| Source: |
| Type: type of cell death |
| Situation in which a cell actively pursues a course toward death upon receiving certain stimuli. Cancer is one of the scenarios where too little apoptosis occurs, resulting in malignant cells that will not die. |
| 2432- | 2DG, | Inhibition of glycolytic enzyme hexokinase II (HK2) suppresses lung tumor growth |
| - | in-vitro, | Lung, | H23 | - | in-vitro, | Lung, | KP2 | - | in-vivo, | NA, | NA |
| 2327- | 2DG, | 2-Deoxy-d-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents |
| - | Review, | Var, | NA |
| 3453- | 5-ALA, | The heme precursor 5-aminolevulinic acid disrupts the Warburg effect in tumor cells and induces caspase-dependent apoptosis |
| - | in-vitro, | Lung, | A549 |
| 235- | AL, | Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway |
| - | in-vitro, | GBM, | U87MG |
| 239- | AL, | Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways |
| - | in-vitro, | GC, | SGC-7901 |
| 241- | AL, | Role of p38 MAPK activation and mitochondrial cytochrome-c release in allicin-induced apoptosis in SK-N-SH cells |
| - | in-vitro, | neuroblastoma, | SK-N-SH |
| 246- | AL, | Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway |
| - | in-vitro, | GC, | MGC803 |
| 251- | AL, | Inhibition of allicin in Eca109 and EC9706 cells via G2/M phase arrest and mitochondrial apoptosis pathway |
| - | in-vitro, | ESCC, | Eca109 | - | in-vitro, | ESCC, | EC9706 | - | in-vivo, | NA, | NA |
| 255- | AL, | Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 1290- | AL, | Effect of allicin on the expression of Bcl-2 and Bax protein in LM-8 cells |
| - | in-vitro, | OS, | LM8 |
| 2647- | AL, | The Mechanism in Gastric Cancer Chemoprevention by Allicin |
| - | Review, | GC, | NA |
| 298- | ALA, | Rad, | Synergistic Tumoricidal Effects of Alpha-Lipoic Acid and Radiotherapy on Human Breast Cancer Cells via HMGB1 |
| - | in-vitro, | BC, | MDA-MB-231 |
| 297- | ALA, | Insights on the Use of α-Lipoic Acid for Therapeutic Purposes |
| - | Review, | BC, | SkBr3 | - | Review, | neuroblastoma, | SK-N-SH | - | Review, | AD, | NA |
| 304- | ALA, | alpha-Lipoic acid induces apoptosis in human colon cancer cells by increasing mitochondrial respiration with a concomitant O2-*-generation |
| - | in-vitro, | Colon, | HT-29 |
| 281- | ALA, | Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation |
| - | in-vitro, | Lung, | H460 |
| 267- | ALA, | α-Lipoic Acid Targeting PDK1/NRF2 Axis Contributes to the Apoptosis Effect of Lung Cancer Cells |
| - | vitro+vivo, | Lung, | A549 | - | vitro+vivo, | Lung, | PC9 |
| 260- | ALA, | The effects of alpha-lipoic acid on breast of female albino rats exposed to malathion: Histopathological and immunohistochemical study |
| - | in-vivo, | BC, | NA |
| 3442- | ALA, | α‑lipoic acid modulates prostate cancer cell growth and bone cell differentiation |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | C4-2B | - | in-vitro, | Nor, | 3T3 |
| 3541- | ALA, | Insights on alpha lipoic and dihydrolipoic acids as promising scavengers of oxidative stress and possible chelators in mercury toxicology |
| - | Review, | Var, | NA |
| 1252- | aLinA, | α-Linolenic acid induces apoptosis, inhibits the invasion and metastasis, and arrests cell cycle in human breast cancer cells by inhibiting fatty acid synthase |
| - | in-vitro, | BC, | NA |
| 1078- | And, | Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | HUVECs | - | in-vivo, | BC, | MCF-7 | - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | BT549 | - | in-vitro, | BC, | MDA-MB-361 |
| 1158- | And, | GEM, | Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer |
| 1294- | And, | 5-FU, | Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expression |
| - | in-vitro, | CRC, | HCT116 |
| 1352- | And, | Andrographolide downregulates the v-Src and Bcr-Abl oncoproteins and induces Hsp90 cleavage in the ROS-dependent suppression of cancer malignancy |
| - | in-vitro, | AML, | K562 |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 |
| 1354- | And, | Andrographolide induces protective autophagy and targeting DJ-1 triggers reactive oxygen species-induced cell death in pancreatic cancer |
| - | in-vitro, | PC, | NA | - | in-vivo, | PC, | NA |
| 1146- | AP, | Potential use of nanoformulated ascorbyl palmitate as a promising anticancer agent: First comparative assessment between nano and free forms |
| - | in-vivo, | Nor, | NA |
| 1151- | Api, | Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo study |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | 22Rv1 | - | in-vivo, | NA, | NA |
| 1024- | Api, | CUR, | Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects |
| - | vitro+vivo, | Melanoma, | A375 | - | in-vitro, | Melanoma, | A2058 | - | in-vitro, | Melanoma, | RPMI-7951 |
| 2583- | Api, | Rad, | The influence of apigenin on cellular responses to radiation: From protection to sensitization |
| - | Review, | Var, | NA |
| 2593- | Api, | Apigenin promotes apoptosis of 4T1 cells through PI3K/AKT/Nrf2 pathway and improves tumor immune microenvironment in vivo |
| - | in-vivo, | BC, | 4T1 |
| 2632- | Api, | Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress |
| - | in-vitro, | EC, | NA |
| 2634- | Api, | Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells |
| - | in-vitro, | CRC, | HCT116 |
| 1537- | Api, | Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer |
| - | Review, | PC, | NA |
| 1536- | Api, | Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells |
| - | in-vitro, | MM, | MSTO-211H | - | in-vitro, | MM, | H2452 |
| 1564- | Api, | Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vivo, | NA, | NA |
| 1545- | Api, | The Potential Role of Apigenin in Cancer Prevention and Treatment |
| - | Review, | NA, | NA |
| 1546- | Api, | Apigenin in Cancer Prevention and Therapy: A Systematic Review and Meta-Analysis of Animal Models |
| - | Review, | NA, | NA |
| 1552- | Api, | Apigenin inhibits the growth of colorectal cancer through down-regulation of E2F1/3 by miRNA-215-5p |
| - | in-vitro, | CRC, | HCT116 |
| 1565- | Api, | Apigenin-7-glucoside induces apoptosis and ROS accumulation in lung cancer cells, and inhibits PI3K/Akt/mTOR pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | BEAS-2B | - | in-vitro, | Lung, | H1975 |
| 1560- | Api, | Apigenin as an anticancer agent |
| - | Review, | NA, | NA |
| 1563- | Api, | MET, | Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells |
| - | in-vitro, | Nor, | HDFa | - | in-vitro, | PC, | AsPC-1 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | LNCaP | - | in-vivo, | NA, | NA |
| 3383- | ART/DHA, | Dihydroartemisinin: A Potential Natural Anticancer Drug |
| - | Review, | Var, | NA |
| 3396- | ART/DHA, | Progress on the study of the anticancer effects of artesunate |
| - | Review, | Var, | NA |
| 1079- | ART/DHA, | Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2 |
| - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | HGC27 | - | in-vitro, | GC, | MGC803 |
| 556- | ART/DHA, | Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing |
| - | Review, | NA, | NA |
| 557- | ART/DHA, | Artemisinin and Its Derivatives in Cancer Care |
| - | Review, | Var, | NA |
| 558- | ART/DHA, | Artemisinin and Its Synthetic Derivatives as a Possible Therapy for Cancer |
| - | Review, | NA, | NA |
| 573- | ART/DHA, | Artesunate suppresses tumor growth and induces apoptosis through the modulation of multiple oncogenic cascades in a chronic myeloid leukemia xenograft mouse model |
| - | vitro+vivo, | NA, | NA |
| 571- | ART/DHA, | TMZ, | Artesunate enhances the therapeutic response of glioma cells to temozolomide by inhibition of homologous recombination and senescence |
| - | vitro+vivo, | GBM, | A172 | - | vitro+vivo, | GBM, | U87MG |
| 569- | ART/DHA, | Dihydroartemisinin exhibits anti-glioma stem cell activity through inhibiting p-AKT and activating caspase-3 |
| - | in-vitro, | GBM, | NA |
| 2321- | ART/DHA, | Dihydroartemisinin mediating PKM2-caspase-8/3-GSDME axis for pyroptosis in esophageal squamous cell carcinoma |
| - | in-vitro, | ESCC, | Eca109 | - | in-vitro, | ESCC, | EC9706 |
| 2578- | ART/DHA, | RES, | Synergic effects of artemisinin and resveratrol in cancer cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Cerv, | HeLa |
| 2576- | ART/DHA, | AL, | The Synergistic Anticancer Effect of Artesunate Combined with Allicin in Osteosarcoma Cell Line in Vitro and in Vivo |
| - | in-vitro, | OS, | MG63 | - | in-vivo, | NA, | NA |
| 1295- | AS, | Cisplatin, | Chemosensitizing Effect of Astragalus Polysaccharides on Nasopharyngeal Carcinoma Cells by Inducing Apoptosis and Modulating Expression of Bax/Bcl-2 Ratio and Caspases |
| - | in-vivo, | Laryn, | NA |
| 1338- | AS, | The Modulatory Properties of Astragalus membranaceus Treatment on Triple-Negative Breast Cancer: An Integrated Pharmacological Method |
| - | in-vitro, | BC, | NA |
| 1334- | AS, | Astragalus membranaceus: A Review of Its Antitumor Effects on Non-Small Cell Lung Cancer |
| - | Review, | NA, | NA |
| 1000- | AS, | 5-FU, | Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation |
| - | vitro+vivo, | BC, | 4T1 |
| 1304- | ASA, | Aspirin Inhibits Colorectal Cancer via the TIGIT-BCL2-BAX pathway in T Cells |
| - | in-vitro, | CRC, | NA | - | in-vivo, | NA, | NA |
| 1367- | Ash, | An anti-cancerous protein fraction from Withania somnifera induces ROS-dependent mitochondria-mediated apoptosis in human MDA-MB-231 breast cancer cells |
| - | in-vitro, | BC, | MDA-MB-231 |
| 1365- | Ash, | Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells |
| - | in-vitro, | Oral, | Ca9-22 | - | in-vitro, | Oral, | CAL27 |
| 1362- | Ash, | GEM, | Synergistic Inhibition of Pancreatic Cancer Cell Growth and Migration by Gemcitabine and Withaferin A |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | Hs766t |
| - | in-vitro, | Liver, | HUH7 | - | in-vivo, | Liver, | HUH7 |
| 1360- | Ash, | immuno, | Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer |
| - | in-vitro, | Lung, | H1650 | - | in-vitro, | Lung, | A549 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 1358- | Ash, | Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms |
| - | Review, | Var, | NA |
| 1369- | Ash, | Withaferin A inhibits cell proliferation of U266B1 and IM-9 human myeloma cells by inducing intrinsic apoptosis |
| - | in-vitro, | Melanoma, | U266 |
| 1357- | Ash, | Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | GL26 |
| 1356- | Ash, | Withaferin A induces apoptosis by ROS-dependent mitochondrial dysfunction in human colorectal cancer cells |
| - | in-vitro, | CRC, | HCT116 |
| 1372- | Ash, | Withaferin-A Induces Apoptosis in Osteosarcoma U2OS Cell Line via Generation of ROS and Disruption of Mitochondrial Membrane Potential |
| - | in-vitro, | OS, | U2OS |
| 2003- | Ash, | Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Nor, | TIG-1 | - | in-vitro, | PC, | LNCaP |
| 1176- | Ash, | Metabolic Alterations in Mammary Cancer Prevention by Withaferin A in a Clinically Relevant Mouse Model |
| - | in-vivo, | NA, | NA |
| 1174- | Ash, | Withaferin A Suppresses Estrogen Receptor-α Expression in Human Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vivo, | BC, | MDA-MB-231 | - | in-vitro, | BC, | T47D |
| 1173- | Ash, | Withaferin A inhibits proliferation of human endometrial cancer cells via transforming growth factor-β (TGF-β) signalling |
| - | in-vitro, | EC, | K1 | - | in-vitro, | Nor, | THESCs |
| 1142- | Ash, | Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer |
| - | Review, | BC, | MCF-7 | - | NA, | BC, | MDA-MB-231 | - | NA, | Nor, | HMEC |
| 3179- | Ash, | Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cells |
| - | in-vitro, | RCC, | Caki-1 |
| 3156- | Ash, | Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug |
| - | Review, | Var, | NA |
| 3166- | Ash, | Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives |
| - | Review, | Var, | NA |
| - | in-vivo, | BC, | 4T1 |
| 996- | Ba, | Tam, | Baicalein resensitizes tamoxifen‐resistant breast cancer cells by reducing aerobic glycolysis and reversing mitochondrial dysfunction via inhibition of hypoxia‐inducible factor‐1α |
| 1288- | Ba, | The Traditional Chinese Medicine Baicalein Potently Inhibits Gastric Cancer Cells |
| - | in-vitro, | GC, | SGC-7901 |
| 1533- | Ba, | Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species Generation |
| - | in-vitro, | BrCC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
| 1519- | Ba, | Baicalein inhibits KB oral cancer cells by inducing apoptosis via modulation of ROS |
| - | in-vitro, | Oral, | KB |
| 1521- | Ba, | Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells |
| - | in-vitro, | Bladder, | 5637 |
