepatocellular carcinoma and pan-cancer via the FOSL1-HMOX1 axis |
| - | in-vitro, | PC, | NA | - | vitro+vivo, | PC, | NA |
| 1275- | LT, | Mechanism of luteolin induces ferroptosis in nasopharyngeal carcinoma cells |
| - | in-vitro, | Laryn, | NA |
| 582- | MF, | immuno, | VitC, | Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy |
| - | in-vitro, | Pca, | TRAMP-C1 | - | in-vivo, | NA, | NA |
| 1273- | Myr, | Myricetin Induces Ferroptosis and Inhibits Gastric Cancer Progression by Targeting NOX4 |
| - | vitro+vivo, | GC, | NA |
| 2937- | NAD, | High-Dosage NMN Promotes Ferroptosis to Suppress Lung Adenocarcinoma Growth through the NAM-Mediated SIRT1-AMPK-ACC Pathway |
| - | in-vitro, | Lung, | A549 |
| 1225- | OLST, | Orlistat Induces Ferroptosis in Pancreatic Neuroendocrine Tumors by Inactivating the MAPK Pathway |
| - | vitro+vivo, | PC, | NA |
| 2054- | PB, | Sodium butyrate induces ferroptosis in endometrial cancer cells via the RBM3/SLC7A11 axis |
| - | in-vitro, | EC, | ISH | - | in-vitro, | EC, | HEC1B |
| 2958- | PL, | Natural product piperlongumine inhibits proliferation of oral squamous carcinoma cells by inducing ferroptosis and inhibiting intracellular antioxidant capacity |
| - | in-vitro, | Oral, | HSC3 |
| 2954- | PL, | The metabolites from traditional Chinese medicine targeting ferroptosis for cancer therapy |
| - | Review, | Var, | NA |
| 1489- | RES, | Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer |
| - | Review, | Var, | NA |
| 1002- | Sel, | Osi, | Adag, | Selenite as a dual apoptotic and ferroptotic agent synergizes with EGFR and KRAS inhibitors with epigenetic interference |
| - | in-vitro, | Lung, | H1975 | - | in-vitro, | Lung, | H385 |
| 1483- | SFN, | Targeting p62 by sulforaphane promotes autolysosomal degradation of SLC7A11, inducing ferroptosis for osteosarcoma treatment |
| - | in-vitro, | OS, | 143B | - | in-vitro, | Nor, | HEK293 | - | in-vivo, | OS, | NA |
| - | in-vitro, | CRC, | HCT116 |
| 1284- | SK, | Shikonin induces ferroptosis in multiple myeloma via GOT1-mediated ferritinophagy |
| - | in-vitro, | Melanoma, | RPMI-8226 | - | in-vitro, | Melanoma, | U266 |
| 2203- | SK, | Shikonin suppresses small cell lung cancer growth via inducing ATF3-mediated ferroptosis to promote ROS accumulation |
| - | in-vitro, | Lung, | NA |
| 2202- | SK, | Enhancing Tumor Therapy of Fe(III)-Shikonin Supramolecular Nanomedicine via Triple Ferroptosis Amplification |
| - | in-vitro, | Var, | NA |
| 2200- | SK, | Shikonin inhibits the growth of anaplastic thyroid carcinoma cells by promoting ferroptosis and inhibiting glycolysis |
| - | in-vitro, | Thyroid, | CAL-62 | - | in-vitro, | Thyroid, | 8505C |
| 2199- | SK, | Induction of Ferroptosis by Shikonin in Gastric Cancer via the DLEU1/mTOR/GPX4 Axis |
| - | in-vitro, | GC, | NA |
| 2198- | SK, | Shikonin suppresses proliferation of osteosarcoma cells by inducing ferroptosis through promoting Nrf2 ubiquitination and inhibiting the xCT/GPX4 regulatory axis |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | OS, | 143B |
| 1068- | SM, | Danshen Improves Survival of Patients With Breast Cancer and Dihydroisotanshinone I Induces Ferroptosis and Apoptosis of Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | BC, | NA | - | Human, | BC, | NA |
| 1216- | VitC, | Ascorbic acid induces ferroptosis via STAT3/GPX4 signaling in oropharyngeal cancer |
| - | in-vitro, | Laryn, | FaDu | - | in-vitro, | SCC, | SCC-154 |
| 1221- | Z, | Unexpected zinc dependency of ferroptosis: what is in a name? |
| - | Analysis, | Nor, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:1 prod#:% Target#:114 State#:0 Dir#:2
wNotes=0 sortOrder:rid,rpid