| 1523- | Ba, | Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | Nor, | hFOB1.19 |
| - | in-vitro, | Lung, | A549 |
| - | in-vitro, | Lung, | H1975 | - | in-vivo, | Lung, | NA |
| 1528- | Ba, | Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma |
| - | in-vitro, | OS, | CAL27 |
| 1532- | Ba, | Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives |
| - | Review, | NA, | NA |
| 1526- | Ba, | Baicalein induces apoptosis through ROS-mediated mitochondrial dysfunction pathway in HL-60 cells |
| - | in-vitro, | AML, | HL-60 |
| 2599- | Ba, | Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 2600- | Ba, | Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells |
| - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | HCC, | Bel-7402 |
| 2603- | Ba, | Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 2608- | Ba, | Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activity |
| - | in-vitro, | HCC, | Bel-7402 |
| 2618- | Ba, | Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer |
| - | in-vitro, | Lung, | H1299 | - | in-vivo, | Lung, | A549 |
| 2474- | Ba, | Anticancer properties of baicalein: a review |
| - | Review, | Var, | NA | - | in-vitro, | Nor, | BV2 |
| 2476- | Ba, | Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells |
| - | in-vitro, | Lung, | A549 |
| 2769- | Ba, | Rad, | Baicalein ameliorates ionizing radiation-induced injuries by rebalancing gut microbiota and inhibiting apoptosis |
| - | in-vivo, | Nor, | NA |
| 2021- | BBR, | Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways |
| - | Review, | NA, | NA |
| 1390- | BBR, | Rad, | Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells |
| - | in-vitro, | Pca, | PC3 |
| 1398- | BBR, | Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damage |
| - | in-vitro, | Kidney, | NA |
| 1393- | BBR, | EPI, | Berberine promotes antiproliferative effects of epirubicin in T24 bladder cancer cells by enhancing apoptosis and cell cycle arrest |
| - | in-vitro, | Bladder, | T24 |
| 1395- | BBR, | Analysis of the mechanism of berberine against stomach carcinoma based on network pharmacology and experimental validation |
| - | in-vitro, | GC, | NA |
| 1399- | BBR, | Rad, | Radiotherapy Enhancing and Radioprotective Properties of Berberine: A Systematic Review |
| - | Review, | NA, | NA |
| 1400- | BBR, | Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells |
| - | in-vitro, | Melanoma, | U266 |
| 1401- | BBR, | Berberine induces apoptosis in glioblastoma multiforme U87MG cells via oxidative stress and independent of AMPK activity |
| - | in-vitro, | GBM, | U87MG |
| 1404- | BBR, | Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation |
| - | in-vitro, | Pca, | PC3 |
| 1374- | BBR, | PDT, | Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cells |
| - | in-vitro, | RCC, | 786-O | - | in-vitro, | RCC, | HK-2 |
| 1387- | BBR, | Antitumor Activity of Berberine by Activating Autophagy and Apoptosis in CAL-62 and BHT-101 Anaplastic Thyroid Carcinoma Cell Lines |
| - | in-vitro, | Thyroid, | CAL-62 |
| 1384- | BBR, | Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines |
| - | in-vitro, | PC, | PANC1 |
| 1382- | BBR, | Berberine increases the expression of cytokines and proteins linked to apoptosis in human melanoma cells |
| - | in-vitro, | Melanoma, | SK-MEL-28 |
| 1381- | BBR, | Rad, | Berberine enhances the sensitivity of radiotherapy in ovarian cancer cell line (SKOV-3) |
| - | in-vitro, | Ovarian, | SKOV3 |
| 1389- | BBR, | Lap, | Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS |
| - | in-vitro, | BC, | BT474 | - | in-vitro, | BC, | AU-565 |
| 1379- | BBR, | Berberine derivative DCZ0358 induce oxidative damage by ROS-mediated JNK signaling in DLBCL cells |
| - | in-vitro, | lymphoma, | NA |
| 1378- | BBR, | Berberine induces non-small cell lung cancer apoptosis via the activation of the ROS/ASK1/JNK pathway |
| - | in-vitro, | Lung, | NA |
| 1377- | BBR, | Berberine inhibits autophagy and promotes apoptosis of fibroblast-like synovial cells from rheumatoid arthritis patients through the ROS/mTOR signaling pathway |
| - | in-vitro, | Arthritis, | NA |
| 1092- | BBR, | Berberine as a Potential Anticancer Agent: A Comprehensive Review |
| - | Review, | NA, | NA |
| 2709- | BBR, | Berberine inhibits the glycolysis and proliferation of hepatocellular carcinoma cells by down-regulating HIF-1α |
| - | in-vitro, | HCC, | HepG2 |
| 2711- | BBR, | Berberine inhibits the progression of breast cancer by regulating METTL3-mediated m6A modification of FGF7 mRNA |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 2674- | BBR, | Berberine: A novel therapeutic strategy for cancer |
| - | Review, | Var, | NA | - | Review, | IBD, | NA |
| 2681- | BBR, | PDT, | Berberine-photodynamic induced apoptosis by activating endoplasmic reticulum stress-autophagy pathway involving CHOP in human malignant melanoma cells |
| - | in-vitro, | Melanoma, | NA |
| 2682- | BBR, | Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions |
| - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | HCT116 |
| 2685- | BBR, | Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells |
| - | in-vitro, | neuroblastoma, | NA |
| 2692- | BBR, | Berberine affects osteosarcoma via downregulating the caspase-1/IL-1β signaling axis |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | OS, | SaOS2 | - | in-vivo, | NA, | NA |
| 1473- | BCA, | SFN, | An Insight on Synergistic Anti-cancer Efficacy of Biochanin A and Sulforaphane Combination Against Breast Cancer |
| - | in-vitro, | BC, | MCF-7 |
| 2750- | BetA, | GEM, | Betulinic acid, a major therapeutic triterpene of Celastrus orbiculatus Thunb., acts as a chemosensitizer of gemcitabine by promoting Chk1 degradation |
| - | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | Lung, | H1299 |
| 2745- | BetA, | Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors |
| - | in-vitro, | CRC, | RKO | - | in-vitro, | CRC, | SW480 | - | in-vivo, | NA, | NA |
| 2743- | BetA, | Betulinic acid and the pharmacological effects of tumor suppression |
| - | Review, | Var, | NA |
| 2757- | BetA, | Betulinic Acid Inhibits Glioma Progression by Inducing Ferroptosis Through the PI3K/Akt and NRF2/HO-1 Pathways |
| - | in-vitro, | GBM, | U251 |
| 2717- | BetA, | Betulinic Acid Induces ROS-Dependent Apoptosis and S-Phase Arrest by Inhibiting the NF-κB Pathway in Human Multiple Myeloma |
| - | in-vitro, | Melanoma, | U266 | - | in-vivo, | Melanoma, | NA | - | in-vitro, | Melanoma, | RPMI-8226 |
| 2718- | BetA, | The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis |
| - | in-vitro, | AML, | U937 |
| 2719- | BetA, | Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential |
| - | in-vitro, | CRC, | T24 | - | in-vitro, | Bladder, | UMUC3 | - | in-vitro, | Bladder, | 5637 |
| 2723- | BetA, | Betulinic acid and oleanolic acid modulate CD81 expression and induce apoptosis in triple-negative breast cancer cells through ROS generation |
| - | in-vitro, | BC, | MDA-MB-231 |
| - | Review, | Var, | NA |
| 1285- | BetA, | Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells |
| - | in-vitro, | Var, | NA |
| 1305- | BetA, | Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells |
| - | in-vitro, | UEC, | NA |
| 1250- | Bif, | Oral administration of Bifidobacterium breve promotes antitumor efficacy via dendritic cells-derived interleukin 12 |
| - | in-vitro, | SCC, | NA |
| 718- | Bor, | Boric Acid Exhibits Anticancer Properties in Human Endometrial Cancer Ishikawa Cells |
| - | in-vitro, | NA, | NA |
| 719- | Bor, | Boric Acid Affects Cell Proliferation, Apoptosis, and Oxidative Stress in ALL Cells |
| - | in-vitro, | Var, | NA |
| 720- | Bor, | High Concentrations of Boric Acid Trigger Concentration-Dependent Oxidative Stress, Apoptotic Pathways and Morphological Alterations in DU-145 Human Prostate Cancer Cell Line |
| - | in-vitro, | Pca, | DU145 |
| 722- | Bor, | Boric acid as a promising agent in the treatment of ovarian cancer: Molecular mechanisms |
| - | in-vitro, | Ovarian, | MDAH-2774 |
| 723- | Bor, | Boric acid suppresses cell proliferation by TNF signaling pathway mediated apoptosis in SW-480 human colon cancer line |
| - | in-vitro, | Colon, | SW480 |
| 724- | Bor, | Does Boric Acid Inhibit Cell Proliferation on MCF-7 and MDA-MB-231 Cells in Monolayer and Spheroid Cultures by Using Apoptosis Pathways? |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 |
| 725- | Bor, | Boric acid exert anti-cancer effect in poorly differentiated hepatocellular carcinoma cells via inhibition of AKT signaling pathway |
| - | in-vitro, | HCC, | NA |
| 707- | Bor, | Cytotoxic and apoptotic effects of boron compounds on leukemia cell line |
| - | in-vitro, | AML, | HL-60 |
| 716- | Bor, | Sugar-borate esters--potential chemical agents in prostate cancer chemoprevention |
| 755- | Bor, | https://aacrjournals.org/cancerres/article/67/9_Supplement/4220/535557/Boric-acid-induces-apoptosis-in-both-prostate-and |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | PC, | PC3 |
| 766- | Bor, | In vitro effects of boric acid on human liver hepatoma cell line (HepG2) at the half-maximal inhibitory concentration |
| - | in-vitro, | Liver, | HepG2 |
| 740- | Bor, | Anti-cancer effect of boron derivatives on small-cell lung cancer |
| - | in-vitro, | Lung, | DMS114 | - | in-vitro, | Nor, | MRC-5 |
| 749- | Bor, | Comparative effects of boric acid and calcium fructoborate on breast cancer cells |
| 751- | Bor, | 5-FU, | Cytotoxic and Apoptotic Effects of the Combination of Borax (Sodium Tetraborate) and 5-Fluorouracil on DLD-1 Human Colorectal Adenocarcinoma Cell Line |
| - | in-vitro, | CRC, | DLD1 |
| 697- | Bor, | Boron-containing compounds as preventive and chemotherapeutic agents for cancer |
| - | Review, | NA, | NA |
| 696- | Bor, | Nothing Boring About Boron |
| - | Review, | Var, | NA |
| - | in-vitro, | Pca, | DU145 |
| 1424- | Bos, | Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells |
| - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 1426- | Bos, | CUR, | Chemo, | Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer |
| - | in-vivo, | CRC, | NA | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | RKO | - | in-vitro, | CRC, | SW480 | - | in-vitro, | RCC, | SW-620 | - | in-vitro, | RCC, | HT-29 | - | in-vitro, | CRC, | Caco-2 |
| 1449- | Bos, | Chemo, | Anti-proliferative, Pro-apoptotic, and Chemosensitizing Potential of 3-Acetyl-11-keto-β-boswellic Acid (AKBA) Against Prostate Cancer Cells |
| - | in-vitro, | Pca, | PC3 |
| 1448- | Bos, | A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells |
| - | in-vitro, | AML, | HL-60 |
| 2775- | Bos, | The journey of boswellic acids from synthesis to pharmacological activities |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | PSA, | NA |
| 2768- | Bos, | Boswellic acids as promising agents for the management of brain diseases |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 1297- | CA, | Caffeic Acid Phenethyl Ester (CAPE) Induced Apoptosis in Serous Ovarian Cancer OV7 Cells by Deregulation of BCL2/BAX Genes |
| - | in-vitro, | Ovarian, | OV7 |
| 1651- | CA, | PBG, | Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer |
| - | Review, | Var, | NA |
| - | in-vitro, | Cerv, | SiHa |
| 1262- | CAP, | Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway |
| - | vitro+vivo, | BC, | NA |
| 2014- | CAP, | Role of Mitochondrial Electron Transport Chain Complexes in Capsaicin Mediated Oxidative Stress Leading to Apoptosis in Pancreatic Cancer Cells |
| - | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | Nor, | HPDE-6 | - | in-vivo, | PC, | AsPC-1 |
| 2019- | CAP, | Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer |
| - | Review, | Var, | NA |
| 2012- | CAP, | Capsaicin induces cytotoxicity in human osteosarcoma MG63 cells through TRPV1-dependent and -independent pathways |
| - | NA, | OS, | MG63 |
| 2652- | CAP, | Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence |
| - | Review, | Var, | NA |
| 1287- | CAR, | Carvacrol induces apoptosis in human breast cancer cells via Bcl-2/CytC signaling pathway |
| - | in-vitro, | BC, | HCC1937 |
| 1103- | CBD, | Cannabidiol inhibits invasion and metastasis in colorectal cancer cells by reversing epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway |
| - | vitro+vivo, | NA, | NA |
| 4493- | Chit, | Selenate, | Se, | A novel synthetic chitosan selenate (CS) induces apoptosis in A549 lung cancer cells via the Fas/FasL pathway |
| - | in-vitro, | Lung, | A549 |
| 4487- | Chit, | PreB, | Unravelling the Role of Chitin and Chitosan in Prebiotic Activity and Correlation With Cancer: A Narrative Review |
| - | Review, | NA, | NA |
| 4482- | Chit, | Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44 |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 |
| 4478- | Chit, | Chitosan promotes ROS-mediated apoptosis and S phase cell cycle arrest in triple-negative breast cancer cells: evidence for intercalative interaction with genomic DNA |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | T47D |
| 3258- | CHr, | PBG, | Chrysin Induced Cell Apoptosis and Inhibited Invasion Through Regulation of TET1 Expression in Gastric Cancer Cells |
| - | in-vitro, | GC, | MKN45 |
| 1249- | CHr, | Chrysin as an Anti-Cancer Agent Exerts Selective Toxicity by Directly Inhibiting Mitochondrial Complex II and V in CLL B-lymphocytes |
| - | in-vitro, | CLL, | NA |
| 2800- | CHr, | Chrysin Activates Notch1 Signaling and Suppresses Tumor Growth of Anaplastic Thyroid Carcinoma In vitro and In vivo |
| - | in-vitro, | Thyroid, | NA |
| 2780- | CHr, | Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic Review |
| - | Review, | Var, | NA |
| 2782- | CHr, | Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives |
| - | Review, | Var, | NA | - | Review, | Stroke, | NA | - | Review, | Park, | NA |
| 2783- | CHr, | Apoptotic Effects of Chrysin in Human Cancer Cell Lines |
| - | Review, | Var, | NA |
| 2784- | CHr, | Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review) |
| - | Review, | Var, | NA |
| 2786- | CHr, | Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives |
| - | Review, | Var, | NA |
| 2790- | CHr, | Chrysin: Pharmacological and therapeutic properties |
| - | Review, | Var, | NA |
| - | in-vitro, | BC, | NA |
| 1143- | CHr, | Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2 |
| - | in-vitro, | HCC, | HepG2 | - | in-vivo, | NA, | NA | - | in-vitro, | HCC, | HepG3 | - | in-vitro, | HCC, | HUH7 |
| 1567- | Cin, | Cinnamon: Mystic powers of a minute ingredient |
| - | Review, | Var, | NA |
| 1577- | Citrate, | Citric acid promotes SPARC release in pancreatic cancer cells and inhibits the progression of pancreatic tumors in mice on a high-fat diet |
| - | in-vivo, | PC, | NA | - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | PATU-8988 | - | in-vitro, | PC, | MIA PaCa-2 |
| 1580- | Citrate, | Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway |
| - | in-vitro, | Pca, | PC3 | - | in-vivo, | PC, | NA | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | WPMY-1 |
| 1583- | Citrate, | Extracellular citrate and metabolic adaptations of cancer cells |
| - | Review, | NA, | NA |
| 1585- | Citrate, | Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer |
| - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | A2780S | - | in-vitro, | Nor, | HEK293 |
| 1593- | Citrate, | Citrate Induces Apoptotic Cell Death: A Promising Way to Treat Gastric Carcinoma? |
| - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | SGC-7901 |
| 1602- | Cu, | A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy† |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | 4T1 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 |
| 1572- | Cu, | Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy |
| - | Review, | NA, | NA |
| 1571- | Cu, | Copper in cancer: From pathogenesis to therapy |
| - | Review, | NA, | NA |
| 1410- | CUR, | Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathway |
| - | vitro+vivo, | OS, | MG63 |
| 1505- | CUR, | Epigenetic targets of bioactive dietary components for cancer prevention and therapy |
| - | Review, | NA, | NA |
| 933- | CUR, | EP, | Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: A global proteomics study |
| - | in-vitro, | BC, | NA |
| 134- | CUR, | RES, | MEL, | SIL, | Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 |
| 124- | CUR, | Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | C4-2B |
| 435- | CUR, | Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway |
| - | in-vitro, | Lung, | A549 |
| 439- | CUR, | Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway |
| - | in-vitro, | CRC, | LGR5 |
| 407- | CUR, | Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress |
| - | in-vitro, | Melanoma, | A375 |
| 406- | CUR, | Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2 |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Hepat, | HepG2 |
| 405- | CUR, | 5-FU, | Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis |
| - | vitro+vivo, | CRC, | HCT116 |
| 477- | CUR, | Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells |
| - | in-vitro, | Cerv, | SiHa |
| 468- | CUR, | 5-FU, | Gut microbiota enhances the chemosensitivity of hepatocellular carcinoma to 5-fluorouracil in vivo by increasing curcumin bioavailability |
| - | vitro+vivo, | Liver, | HepG2 | - | vitro+vivo, | Liver, | 402 | - | vitro+vivo, | Liver, | Bel7 |
| 459- | CUR, | Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | RT4 |
| 460- | CUR, | Curcumin Suppresses microRNA-7641-Mediated Regulation of p16 Expression in Bladder Cancer |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | TCCSUP | - | in-vitro, | Bladder, | J82 |
| 461- | CUR, | Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
| 467- | CUR, | Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling |
| - | in-vitro, | Liver, | HepG2 |
| 458- | CUR, | Curcumin suppresses gastric cancer by inhibiting gastrin‐mediated acid secretion |
| - | vitro+vivo, | GC, | SGC-7901 |
| 471- | CUR, | Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells |
| - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | A2780S |
| 472- | CUR, | Curcumin inhibits ovarian cancer progression by regulating circ-PLEKHM3/miR-320a/SMG1 axis |
| - | vitro+vivo, | Ovarian, | SKOV3 | - | vitro+vivo, | Ovarian, | A2780S |
| 474- | CUR, | Modification of radiosensitivity by Curcumin in human pancreatic cancer cell lines |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | MIA PaCa-2 |
| 475- | CUR, | Curcumin induces apoptotic cell death in human pancreatic cancer cells via the miR-340/XIAP signaling pathway |
| - | in-vitro, | PC, | PANC1 |
| 476- | CUR, | The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer |
| - | in-vitro, | PC, | PATU-8988 | - | in-vitro, | PC, | PANC1 |
| 442- | CUR, | 5-FU, | Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress |
| - | in-vitro, | CRC, | HCT116 |
| 444- | CUR, | Cisplatin, | LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells |
| - | vitro+vivo, | CRC, | HCT8 |
| 448- | CUR, | Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation |
| - | in-vitro, | CRC, | HT-29 |
| 454- | CUR, | Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response Pathway |
| - | in-vitro, | GC, | MGC803 |
| 455- | CUR, | Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin |
| - | in-vitro, | GC, | SGC-7901 |
| 457- | CUR, | Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling |
| - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | GC, | BGC-823 |
| 990- | CUR, | Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase II in human colorectal cancer cells in vitro |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT-29 |
| 479- | CUR, | Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments |
| - | in-vitro, | Tong, | CAL27 |
| 480- | CUR, | Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells |
| - | in-vitro, | GBM, | SNB19 |
| 482- | CUR, | PDT, | The Antitumor Effect of Curcumin in Urothelial Cancer Cells Is Enhanced by Light Exposure In Vitro |
| - | in-vitro, | Bladder, | RT112 | - | in-vitro, | Bladder, | UMUC3 |
| 483- | CUR, | PDT, | Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin |
| - | in-vivo, | NA, | A431 |
| 2821- | CUR, | Antioxidant curcumin induces oxidative stress to kill tumor cells (Review) |
| - | Review, | Var, | NA |
| 2808- | CUR, | Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation |
| - | in-vitro, | Liver, | HUH7 |
| 2688- | CUR, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 2654- | CUR, | Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence |
| - | Review, | Var, | NA |
| 1871- | DAP, | Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth |
| - | in-vitro, | AML, | U937 | - | in-vivo, | AML, | NA |
| 1889- | DCA, | A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth |
| - | Review, | Var, | NA |
| 1874- | DCA, | Dichloroacetate induces apoptosis of epithelial ovarian cancer cells through a mechanism involving modulation of oxidative stress |
| - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | MDAH-2774 |
| 1873- | DCA, | Dual-targeting of aberrant glucose metabolism in glioblastoma |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 |
| 1870- | DCA, | Rad, | Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation |
| - | in-vitro, | Pca, | PC3 |
| 1868- | DCA, | MET, | Long-term stabilization of stage 4 colon cancer using sodium dichloroacetate therapy |
| - | Case Report, | NA, | NA |
| 1442- | Deg, | Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention |
| - | Review, | Var, | NA |
| 4456- | DFE, | Induction of apoptosis and cell cycle arrest by ethyl acetate fraction of Phoenix dactylifera L. (Ajwa dates) in prostate cancer cells |
| - | in-vitro, | Pca, | PC3 |
| 4455- | DFE, | Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | 3T3 |
| 4454- | DFE, | Cytostatic and Anti-tumor Potential of Ajwa Date Pulp against Human Hepatocellular Carcinoma HepG2 Cells |
| - | in-vitro, | Liver, | HepG2 |
| 1843- | dietFMD, | BTZ, | Cyclic Fasting–Mimicking Diet Plus Bortezomib and Rituximab Is an Effective Treatment for Chronic Lymphocytic Leukemia |
| - | in-vivo, | CLL, | NA |
| 1858- | dietFMD, | Chemo, | Effect of short-term fasting on the cisplatin activity in human oral squamous cell carcinoma cell line HN5 and chemotherapy side effects |
| - | in-vitro, | HNSCC, | HN5 |
| 1861- | dietFMD, | Chemo, | Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models |
| - | in-vitro, | Colon, | CT26 | - | in-vivo, | NA, | NA |
| 1621- | EA, | The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art |
| - | Review, | Var, | NA |
| 1618- | EA, | A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action |
| - | Review, | BC, | NA |
| 1607- | EA, | Exploring the Potential of Ellagic Acid in Gastrointestinal Cancer Prevention: Recent Advances and Future Directions |
| - | Review, | GC, | NA |
| 1606- | EA, | Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells |
| - | in-vitro, | Colon, | HCT15 |
| 1620- | EA, | Rad, | Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: an in vitro study |
| - | in-vitro, | Liver, | HepG2 |
| 1022- | EDM, | Evodiamine suppresses non-small cell lung cancer by elevating CD8+ T cells and downregulating the MUC1-C/PD-L1 axis |
| - | in-vivo, | Lung, | H1975 | - | in-vitro, | Lung, | H1650 |
| - | in-vitro, | HCC, | NA | - | in-vivo, | NA, | NA |
| 20- | EGCG, | Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer |
| - | in-vivo, | Liver, | NA | - | in-vivo, | Tong, | NA |
| 660- | EGCG, | FA, | Epigallocatechin-3-gallate Delivered in Nanoparticles Increases Cytotoxicity in Three Breast Carcinoma Cell Lines |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
| 661- | EGCG, | GoldNP, | Epigallocatechin-3-Gallate-Loaded Gold Nanoparticles: Preparation and Evaluation of Anticancer Efficacy in Ehrlich Tumor-Bearing Mice |
| - | vitro+vivo, | NA, | NA |
| 642- | EGCG, | Prooxidant Effects of Epigallocatechin-3-Gallate in Health Benefits and Potential Adverse Effect |
| 640- | EGCG, | Epigallocatechin Gallate (EGCG) Is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Colon, | SW480 |
| 695- | EGCG, | TFdiG, | The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention |
| - | in-vitro, | NA, | HL-60 |
| 692- | EGCG, | EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement |
| - | Review, | NA, | NA |
| 691- | EGCG, | Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer |
| - | Review, | NA, | NA |
| 685- | EGCG, | CUR, | SFN, | RES, | GEN | The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein |
| - | Analysis, | NA, | NA |
| 677- | EGCG, | Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2 α /ATF4 and IRE1 α |
| - | in-vitro, | CRC, | HT-29 |
| 676- | EGCG, | Chemo, | The Potential of Epigallocatechin Gallate (EGCG) in Targeting Autophagy for Cancer Treatment: A Narrative Review |
| - | Review, | NA, | NA |
| 672- | EGCG, | Molecular Targets of Epigallocatechin—Gallate (EGCG): A Special Focus on Signal Transduction and Cancer |
| - | Review, | NA, | NA |
| 1516- | EGCG, | Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential |
| - | Review, | NA, | NA |
| 3208- | EGCG, | Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2α/ATF4 and IRE1α |
| - | in-vitro, | Colon, | HT29 | - | in-vitro, | Nor, | 3T3 |
| 3205- | EGCG, | The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseas |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 3202- | EGCG, | Epigallocatechin-3-gallate enhances ER stress-induced cancer cell apoptosis by directly targeting PARP16 activity |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | HCC, | QGY-7703 |
| 3236- | EGCG, | BA, | Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate |
| - | in-vitro, | Colon, | RKO | - | in-vitro, | Colon, | HCT116 | - | in-vitro, | Colon, | HT29 |
| 3241- | EGCG, | Epigallocatechin gallate triggers apoptosis by suppressing de novo lipogenesis in colorectal carcinoma cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | HUH7 |
| 3243- | EGCG, | (−)-Epigallocatechin-3-Gallate Inhibits Colorectal Cancer Stem Cells by Suppressing Wnt/β-Catenin Pathway |
| 1321- | EMD, | Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model |
| - | in-vitro, | CRC, | LS1034 | - | in-vivo, | NA, | NA |
| 1322- | EMD, | The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers |
| - | Review, | Var, | NA |
| 1245- | EMD, | Apoptosis">Emodin Exhibits Strong Cytotoxic Effect in Cervical Cancer Cells by Activating Intrinsic Pathway of Apoptosis |
| - | in-vitro, | Cerv, | HeLa |
| 1325- | EMD, | PacT, | Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivo |
| - | vitro+vivo, | Lung, | A549 |
| 1326- | EMD, | Emodin induces a reactive oxygen species-dependent and ATM-p53-Bax mediated cytotoxicity in lung cancer cells |
| - | in-vitro, | Lung, | A549 |
| 1328- | EMD, | Emodin induces apoptosis of human tongue squamous cancer SCC-4 cells through reactive oxygen species and mitochondria-dependent pathways |
| - | in-vitro, | Tong, | SCC4 |
| 3460- | EP, | Picosecond pulsed electric fields induce apoptosis in HeLa cells via the endoplasmic reticulum stress and caspase-dependent signaling pathways |
| - | in-vitro, | Cerv, | HeLa |
| 1039- | F, | Anti-Proliferative and Pro-Apoptotic vLMW Fucoidan Formulas Decrease PD-L1 Surface Expression in EBV Latency III and DLBCL Tumoral B-Cells by Decreasing Actin Network |
| - | in-vitro, | NA, | NA |
| 1114- | F, | The Potential Effect of Fucoidan on Inhibiting Epithelial-to-Mesenchymal Transition, Proliferation, and Increase in Apoptosis for Endometriosis Treatment: In Vivo and In Vitro Study |
| - | vitro+vivo, | NA, | NA |
| 1112- | FA, | Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | BC, | NA |
| 1289- | FA, | Cytotoxic and Apoptotic Effects of Ferulic Acid on Renal Carcinoma Cell Line (ACHN) |
| - | in-vitro, | RCC, | NA |
| 1655- | FA, | Ferulic acid inhibiting colon cancer cells at different Duke’s stages |
| - | in-vitro, | Colon, | SW480 | - | in-vitro, | Colon, | Caco-2 | - | in-vitro, | Colon, | HCT116 |
| 1654- | FA, | Molecular mechanism of ferulic acid and its derivatives in tumor progression |
| - | Review, | Var, | NA |
| 2494- | Fenb, | Oral Fenbendazole for Cancer Therapy in Humans and Animals |
| - | Review, | Var, | NA |
| 2844- | FIS, | Fisetin, a dietary flavonoid induces apoptosis via modulating the MAPK and PI3K/Akt signalling pathways in human osteosarcoma (U-2 OS) cells |
| - | in-vitro, | OS, | U2OS |
| 2851- | FIS, | Apoptosis-induction-in-breast-cancer">Apoptosis induction in breast cancer cell lines by the dietary flavonoid fisetin |
| - | in-vitro, | BC, | MDA-MB-468 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | SkBr3 | - | in-vitro, | Nor, | NA |
| 2853- | FIS, | Fisetin Inhibits Cell Proliferation and Induces Apoptosis via JAK/STAT3 Signaling Pathways in Human Thyroid TPC 1 Cancer Cells |
| - | in-vitro, | Thyroid, | TPC-1 |
| - | in-vitro, | RCC, | Caki-1 |
| 2857- | FIS, | A review on the chemotherapeutic potential of fisetin: In vitro evidences |
| - | Review, | Var, | NA |
| 2826- | FIS, | Fisetin induces apoptosis in breast cancer MDA-MB-453 cells through degradation of HER2/neu and via the PI3K/Akt pathway |
| - | in-vitro, | BC, | MDA-MB-453 |
| 2829- | FIS, | Fisetin: An anticancer perspective |
| - | Review, | Var, | NA |
| 2839- | FIS, | Dietary flavonoid fisetin for cancer prevention and treatment |
| - | Review, | Var, | NA |
| 4028- | FulvicA, | Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells |
| - | in-vitro, | Liver, | HUH7 |
| - | in-vitro, | Oral, | NA |
| 1300- | GA, | PacT, | carbop, | Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell line |
| - | in-vitro, | BC, | MCF-7 |
| 934- | Gallo, | Galloflavin (CAS 568-80-9): a novel inhibitor of lactate dehydrogenase |
| - | Analysis, | NA, | NA |
| 1973- | GamB, | Gambogic acid deactivates cytosolic and mitochondrial thioredoxins by covalent binding to the functional domain |
| - | in-vitro, | Liver, | SMMC-7721 cell |
| 1969- | GamB, | Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 1954- | GamB, | Gambogic acid induces apoptosis in hepatocellular carcinoma SMMC-7721 cells by targeting cytosolic thioredoxin reductase |
| - | in-vitro, | HCC, | SMMC-7721 cell |
| 1955- | GamB, | Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer |
| - | in-vitro, | Pca, | NA |
| 1956- | GamB, | Gambogic Acid Inhibits Malignant Melanoma Cell Proliferation Through Mitochondrial p66shc/ROS-p53/Bax-Mediated Apoptosis |
| - | in-vitro, | Melanoma, | A375 |
| 1957- | GamB, | Nanoscale Features of Gambogic Acid Induced ROS-Dependent Apoptosis in Esophageal Cancer Cells Imaged by Atomic Force Microscopy |
| - | in-vitro, | ESCC, | EC9706 |
| 1961- | GamB, | Effects of gambogic acid on the activation of caspase-3 and downregulation of SIRT1 in RPMI-8226 multiple myeloma cells via the accumulation of ROS |
| - | in-vitro, | Melanoma, | RPMI-8226 |
| 808- | GAR, | CUR, | Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells |
| - | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | PC, | PANC1 |
| 831- | GAR, | CUR, | Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells |
| - | in-vitro, | AML, | HL-60 |
| 830- | GAR, | Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cells |
| - | in-vitro, | CRC, | HT-29 |
| 817- | GAR, | Garcinol inhibits esophageal cancer metastasis by suppressing the p300 and TGF-β1 signaling pathways |
| - | vitro+vivo, | SCC, | KYSE150 | - | vitro+vivo, | SCC, | KYSE450 |
| 825- | GAR, | Garcinol-induced apoptosis in prostate and pancreatic cancer cells is mediated by NF- kappaB signaling |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | Bxpc-3 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | C4-2B |
| 820- | GAR, | Garcinol in gastrointestinal cancer prevention: recent advances and future prospects |
| - | Review, | NA, | NA |
| 818- | GAR, | GB, | Garcinol Sensitizes NSCLC Cells to Standard Therapies by Regulating EMT-Modulating miRNAs |
| - | in-vitro, | Lung, | A549 |
| 814- | GAR, | PacT, | Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model |
| - | in-vivo, | BC, | NA |
| 810- | GAR, | GEM, | Garcinol sensitizes human pancreatic adenocarcinoma cells to gemcitabine in association with microRNA signatures |
| - | in-vitro, | PC, | NA |
| 807- | GAR, | Garcinol inhibits cell proliferation and promotes apoptosis in pancreatic adenocarcinoma cells |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | Bxpc-3 |
| 806- | GAR, | Garcinol exerts anti-cancer effect in human cervical cancer cells through upregulation of T-cadherin |
| - | vitro+vivo, | Pca, | HeLa | - | vitro+vivo, | Cerv, | SiHa |
| 796- | GAR, | Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression |
| - | vitro+vivo, | Pca, | HeLa |
| 798- | GAR, | Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17β-estradiol |
| - | in-vitro, | BC, | MCF-7 |
| 793- | GAR, | Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancer |
| - | in-vitro, | SCC, | SCC9 | - | in-vitro, | SCC, | SCC4 | - | in-vitro, | SCC, | SCC25 |
| 799- | GAR, | Apoptosis-inducing effect of garcinol is mediated by NF-kappaB signaling in breast cancer cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | NMSC, | MCF10 |
| 801- | GAR, | Cisplatin, | Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers |
| - | in-vivo, | HNSCC, | NA |
| 802- | GAR, | Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway |
| - | in-vitro, | GC, | HGC27 |
| 1186- | Gb, | Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis |
| - | in-vitro, | PC, | NA | - | in-vitro, | Nor, | HUVECs | - | in-vivo, | PC, | NA |
| 1187- | Gb, | Ginkgolic Acid C 17:1, Derived from Ginkgo biloba Leaves, Suppresses Constitutive and Inducible STAT3 Activation through Induction of PTEN and SHP-1 Tyrosine Phosphatase |
| - | in-vitro, | Melanoma, | U251 | - | in-vitro, | Melanoma, | MM.1S |
| 1189- | Gb, | New insight into the mechanisms of Ginkgo biloba leaves in the treatment of cancer |
| - | Review, | NA, | NA |
| 1292- | Ge, | EGCG, | Antiproliferative and Apoptotic Effects Triggered by Grape Seed Extract (GSE) versus Epigallocatechin and Procyanidins on Colon Cancer Cell Lines |
| - | in-vitro, | Colon, | Caco-2 | - | in-vitro, | CRC, | HCT8 |
| 1504- | GEN, | Epigenetic targets of bioactive dietary components for cancer prevention and therapy |
| - | Review, | NA, | NA |
| 2997- | GEN, | Genistein Inhibition of Topoisomerase IIα Expression Participated by Sp1 and Sp3 in HeLa Cell |
| - | in-vitro, | Cerv, | HeLa |
| 1116- | GI, | 6-Shogaol Inhibits the Cell Migration of Colon Cancer by Suppressing the EMT Process Through the IKKβ/NF-κB/Snail Pathway |
| - | in-vitro, | Colon, | Caco-2 | - | in-vitro, | CRC, | HCT116 |
| 4513- | GLA, | Antineoplastic Effects of Gamma Linolenic Acid on Hepatocellular Carcinoma Cell Lines |
| - | in-vitro, | Liver, | HUH7 |
| 4510- | GLA, | Gamma-linolenic acid therapy of human glioma-a review of in vitro, in vivo, and clinical studies |
| - | Review, | NA, | NA |
| 4508- | GLA, | aLinA, | α-Linolenic and γ-linolenic acids exercise differential antitumor effects on HT-29 human colorectal cancer cells |
| - | in-vitro, | Colon, | HT29 |
| 1904- | GoldNP, | SNP, | Unveiling the Potential of Innovative Gold(I) and Silver(I) Selenourea Complexes as Anticancer Agents Targeting TrxR and Cellular Redox Homeostasis |
| - | in-vitro, | Lung, | H157 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Colon, | HCT15 | - | in-vitro, | Melanoma, | A375 |
| 848- | Gra, | SNP, | Synthesis, Characterization and Evaluation of Antioxidant and Cytotoxic Potential of Annona muricata Root Extract-derived Biogenic Silver Nanoparticles |
| - | in-vitro, | CRC, | HCT116 |
| 845- | Gra, | A Review on Annona muricata and Its Anticancer Activity |
| - | Review, | NA, | NA |
| - | in-vitro, | NMSC, | A431 | - | in-vitro, | NMSC, | UW-BCC1 | - | in-vitro, | Nor, | NHEKn |
| 839- | Gra, | Functional proteomic analysis revels that the ethanol extract of Annona muricata L. induces liver cancer cell apoptosis through endoplasmic reticulum stress pathway |
| - | in-vitro, | Liver, | HepG2 |
| 835- | Gra, | Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB |
| - | in-vitro, | Lung, | A549 |
| 833- | Gra, | Cytotoxic Effect of Annona muricata leaf extracts on tumor cell lines in vitro |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Lung, | A549 |
| 854- | Gra, | SNP, | Green Synthesis of Silver Nanoparticles Using Annona muricata Extract as an Inducer of Apoptosis in Cancer Cells and Inhibitor for NLRP3 Inflammasome via Enhanced Autophagy |
| - | vitro+vivo, | AML, | THP1 | - | in-vitro, | AML, | AMJ13 | - | vitro+vivo, | lymphoma, | HBL |
| 855- | Gra, | Antiproliferative activity of ionic liquid-graviola fruit extract against human breast cancer (MCF-7) cell lines using flow cytometry techniques |
| - | in-vitro, | BC, | MCF-7 |
| 858- | Gra, | Annona muricata leaves induce G₁ cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells |
| - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | HCT116 |
| 1232- | Gra, | Graviola: A Systematic Review on Its Anticancer Properties |
| - | Review, | NA, | NA |
| 1233- | Gra, | THERAPEUTIC ELIGIBILITY OF GRAVIOLA VERSUS 5-FLUOROURACIL: APOPTOTIC EFFICACY ON HEAD AND NECK SQUAMOUS CELL CARCINOMA AND NORMAL EPITHELIUM CELLS |
| - | in-vitro, | HNSCC, | NA |
| 1234- | Gra, | Graviola attenuates DMBA-induced breast cancer possibly through augmenting apoptosis and antioxidant pathway and downregulating estrogen receptors |
| - | in-vivo, | BC, | NA |
| 3787- | H2, | Hydrogen, a Novel Therapeutic Molecule, Regulates Oxidative Stress, Inflammation, and Apoptosis |
| - | Review, | AD, | NA |
| 293- | HCA, | Tam, | Hydroxycitric acid potentiates the cytotoxic effect of tamoxifen in MCF-7 breast cancer cells through inhibition of ATP citrate lyase |
| - | in-vitro, | BC, | MCF-7 |
| 1153- | HNK, | Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor |
| - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | U87MG | - | in-vivo, | NA, | NA |
| 960- | HNK, | Honokiol Inhibits HIF-1α-Mediated Glycolysis to Halt Breast Cancer Growth |
| - | vitro+vivo, | BC, | MCF-7 | - | vitro+vivo, | BC, | MDA-MB-231 |
| 1004- | HNK, | RAPA, | Honokiol downregulates PD-L1 expression and enhances antitumor effects of mTOR inhibitors in renal cancer cells |
| - | in-vitro, | RCC, | NA |
| 2082- | HNK, | Revealing the role of honokiol in human glioma cells by RNA-seq analysis |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 |
| 1286- | HNK, | The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells |
| - | in-vitro, | CLL, | NA |
| 2073- | HNK, | Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo |
| - | in-vitro, | OS, | U2OS | - | in-vivo, | NA, | NA |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | LoVo | - | in-vivo, | CRC, | HCT116 |
| 2881- | HNK, | Honokiol Suppressed Pancreatic Cancer Progression via miR-101/Mcl-1 Axis |
| - | in-vitro, | PC, | PANC1 |
| 2883- | HNK, | Honokiol targets mitochondria to halt cancer progression and metastasis |
| - | Review, | Var, | NA |
| 2892- | HNK, | Honokiol Induces Apoptosis, G1 Arrest, and Autophagy in KRAS Mutant Lung Cancer Cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H460 | - | in-vitro, | Lung, | H385 | - | in-vitro, | Nor, | BEAS-2B |
| 2897- | HNK, | Honokiol Inhibits Proliferation, Invasion and Induces Apoptosis Through Targeting Lyn Kinase in Human Lung Adenocarcinoma Cells |
| - | in-vitro, | Lung, | PC9 | - | in-vitro, | Lung, | A549 |
| 2898- | HNK, | Honokiol Suppression of Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Gastric Cancer Cell Biological Activity and Its Mechanism |
| - | in-vitro, | GC, | AGS | - | in-vitro, | GC, | NCI-N87 | - | in-vitro, | BC, | MGC803 | - | in-vitro, | GC, | SGC-7901 |
| 2879- | HNK, | Honokiol Inhibits Lung Tumorigenesis through Inhibition of Mitochondrial Function |
| - | in-vitro, | Lung, | H226 | - | in-vivo, | NA, | NA |
| 2868- | HNK, | Honokiol: A review of its pharmacological potential and therapeutic insights |
| - | Review, | Var, | NA | - | Review, | Sepsis, | NA |
| 886- | HPT, | Impact of hyper- and hypothermia on cellular and whole-body physiology |
| - | Analysis, | NA, | NA |
| 601- | HTyr, | Dihydroxyphenylethanol induces apoptosis by activating serine/threonine protein phosphatase PP2A and promotes the endoplasmic reticulum stress response in human colon carcinoma cells |
| - | in-vivo, | NA, | HT-29 |
| 1277- | I3C, | GEN, | Modulation of the constitutive activated STAT3 transcription factor in pancreatic cancer prevention: effects of indole-3-carbinol (I3C) and genistein |
| - | in-vitro, | PC, | PANC1 |
| 1167- | IVM, | The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer |
| - | vitro+vivo, | NA, | NA |
| 1918- | JG, | ROS -mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitro |
| - | in-vitro, | Liver, | HepG2 | - | in-vivo, | NA, | NA |
| 1927- | JG, | Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway |
| - | in-vitro, | GC, | SGC-7901 |
| 1919- | JG, | The Anti-Glioma Effect of Juglone Derivatives through ROS Generation |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 |
| 1922- | JG, | Juglone induces apoptosis of tumor stem-like cells through ROS-p38 pathway in glioblastoma |
| - | in-vitro, | GBM, | U87MG |
| 1924- | JG, | Juglone triggers apoptosis of non-small cell lung cancer through the reactive oxygen species -mediated PI3K/Akt pathway |
| - | in-vitro, | Lung, | A549 |
| 1306- | LE, | Modulations of the Bcl-2/Bax family were involved in the chemopreventive effects of licorice root (Glycyrrhiza uralensis Fisch) in MCF-7 human breast cancer cell |
| - | in-vitro, | BC, | MCF-7 |
| 1100- | LT, | Luteolin, a flavonoid, as an anticancer agent: A review |
| - | Review, | NA, | NA |
| 1171- | LT, | The inhibition of β-catenin activity by luteolin isolated from Paulownia flowers leads to growth arrest and apoptosis in cholangiocarcinoma |
| - | in-vitro, | CCA, | NA |
| 973- | LT, | Luteolin impairs hypoxia adaptation and progression in human breast and colon cancer cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | BC, | MDA-MB-231 |
| 1025- | LT, | Api, | Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer |
| - | in-vivo, | Lung, | NA |
| 1317- | LT, | Luteolin Suppresses Teratoma Cell Growth and Induces Cell Apoptosis via Inhibiting Bcl-2 |
| - | vitro+vivo, | Ovarian, | PA1 |
| - | in-vitro, | Nor, | MCF10 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MDA-MB-468 | - | in-vitro, | PC, | Bxpc-3 |
| 2916- | LT, | Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 2923- | LT, | Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells |
| - | in-vitro, | NA, | NA |
| 2925- | LT, | Luteolin Induces Carcinoma Cell Apoptosis through Binding Hsp90 to Suppress Constitutive Activation of STAT3 |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | HEK293 | - | in-vitro, | BC, | MCF-7 |
| 2913- | LT, | Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cells |
| - | in-vitro, | GC, | HGC27 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | GC, | MKN45 |
| 2906- | LT, | Luteolin, a flavonoid with potentials for cancer prevention and therapy |
| - | Review, | Var, | NA |
| 2909- | LT, | Revisiting luteolin: An updated review on its anticancer potential |
| - | Review, | Var, | NA |
| 3277- | Lyco, | Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent |
| - | Review, | Var, | NA |
| 1013- | Lyco, | Lycopene induces apoptosis by inhibiting nuclear translocation of β-catenin in gastric cancer cells |
| - | in-vitro, | GC, | AGS |
| 1126- | Lyco, | Lycopene Inhibits Epithelial–Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal Pathway |
| - | vitro+vivo, | Oral, | NA |
| 4526- | MAG, | HNK, | Targeting apoptosis pathways in cancer with magnolol and honokiol, bioactive constituents of the bark of Magnolia officinalis |
| - | Review, | Var, | NA |
| 4534- | MAG, | Molecular mechanisms of apoptosis induced by magnolol in colon and liver cancer cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | CRC, | COLO205 |
| 4533- | MAG, | Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways |
| - | in-vitro, | GC, | SGC-7901 |
| 4531- | MAG, | Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway |
| - | in-vitro, | CRC, | HCT116 |
| 4528- | MAG, | Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update |
| - | Review, | Nor, | NA |
| 4527- | MAG, | Magnolol inhibits growth and induces apoptosis in esophagus cancer KYSE-150 cell lines via the MAP kinase pathway |
| - | in-vitro, | ESCC, | TE1 | - | in-vitro, | ESCC, | Eca109 | - | vitro+vivo, | SCC, | KYSE150 |
| 4536- | MAG, | Magnolol suppresses proliferation of cultured human colon and liver cancer cells by inhibiting DNA synthesis and activating apoptosis |
| - | in-vitro, | Liver, | HepG2 | - | in-vivo, | CRC, | COLO205 |
| 4517- | MAG, | Mitochondrion-targeted magnolol derivatives exert synergistic anticancer activity by modulating energy metabolism and tumor microenvironment |
| - | vitro+vivo, | Var, | NA |
| 4516- | MAG, | Magnolol Induces Apoptosis and Suppresses Immune Evasion in Non-small Cell Lung Cancer Xenograft Models |
| - | in-vivo, | NSCLC, | NA |
| 4515- | MAG, | Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight |
| - | Review, | Var, | NA |
| 4537- | MAG, | Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action |
| - | in-vivo, | Melanoma, | NA | - | in-vitro, | Melanoma, | A431 |
| 1782- | MEL, | Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities |
| - | Review, | Var, | NA |
| 1063- | MEL, | HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | PC9 |
| 994- | MET, | Tumor metabolism destruction via metformin-based glycolysis inhibition and glucose oxidase-mediated glucose deprivation for enhanced cancer therapy |
| - | in-vitro, | Var, | NA |
| 2384- | MET, | Integration of metabolomics and transcriptomics reveals metformin suppresses thyroid cancer progression via inhibiting glycolysis and restraining DNA replication |
| - | in-vitro, | Thyroid, | BCPAP | - | in-vivo, | NA, | NA | - | in-vitro, | Thyroid, | TPC-1 |
| 2387- | MET, | GEM, | Metformin Increases the Response of Cholangiocarcinoma Cells to Gemcitabine by Suppressing Pyruvate Kinase M2 to Activate Mitochondrial Apoptosis |
| - | in-vitro, | CCA, | HCC9810 |
| 2375- | MET, | Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling |
| - | in-vitro, | GC, | SGC-7901 |
| 2374- | MET, | Metformin Induces Apoptosis and Downregulates Pyruvate Kinase M2 in Breast Cancer Cells Only When Grown in Nutrient-Poor Conditions |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | SkBr3 | - | in-vitro, | BC, | MDA-MB-231 |
| 2241- | MF, | Pulsed electromagnetic therapy in cancer treatment: Progress and outlook |
| - | Review, | Var, | NA |
| 2261- | MF, | Tumor-specific inhibition with magnetic field |
| - | in-vitro, | Nor, | GP-293 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Lung, | A549 |
| 495- | MF, | How a High-Gradient Magnetic Field Could Affect Cell Life |
| - | in-vitro, | NA, | HeLa |
| 496- | MF, | Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | ZR-75-1 | - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | MDA-MB-231 |
| 497- | MF, | In Vitro and in Vivo Study of the Effect of Osteogenic Pulsed Electromagnetic Fields on Breast and Lung Cancer Cells |
| - | vitro+vivo, | NA, | MCF-7 | - | vitro+vivo, | NA, | A549 |
| 501- | MF, | Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
| 502- | MF, | Electromagnetic field investigation on different cancer cell lines |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Colon, | SW480 | - | in-vitro, | CRC, | HCT116 |
| 488- | MF, | Repetitive exposure to a 60-Hz time-varying magnetic field induces DNA double-strand breaks and apoptosis in human cells |
| - | in-vitro, | NA, | HeLa | - | in-vitro, | NA, | IMR90 |
| 535- | MF, | Electromagnetic Fields Trigger Cell Death in Glioblastoma Cells through Increasing miR-126-5p and Intracellular Ca2+ Levels |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | GBM, | A172 | - | in-vitro, | Pca, | HeLa |
| 537- | MF, | immuno, | Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigm |
| - | Review, | Var, | NA |
| 534- | MF, | Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | Nor, | MCF10 |
| 508- | MF, | doxoR, | Synergistic cytotoxic effects of an extremely low-frequency electromagnetic field with doxorubicin on MCF-7 cell line |
| - | in-vitro, | BC, | MCF-7 |
| - | Review, | NA, | NA |
| 1762- | MF, | Fe, | Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane |
| - | in-vitro, | RCC, | NA |
| 3477- | MF, | Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis |
| - | Review, | NA, | NA |
| 3479- | MF, | Evaluation of Pulsed Electromagnetic Field Effects: A Systematic Review and Meta-Analysis on Highlights of Two Decades of Research In Vitro Studies |
| - | Review, | NA, | NA |
| 3457- | MF, | Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis |
| - | Review, | Var, | NA |
| 3464- | MF, | Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology |
| - | Review, | Var, | NA |
| 3468- | MF, | An integrative review of pulsed electromagnetic field therapy (PEMF) and wound healing |
| - | Review, | NA, | NA |
| 3470- | MF, | Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8+ T cell dysfunction and suppress cervical cancer progression |
| - | in-vitro, | Cerv, | HeLa |
| 4351- | MF, | Inhibition of proliferation of human lymphoma cells U937 by a 50 Hz electromagnetic field |
| - | in-vitro, | lymphoma, | NA |
| 4352- | MF, | Differences in lethality between cancer cells and human lymphocytes caused by LF-electromagnetic fields |
| - | in-vitro, | lymphoma, | K562 | - | NA, | NA, | U937 | - | NA, | NA, | HL-60 |
| 4353- | MF, | Chemo, | Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 |
| 4354- | MF, | doxoR, | Modulated TRPC1 Expression Predicts Sensitivity of Breast Cancer to Doxorubicin and Magnetic Field Therapy: Segue Towards a Precision Medicine Approach |
| - | in-vivo, | BC, | MDA-MB-231 | - | in-vivo, | BC, | MCF-7 |
| 4092- | MF, | Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology |
| - | Review, | Var, | NA |
| 3493- | MFrot, | MF, | Mechanical nanosurgery of chemoresistant glioblastoma using magnetically controlled carbon nanotubes |
| - | in-vivo, | GBM, | NA |
| 189- | MFrot, | MF, | Cancer treatment by magneto-mechanical effect of particles, a review |
| - | vitro+vivo, | Var, | NA |
| 203- | MFrot, | MF, | Rotating Magnetic Field Induced Oscillation of Magnetic Particles for in vivo Mechanical Destruction of Malignant Glioma |
| - | vitro+vivo, | GBM, | U87MG |
| 220- | MFrot, | MF, | Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation |
| - | in-vitro, | Melanoma, | B16-F10 |
| 227- | MFrot, | MF, | Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway |
| - | in-vivo, | Lung, | A549 | - | in-vitro, | Lung, | A549 |
| 516- | MFrot, | immuno, | MF, | Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growth |
| - | vitro+vivo, | GBM, | U87MG |
| 2259- | MFrot, | MF, | Method and apparatus for oncomagnetic treatment |
| - | in-vitro, | GBM, | NA |
| 777- | Mg, | Biodegradable Mg Implants Suppress the Growth of Ovarian Tumor |
| - | vitro+vivo, | Ovarian, | SKOV3 |
| 775- | Mg, | The Supplement of Magnesium Element to Inhibit Colorectal Tumor Cells |
| - | vitro+vivo, | CRC, | DLD1 |
| 780- | Mg, | Degradable magnesium implants inhibit gallbladder cancer |
| - | vitro+vivo, | Gall, | NA |
| 1890- | MGO, | The Dual-Role of Methylglyoxal in Tumor Progression – Novel Therapeutic Approaches |
| - | Review, | Var, | NA |
| 1891- | MGO, | Methylglyoxal induces mitochondria-dependent apoptosis in sarcoma |
| - | in-vitro, | SCC, | NA |
| 656- | MNPs, | MF, | Effects of combined delivery of extremely low frequency electromagnetic field and magnetic Fe3O4 nanoparticles on hepatic cell lines |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | Nor, | HL7702 |
| 3847- | MSM, | Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement |
| - | Review, | Arthritis, | NA |
| 1182- | MushCha, | Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | SW-620 | - | in-vitro, | CRC, | DLD1 |
| 1798- | NarG, | Naringenin: A potential flavonoid phytochemical for cancer therapy |
| - | Review, | NA, | NA |
| 1797- | NarG, | Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway |
| - | in-vitro, | BC, | MDA-MB-231 |
| 1271- | NCL, | Niclosamide inhibits ovarian carcinoma growth by interrupting cellular bioenergetics |
| - | vitro+vivo, | Ovarian, | SKOV3 |
| 1269- | NCL, | Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway |
| - | in-vitro, | Pca, | DU145 |
| 946- | Nimb, | Nimbolide retards T cell lymphoma progression by altering apoptosis, glucose metabolism, pH regulation, and ROS homeostasis |
| - | in-vivo, | NA, | NA |
| 1226- | OLST, | Knockdown of PGM1 enhances anticancer effects of orlistat in gastric cancer under glucose deprivation |
| - | vitro+vivo, | GC, | NA |
| 1812- | Oxy, | Hyperbaric oxygen suppressed tumor progression through the improvement of tumor hypoxia and induction of tumor apoptosis in A549-cell-transferred lung cancer |
| - | in-vitro, | Lung, | A549 | - | in-vivo, | Lung, | NA | - | in-vitro, | NA, | BEAS-2B |
| 2396- | PACs, | PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma |
| - | in-vitro, | HCC, | HCCLM3 | - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | HCC, | Bel-7402 | - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | HepG2 | - | in-vitro, | Nor, | L02 |
| 1996- | Part, | Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells |
| - | in-vitro, | CRC, | COLO205 |
| 1992- | Part, | Parthenolide induces ROS-dependent cell death in human gastric cancer cell |
| - | in-vitro, | BC, | MGC803 |
| 1991- | Part, | A novel SLC25A1 inhibitor, parthenolide, suppresses the growth and stemness of liver cancer stem cells with metabolic vulnerability |
| - | in-vitro, | Liver, | HUH7 |
| 1984- | Part, | Targeting Thioredoxin Reductase by Parthenolide Contributes to Inducing Apoptosis of HeLa Cells |
| - | in-vitro, | Cerv, | HeLa |
| 2061- | PB, | Chemo, | Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | COLO357 | - | in-vitro, | PC, | Bxpc-3 |
| 2046- | PB, | Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-468 | - | in-vitro, | Nor, | MCF10 |
| 2076- | PB, | Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 |
| 2070- | PB, | Phenylbutyrate-induced apoptosis is associated with inactivation of NF-kappaB IN HT-29 colon cancer cells |
| - | in-vitro, | CRC, | HT-29 |
| 2069- | PB, | Toxic and metabolic effect of sodium butyrate on SAS tongue cancer cells: role of cell cycle deregulation and redox changes |
| - | in-vitro, | Tong, | NA |
| 2078- | PB, | Butyrate-induced apoptosis in HCT116 colorectal cancer cells includes induction of a cell stress response |
| - | in-vitro, | CRC, | HCT116 |
| 2421- | PB, | Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c‐myc/hexokinase 2 pathway |
| - | in-vitro, | HCC, | HCCLM3 | - | in-vivo, | NA, | NA | - | in-vitro, | HCC, | Bel-7402 | - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | Nor, | L02 |
| 998- | PB, | Phenyl butyrate inhibits pyruvate dehydrogenase kinase 1 and contributes to its anti-cancer effect |
| - | in-vivo, | NA, | NA |
| 1664- | PBG, | Anticancer Activity of Propolis and Its Compounds |
| - | Review, | Var, | NA |
| 1666- | PBG, | Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer |
| - | Review, | Var, | NA |
| 1667- | PBG, | Ethanolic extract of Brazilian green propolis sensitizes prostate cancer cells to TRAIL-induced apoptosis |
| - | in-vitro, | Pca, | LNCaP |
| 1668- | PBG, | Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms |
| - | Review, | Var, | NA |
| 1660- | PBG, | Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents |
| - | Review, | Var, | NA |
| 1673- | PBG, | An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms |
| - | Review, | Var, | NA |
| 1675- | PBG, | Portuguese Propolis Antitumoral Activity in Melanoma Involves ROS Production and Induction of Apoptosis |
| - | in-vitro, | Melanoma, | A375 | - | in-vitro, | Melanoma, | WM983B |
| 1254- | PI, | VitC, | Piperlongumine combined with vitamin C as a new adjuvant therapy against gastric cancer regulates the ROS–STAT3 pathway |
| - | in-vivo, | GC, | NA |
| 1256- | PI, | Hypoxia potentiates the cytotoxic effect of piperlongumine in pheochromocytoma models |
| - | in-vitro, | adrenal, | PHEO | - | in-vivo, | NA, | NA |
| 1938- | PL, | Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation |
| - | Study, | PSA, | NA | - | in-vivo, | NA, | NA |
| 1945- | PL, | SANG, | The Synergistic Effect of Piperlongumine and Sanguinarine on the Non-Small Lung Cancer |
| - | in-vitro, | Lung, | A549 |
| 1948- | PL, | born, | Natural borneol serves as an adjuvant agent to promote the cellular uptake of piperlongumine for improving its antiglioma efficacy |
| - | in-vitro, | GBM, | NA |
| 2947- | PL, | Piperlongumine: the amazing amide alkaloid from Piper in the treatment of breast cancer |
| - | Review, | Var, | NA |
| 2944- | PL, | Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells |
| - | in-vitro, | Thyroid, | IHH4 | - | in-vitro, | Thyroid, | 8505C | - | in-vivo, | NA, | NA |
| 2941- | PL, | Selective killing of cancer cells by a small molecule targeting the stress response to ROS |
| - | in-vivo, | BC, | MDA-MB-231 | - | in-vitro, | OS, | U2OS | - | in-vitro, | BC, | MDA-MB-453 |
| 2940- | PL, | Piperlongumine Induces Reactive Oxygen Species (ROS)-dependent Downregulation of Specificity Protein Transcription Factors |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Kidney, | 786-O | - | in-vitro, | BC, | SkBr3 |
| 2649- | PL, | Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence |
| - | Review, | Var, | NA |
| 2995- | PL, | Piperlongumine overcomes osimertinib resistance via governing ubiquitination-modulated Sp1 turnover |
| - | in-vitro, | Lung, | H1975 | - | in-vitro, | Lung, | PC9 | - | in-vivo, | NA, | NA |
| 2970- | PL, | Piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways |
| - | in-vitro, | AML, | NA |
| 2006- | Plum, | Plumbagin induces apoptosis in human osteosarcoma through ROS generation, endoplasmic reticulum stress and mitochondrial apoptosis pathway |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | Nor, | hFOB1.19 |
| 3353- | QC, | Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells |
| - | in-vitro, | Oral, | KON | - | in-vitro, | Nor, | MRC-5 |
| 3347- | QC, | Recent Advances in Potential Health Benefits of Quercetin |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 3346- | QC, | Regulation of the Intracellular ROS Level Is Critical for the Antiproliferative Effect of Quercetin in the Hepatocellular Carcinoma Cell Line HepG2 |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | HUH7 |
| 3343- | QC, | Quercetin, a Flavonoid with Great Pharmacological Capacity |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Arthritis, | NA |
| 3376- | QC, | Inhibiting CDK6 Activity by Quercetin Is an Attractive Strategy for Cancer Therapy |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 |
| 3374- | QC, | Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis |
| - | Review, | Oral, | NA | - | Review, | AD, | NA |
| 3373- | QC, | The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway |
| - | in-vitro, | Pca, | DU145 |
| 3362- | QC, | The effect of quercetin on cervical cancer cells as determined by inducing tumor endoplasmic reticulum stress and apoptosis and its mechanism of action |
| - | in-vitro, | Cerv, | HeLa |
| 3371- | QC, | Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways |
| - | in-vitro, | GBM, | T98G |
| 1201- | QC, | Quercetin: a silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1 |
| - | in-vivo, | BC, | NA |
| 63- | QC, | Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells |
| - | in-vitro, | Pca, | NA |
| 912- | QC, | 2DG, | Selected polyphenols potentiate the apoptotic efficacy of glycolytic inhibitors in human acute myeloid leukemia cell lines. Regulation by protein kinase activities |
| 914- | QC, | Quercetin and Cancer Chemoprevention |
| - | Review, | NA, | NA |
| 916- | QC, | Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells |
| - | Review, | Ovarian, | NA |
| 919- | QC, | Quercetin Regulates Sestrin 2-AMPK-mTOR Signaling Pathway and Induces Apoptosis via Increased Intracellular ROS in HCT116 Colon Cancer Cells |
| - | in-vitro, | CRC, | HCT116 |
| 923- | QC, | Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health |
| - | Review, | Var, | NA |
| 910- | QC, | The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism |
| 894- | QC, | The antioxidant, rather than prooxidant, activities of quercetin on normal cells: quercetin protects mouse thymocytes from glucose oxidase-mediated apoptosis |
| - | in-vitro, | Nor, | NA |
| 882- | RES, | Resveratrol: A Double-Edged Sword in Health Benefits |
| - | Review, | NA, | NA |
| 883- | RES, | Targeting Histone Deacetylases with Natural and Synthetic Agents: An Emerging Anticancer Strategy |
| 2329- | RES, | Resveratrol induces apoptosis in human melanoma cell through negatively regulating Erk/PKM2/Bcl-2 axis |
| - | in-vitro, | Melanoma, | A375 |
| 2330- | RES, | Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission |
| - | in-vitro, | CRC, | DLD1 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | BC, | MCF-7 |
| 3070- | RES, | Resveratrol inhibits tumor progression by down-regulation of NLRP3 in renal cell carcinoma |
| - | in-vitro, | RCC, | ACHN | - | in-vitro, | RCC, | 786-O | - | in-vivo, | NA, | NA |
| 3072- | RES, | Resveratrol ameliorates glioblastoma inflammatory response by reducing NLRP3 inflammasome activation through inhibition of the JAK2/STAT3 pathway |
| - | in-vitro, | GBM, | LN229 | - | in-vitro, | GBM, | U87MG |
| 3078- | RES, | The Effects of Resveratrol on Prostate Cancer through Targeting the Tumor Microenvironment |
| - | Review, | Pca, | NA |
| 3067- | RES, | Proteomic Profiling Reveals That Resveratrol Inhibits HSP27 Expression and Sensitizes Breast Cancer Cells to Doxorubicin Therapy |
| - | in-vitro, | BC, | MCF-7 |
| 2981- | RES, | Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways |
| - | in-vitro, | Colon, | HT-29 | - | in-vitro, | Colon, | SW48 |
| 2982- | RES, | The flavonoid resveratrol suppresses growth of human malignant pleural mesothelioma cells through direct inhibition of specificity protein 1 |
| - | in-vitro, | Melanoma, | MSTO-211H |
| 3096- | RES, | Identification of potential target genes of non-small cell lung cancer in response to resveratrol treatment by bioinformatics analysis |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 3092- | RES, | Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action |
| - | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MCF-7 |
| 3091- | RES, | Protein kinase CK2 modulates apoptosis induced by resveratrol and epigallocatechin-3-gallate in prostate cancer cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | ALVA-41 |
| 1744- | RosA, | Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity |
| - | Review, | Var, | NA |
| 1746- | RosA, | Rosmarinic acid sensitizes cell death through suppression of TNF-α-induced NF-κB activation and ROS generation in human leukemia U937 cells |
| - | in-vitro, | AML, | U937 |
| 1747- | RosA, | Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature Review |
| - | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MDA-MB-468 |
| 1748- | RosA, | The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity |
| - | Review, | Var, | NA |
| 3029- | RosA, | Rosmarinic Acid, a Component of Rosemary Tea, Induced the Cell Cycle Arrest and Apoptosis through Modulation of HDAC2 Expression in Prostate Cancer Cell Lines |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
| 3027- | RosA, | Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway |
| - | in-vitro, | HCC, | SMMC-7721 cell |
| 3010- | RosA, | Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation |
| - | in-vitro, | Lung, | A549 | - | in-vivo, | NA, | NA |
| 3001- | RosA, | Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review |
| - | Review, | Var, | NA |
| 1251- | RT, | OLST, | Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | PC, | PANC1 | - | in-vivo, | NA, | NA |
| 2040- | SAHA, | The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | CRC, | T24 | - | in-vitro, | BC, | MCF-7 |
| 323- | Sal, | SNP, | Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Ovarian, | A2780S |
| 1208- | SANG, | Sanguinarine induces apoptosis in osteosarcoma by attenuating the binding of STAT3 to the single-stranded DNA-binding protein 1 (SSBP1) promoter region |
| - | in-vitro, | OS, | NA |
| 1307- | SANG, | Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway |
| - | in-vitro, | CRC, | HT-29 |
| 1388- | Sco, | Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells |
| - | in-vitro, | CRC, | NA |
| 4469- | Se, | Selenium Nanoparticles in Cancer Therapy: Unveiling Cytotoxic Mechanisms and Therapeutic Potential |
| - | Review, | Var, | NA |
| 4501- | Se, | Mechanisms of the Cytotoxic Effect of Selenium Nanoparticles in Different Human Cancer Cell Lines |
| - | in-vitro, | GBM, | A172 | - | in-vitro, | Colon, | Caco-2 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | L929 |
| 4504- | Se, | Chit, | FA, | doxoR, | pH-responsive selenium nanoparticles stabilized by folate-chitosan delivering doxorubicin for overcoming drug-resistant cancer cells |
| - | in-vitro, | Var, | NA |
| 4453- | Se, | Selenium Nanoparticles: Green Synthesis and Biomedical Application |
| - | Review, | NA, | NA |
| 4451- | Se, | Effects of chitosan-stabilized selenium nanoparticles on cell proliferation, apoptosis and cell cycle pattern in HepG2 cells: comparison with other selenospecies |
| - | in-vitro, | Liver, | HepG2 |
| 4449- | Se, | PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction |
| - | in-vitro, | Liver, | HepG2 |
| 4471- | Se, | Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis |
| - | in-vitro, | Liver, | HepG2 |
| 4480- | Se, | Chit, | Biogenic synthesized selenium nanoparticles combined chitosan nanoparticles controlled lung cancer growth via ROS generation and mitochondrial damage pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HK-2 |
| 4488- | Se, | Chit, | PEG, | Anticancer effect of selenium/chitosan/polyethylene glycol/allyl isothiocyanate nanocomposites against diethylnitrosamine-induced liver cancer in rats |
| - | in-vivo, | Liver, | HepG2 | - | in-vivo, | Nor, | HL7702 |
| 4486- | Se, | Chit, | Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis |
| - | in-vitro, | Liver, | HepG2 |
| 4484- | Se, | Chit, | PEG, | Anti-cancer potential of selenium-chitosan-polyethylene glycol-carvacrol nanocomposites in multiple myeloma U266 cells |
| - | in-vitro, | Melanoma, | U266 |
| 4483- | Se, | Chit, | Anti-cancer potential of chitosan-starch selenium Nanocomposite: Targeting osteoblastoma and insights of molecular docking |
| - | in-vitro, | OS, | NA |
| - | vitro+vivo, | Lung, | NA |
| 1002- | Sel, | Osi, | Adag, | Selenite as a dual apoptotic and ferroptotic agent synergizes with EGFR and KRAS inhibitors with epigenetic interference |
| - | in-vitro, | Lung, | H1975 | - | in-vitro, | Lung, | H385 |
| 1062- | Sel, | Sodium Selenite Decreased HDAC Activity, Cell Proliferation and Induced Apoptosis in Three Human Glioblastoma Cells |
| - | in-vitro, | GBM, | LN229 | - | in-vitro, | GBM, | T98G | - | in-vitro, | GBM, | U87MG |
| 1017- | Sel, | Selenite induces apoptosis in colorectal cancer cells via AKT-mediated inhibition of β-catenin survival axis |
| - | vitro+vivo, | CRC, | NA |
| 1733- | SFN, | Sonic Hedgehog Signaling Inhibition Provides Opportunities for Targeted Therapy by Sulforaphane in Regulating Pancreatic Cancer Stem Cell Self-Renewal |
| - | in-vitro, | PC, | PanCSC | - | in-vitro, | Nor, | HPNE | - | in-vitro, | Nor, | HNPSC |
| 1722- | SFN, | Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems |
| - | Review, | Var, | NA |
| 1735- | SFN, | Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane |
| - | in-vitro, | GBM, | T98G | - | in-vitro, | GBM, | U87MG |
| 1730- | SFN, | Sulforaphane: An emergent anti-cancer stem cell agent |
| - | Review, | Var, | NA |
| 1723- | SFN, | Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review |
| - | Review, | Var, | NA |
| - | in-vitro, | Bladder, | T24 |
| 1434- | SFN, | GEM, | Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity |
| - | in-vitro, | CCA, | HuCCT1 | - | in-vitro, | CCA, | HuH28 | - | in-vivo, | NA, | NA |
| 1497- | SFN, | Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells |
| - | in-vitro, | Nor, | PrEC | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 |
| 1498- | SFN, | Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Nor, | NCM460 |
| 1459- | SFN, | Aur, | Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway |
| - | in-vitro, | Liver, | Hep3B | - | in-vitro, | Liver, | HepG2 |
| 1461- | SFN, | Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer - contradictory effects and future perspectives |
| - | Review, | BC, | NA |
| 1463- | SFN, | Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells |
| - | in-vitro, | Bladder, | 5637 |
| 1464- | SFN, | d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway |
| - | in-vitro, | GBM, | NA |
| 1465- | SFN, | TRAIL attenuates sulforaphane-mediated Nrf2 and sustains ROS generation, leading to apoptosis of TRAIL-resistant human bladder cancer cells |
| - | NA, | Bladder, | NA |
| 1466- | SFN, | Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway |
| - | vitro+vivo, | Thyroid, | FTC-133 |
| 1467- | SFN, | Sulforaphane generates reactive oxygen species leading to mitochondrial perturbation for apoptosis in human leukemia U937 cells |
| - | in-vitro, | AML, | U937 |
| 1480- | SFN, | Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells |
| - | in-vitro, | CRC, | HCT116 |
| 1471- | SFN, | ROS-mediated activation of AMPK plays a critical role in sulforaphane-induced apoptosis and mitotic arrest in AGS human gastric cancer cells |
| - | in-vitro, | GC, | AGS |
| 1474- | SFN, | Sulforaphane induces p53‑deficient SW480 cell apoptosis via the ROS‑MAPK signaling pathway |
| - | in-vitro, | Colon, | SW480 |
| 1477- | SFN, | Sulforaphane Induces Oxidative Stress and Death by p53-Independent Mechanism: Implication of Impaired Glutathione Recycling |
| - | in-vitro, | OS, | MG63 |
| - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | PC, | PANC1 |
| - | in-vitro, | BrCC, | H720 | - | in-vivo, | BrCC, | NA | - | in-vitro, | BrCC, | H727 |
| 1509- | SFN, | Combination therapy in combating cancer |
| - | Review, | NA, | NA |
| 2555- | SFN, | Chemopreventive functions of sulforaphane: A potent inducer of antioxidant enzymes and apoptosis |
| - | Review, | Var, | NA |
| 3180- | SFN, | Exploring the therapeutic effects of sulforaphane: an in-depth review on endoplasmic reticulum stress modulation across different disease contexts |
| - | Review, | Var, | NA |
| 3181- | SFN, | Effect of sulforaphane on protein expression of Bip/GRP78 and caspase-12 in human hapetocelluar carcinoma HepG-2 cells |
| - | in-vitro, | HCC, | HepG2 |
| 2448- | SFN, | Sulforaphane and bladder cancer: a potential novel antitumor compound |
| - | Review, | Bladder, | NA |
| 1014- | SFN, | Sulforaphane Modulates Cell Migration and Expression of β-Catenin and Epithelial Mesenchymal Transition Markers in Breast Cancer Cells |
| - | in-vitro, | BC, | MDA-MB-231 |
| 3648- | SIL, | Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years |
| - | Review, | NA, | NA |
| 3304- | SIL, | Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells |
| - | in-vitro, | GC, | AGS | - | in-vivo, | NA, | NA |
| 3306- | SIL, | Rad, | Radioprotective and radiosensitizing properties of silymarin/silibinin in response to ionizing radiation |
| - | Review, | Var, | NA |
| 3300- | SIL, | Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy |
| - | Review, | Var, | NA |
| 3290- | SIL, | A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents |
| - | Analysis, | Var, | NA |
| 3289- | SIL, | Silymarin: a promising modulator of apoptosis and survival signaling in cancer |
| - | Review, | Var, | NA |
| 978- | SIL, | A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment |
| - | Review, | NA, | NA |
| 2360- | SK, | Shikonin inhibits growth, invasion and glycolysis of nasopharyngeal carcinoma cells through inactivating the phosphatidylinositol 3 kinase/AKT signal pathway |
| - | in-vitro, | NPC, | HONE1 | - | in-vitro, | NPC, | SUNE-1 |
| 2355- | SK, | Pharmacological properties and derivatives of shikonin-A review in recent years |
| - | Review, | Var, | NA |
| 2232- | SK, | Shikonin Induces Autophagy and Apoptosis in Esophageal Cancer EC9706 Cells by Regulating the AMPK/mTOR/ULK Axis |
| - | in-vitro, | ESCC, | EC9706 |
| 2231- | SK, | Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways |
| - | in-vitro, | CRC, | SNU-407 |
| 2229- | SK, | Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways |
| - | in-vitro, | Melanoma, | A375 |
| 2228- | SK, | Shikonin induced Apoptosis Mediated by Endoplasmic Reticulum Stress in Colorectal Cancer Cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT15 | - | in-vivo, | NA, | NA |
| 2221- | SK, | Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression |
| - | in-vitro, | Lung, | A549 |
| 2469- | SK, | Shikonin induces the apoptosis and pyroptosis of EGFR-T790M-mutant drug-resistant non-small cell lung cancer cells via the degradation of cyclooxygenase-2 |
| - | in-vitro, | Lung, | H1975 |
| 3040- | SK, | Pharmacological Properties of Shikonin – A Review of Literature since 2002 |
| - | Review, | Var, | NA | - | Review, | IBD, | NA | - | Review, | Stroke, | NA |
| 3043- | SK, | Apoptosis-by-Inhibiting">Shikonin Induces Apoptosis by Inhibiting Phosphorylation of IGF-1 Receptor in Myeloma Cells. |
| - | in-vitro, | Melanoma, | RPMI-8226 |
| 3047- | SK, | Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL-6/STAT3 signaling pathway |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW48 |
| 3051- | SK, | Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation |
| - | Review, | Var, | NA |
| 1073- | SK, | Chemo, | Natural Compound Shikonin Is a Novel PAK1 Inhibitor and Enhances Efficacy of Chemotherapy against Pancreatic Cancer Cells |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | Bxpc-3 |
| 1312- | SK, | Shikonin induces apoptosis through reactive oxygen species/extracellular signal-regulated kinase pathway in osteosarcoma cells |
| - | in-vitro, | OS, | 143B |
| 1346- | SK, | An Oxidative Stress Mechanism of Shikonin in Human Glioma Cells |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | Hs683 |
| 2010- | SK, | Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway |
| - | in-vitro, | Lung, | H1975 | - | in-vitro, | Lung, | H1650 | - | in-vitro, | Nor, | CCD19 |
| 2190- | SK, | Shikonin exerts antitumor activity by causing mitochondrial dysfunction in hepatocellular carcinoma through PKM2-AMPK-PGC1α signaling pathway |
| - | in-vitro, | HCC, | HCCLM3 |
| 2188- | SK, | Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment |
| - | Review, | Var, | NA |
| 2186- | SK, | Shikonin differentially regulates glucose metabolism via PKM2 and HIF1α to overcome apoptosis in a refractory HCC cell line |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | HCCLM3 |
| 2182- | SK, | Cisplatin, | Shikonin inhibited glycolysis and sensitized cisplatin treatment in non-small cell lung cancer cells via the exosomal pyruvate kinase M2 pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | PC9 | - | in-vivo, | NA, | NA |
| 2194- | SK, | Efficacy of Shikonin against Esophageal Cancer Cells and its possible mechanisms in vitro and in vivo |
| - | in-vitro, | ESCC, | Eca109 | - | in-vitro, | ESCC, | EC9706 | - | in-vivo, | NA, | NA |
| 336- | SNP, | PDT, | Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell lines |
| - | in-vitro, | BC, | MCF-7 |
| 338- | SNP, | Biogenic silver nanoparticles: In vitro and in vivo antitumor activity in bladder cancer |
| - | vitro+vivo, | Bladder, | 5637 |
| 342- | SNP, | Silver nanoparticles; a new hope in cancer therapy? |
| - | Review, | NA, | NA |
| 347- | SNP, | The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? |
| - | Review, | NA, | NA |
| 348- | SNP, | Induction of p53 mediated mitochondrial apoptosis and cell cycle arrest in human breast cancer cells by plant mediated synthesis of silver nanoparticles from Bergenia ligulata (Whole plant) |
| - | in-vitro, | BC, | MCF-7 |
| 349- | SNP, | Insight into the molecular mechanism, cytotoxic, and anticancer activities of phyto-reduced silver nanoparticles in MCF-7 breast cancer cell lines |
| - | in-vitro, | BC, | MCF-7 |
| 353- | SNP, | The mechanism of cell death induced by silver nanoparticles is distinct from silver cations |
| - | in-vitro, | BC, | SUM159 |
| 355- | SNP, | Cytotoxicity and Genotoxicity of Biogenic Silver Nanoparticles in A549 and BEAS-2B Cell Lines |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | NA, | BEAS-2B |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Bladder, | HTB-22 |
| 306- | SNP, | Cancer Therapy by Silver Nanoparticles: Fiction or Reality? |
| - | Analysis, | NA, | NA |
| 319- | SNP, | Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis |
| 325- | SNP, | Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer |
| 326- | SNP, | TSA, | Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles |
| - | in-vitro, | Cerv, | HeLa |
| 327- | SNP, | MS-275, | Combination Effect of Silver Nanoparticles and Histone Deacetylases Inhibitor in Human Alveolar Basal Epithelial Cells |
| - | in-vitro, | Lung, | A549 |
| 328- | SNP, | Rad, | Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma |
| - | vitro+vivo, | GBM, | U251 |
| 329- | SNP, | Rad, | Enhancement of radiotherapy efficacy by silver nanoparticles in hypoxic glioma cells |
| - | in-vitro, | GBM, | U251 |
| 381- | SNP, | Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes Expression |
| - | in-vitro, | Bladder, | 5637 |
| 382- | SNP, | Investigation the apoptotic effect of silver nanoparticles (Ag-NPs) on MDA-MB 231 breast cancer epithelial cells via signaling pathways |
| - | in-vitro, | BC, | MDA-MB-231 |
| 400- | SNP, | MF, | Polyvinyl Alcohol Capped Silver Nanostructures for Fortified Apoptotic Potential Against Human Laryngeal Carcinoma Cells Hep-2 Using Extremely-Low Frequency Electromagnetic Field |
| - | in-vitro, | Laryn, | HEp2 |
| 385- | SNP, | Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatment |
| - | in-vitro, | Hepat, | HepG2 | - | in-vitro, | Hepat, | WI38 |
| 361- | SNP, | Annona muricata assisted biogenic synthesis of silver nanoparticles regulates cell cycle arrest in NSCLC cell lines |
| - | in-vitro, | Lung, | A549 |
| 363- | SNP, | Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis |
| 369- | SNP, | Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis |
| - | in-vitro, | Liver, | NA |
| 374- | SNP, | Silver nanoparticles selectively treat triple‐negative breast cancer cells without affecting non‐malignant breast epithelial cells in vitro and in vivo |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 376- | SNP, | Antitumor activity of colloidal silver on MCF-7 human breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 377- | SNP, | Anticancer Action of Silver Nanoparticles in SKBR3 Breast Cancer Cells through Promotion of Oxidative Stress and Apoptosis |
| - | in-vitro, | BC, | SkBr3 |
| 2288- | SNP, | Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model |
| - | Review, | Var, | NA |
| 4559- | SNP, | Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation |
| - | in-vitro, | BC, | SkBr3 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Colon, | Caco-2 |
| 4561- | SNP, | VitC, | Cellular Effects Nanosilver on Cancer and Non-cancer Cells: Potential Environmental and Human Health Impacts |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Nor, | HEK293 |
| 4563- | SNP, | Rad, | Silver nanoparticles enhance neutron radiation sensitivity in cancer cells: An in vitro study |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | GBM, | U87MG | - | in-vitro, | Melanoma, | A431 |
| 4564- | SNP, | GoldNP, | Cu, | Chemo, | PDT | Cytotoxicity and targeted drug delivery of green synthesized metallic nanoparticles against oral Cancer: A review |
| - | Review, | Var, | NA |
| 4383- | SNP, | Exploring the Potentials of Silver Nanoparticles in Overcoming Cisplatin Resistance in Lung Adenocarcinoma: Insights from Proteomic and Xenograft Mice Studies |
| - | in-vitro, | Lung, | A549 | - | in-vivo, | Lung, | A549 |
| 4377- | SNP, | Interaction between silver nanoparticles of 20 nm (AgNP20 ) and human neutrophils: induction of apoptosis and inhibition of de novo protein synthesis by AgNP20 aggregates |
| - | in-vitro, | NA, | NA |
| 4375- | SNP, | The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells |
| - | in-vitro, | AML, | K562 |
| 4371- | SNP, | Effects of Green Silver Nanoparticles on Apoptosis and Oxidative Stress in Normal and Cancerous Human Hepatic Cells in vitro |
| - | in-vitro, | Liver, | HUH7 |
| 4370- | SNP, | Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line |
| - | in-vitro, | Liver, | HepG2 |
| 4403- | SNP, | Silver Nanoparticles Decorated UiO-66-NH2 Metal-Organic Framework for Combination Therapy in Cancer Treatment |
| - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | GL26 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | CRC, | RKO |
| 4398- | SNP, | Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier |
| - | in-vitro, | Colon, | HT29 |
| 4394- | SNP, | Silver nanoparticles provoke apoptosis of Dalton's ascites lymphoma in vivo by mitochondria dependent and independent pathways |
| - | in-vivo, | lymphoma, | NA |
| 4391- | SNP, | Silver Nanoparticles Induce Apoptosis in HepG2 Cells through Particle-Specific Effects on Mitochondria |
| - | NA, | Liver, | HepG2 |
| 4388- | SNP, | Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells |
| - | in-vitro, | Cerv, | NA |
| 4416- | SNP, | Efficacy of curcumin-synthesized silver nanoparticles on MCF-7 breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 4414- | SNP, | Silver nanoparticles: Forging a new frontline in lung cancer therapy |
| - | Review, | Lung, | NA |
| 4411- | SNP, | Eco-friendly synthesis of silver nanoparticles using Anemone coronaria bulb extract and their potent anticancer and antibacterial activities |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | Nor, | HEK293 |
| 4406- | SNP, | Silver nanoparticles achieve cytotoxicity against breast cancer by regulating long-chain noncoding RNA XLOC_006390-mediated pathway |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | MDA-MB-231 |
| 4405- | SNP, | Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis |
| - | in-vitro, | OS, | NA |
| 4555- | SNP, | Silver nanoparticles from Dendropanax morbifera Léveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 |
| 4552- | SNP, | ART/DHA, | Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS) |
| - | in-vitro, | GC, | AGS |
| 4551- | SNP, | Fenb, | Ångstrom-Scale Silver Particles as a Promising Agent for Low-Toxicity Broad-Spectrum Potent Anticancer Therapy |
| - | in-vivo, | Lung, | NA |
| 4546- | SNP, | Chapter 2 - Silver nanoparticles in cancer therapy |
| - | Study, | Var, | NA |
| 4542- | SNP, | Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity─A 2024 Update |
| - | Review, | NA, | NA |
| 4432- | SNP, | Emerging nanostructure-based strategies for breast cancer therapy: innovations, challenges, and future directions |
| - | Review, | NA, | NA |
| 4428- | SNP, | p38 MAPK Activation, DNA Damage, Cell Cycle Arrest and Apoptosis As Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T Cells |
| - | in-vitro, | AML, | Jurkat |
| 4435- | SNP, | Gluc, | Glucose-Functionalized Silver Nanoparticles as a Potential New Therapy Agent Targeting Hormone-Resistant Prostate Cancer cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | DU145 |
| 4436- | SNP, | Silver Nanoparticles (AgNPs) as Enhancers of Everolimus and Radiotherapy Sensitivity on Clear Cell Renal Cell Carcinoma |
| - | in-vitro, | Kidney, | 786-O |
| 4438- | SNP, | ART/DHA, | Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancer |
| - | in-vitro, | Lung, | A549 |
| 4439- | SNP, | Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA) |
| - | in-vitro, | Cerv, | HeLa |
| 962- | TQ, | Thymoquinone affects hypoxia-inducible factor-1α expression in pancreatic cancer cells via HSP90 and PI3K/AKT/mTOR pathways |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | Nor, | hTERT-HPNE | - | in-vitro, | PC, | AsPC-1 | - | in-vitro, | PC, | Bxpc-3 |
| 1052- | TQ, | Thymoquinone Anticancer Effects Through the Upregulation of NRF2 and the Downregulation of PD-L1 in MDA-MB-231 Triple-Negative Breast Cancer Cells |
| - | in-vitro, | BC, | MDA-MB-231 |
| 1935- | TQ, | Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis |
| - | Review, | OS, | NA |
| 1933- | TQ, | Thymoquinone: potential cure for inflammatory disorders and cancer |
| - | Review, | Var, | NA |
| 1308- | TQ, | Thymoquinone induces apoptosis via targeting the Bax/BAD and Bcl-2 pathway in breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 1309- | TQ, | QC, | Thymoquinone and quercetin induce enhanced apoptosis in non-small cell lung cancer in combination through the Bax/Bcl2 cascade |
| - | in-vitro, | Lung, | NA |
| 2129- | TQ, | doxoR, | Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 2127- | TQ, | Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways |
| - | Review, | GBM, | NA |
| 2120- | TQ, | Thymoquinone induces apoptosis of human epidermoid carcinoma A431 cells through ROS-mediated suppression of STAT3 |
| - | in-vitro, | Melanoma, | A431 |
| 2119- | TQ, | Dual properties of Nigella Sativa: anti-oxidant and pro-oxidant |
| - | Review, | Var, | NA |
| 2099- | TQ, | Cisplatin, | Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo |
| - | in-vitro, | Lung, | H460 | - | in-vitro, | Lung, | H146 | - | in-vivo, | NA, | NA |
| 2095- | TQ, | Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis |
| - | Review, | Var, | NA |
| 2105- | TQ, | Thymoquinone Promotes Pancreatic Cancer Cell Death and Reduction of Tumor Size through Combined Inhibition of Histone Deacetylation and Induction of Histone Acetylation |
| - | in-vitro, | PC, | AsPC-1 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | PC, | Hs766t | - | in-vivo, | NA, | NA |
| 2106- | TQ, | Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy |
| - | Review, | Var, | NA |
| 2104- | TQ, | The Potential Role of Nigella sativa Seed Oil as Epigenetic Therapy of Cancer |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Cerv, | HeLa |
| 2112- | TQ, | Crude flavonoid extract of the medicinal herb Nigella sativa inhibits proliferation and induces apoptosis in breastcancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 1930- | TQ, | Therapeutic implications and clinical manifestations of thymoquinone |
| - | Review, | Var, | NA |
| 3571- | TQ, | The Role of Thymoquinone in Inflammatory Response in Chronic Diseases |
| - | Review, | Var, | NA | - | Review, | Stroke, | NA |
| 3559- | TQ, | Molecular signaling pathway targeted therapeutic potential of thymoquinone in Alzheimer’s disease |
| - | Review, | AD, | NA | - | Review, | Var, | NA |
| 3417- | TQ, | Antiproliferative Effects of Thymoquinone in MCF-7 Breast and HepG2 Liver Cancer Cells: Possible Role of Ceramide and ER Stress |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Liver, | HepG2 |
| 3416- | TQ, | Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | 253J | - | in-vitro, | Nor, | SV-HUC-1 |
| 3429- | TQ, | Thymoquinone exerts potent growth-suppressive activity on leukemia through DNA hypermethylation reversal in leukemia cells |
| - | in-vitro, | AML, | NA | - | in-vivo, | NA, | NA |
| 3397- | TQ, | Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer |
| - | Review, | CRC, | NA |
| 3425- | TQ, | Advances in research on the relationship between thymoquinone and pancreatic cancer |
| 3424- | TQ, | Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex |
| - | Review, | Var, | NA |
| 3422- | TQ, | Thymoquinone, as a Novel Therapeutic Candidate of Cancers |
| - | Review, | Var, | NA |
| 3412- | TQ, | Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of Jak2/STAT3 signaling pathway in human melanoma cells |
| - | in-vitro, | Melanoma, | SK-MEL-28 | - | in-vivo, | NA, | NA |
| 3414- | TQ, | Thymoquinone induces apoptosis through inhibition of JAK2/STAT3 signaling via production of ROS in human renal cancer Caki cells |
| - | in-vitro, | RCC, | Caki-1 |
| 2350- | UA, | Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 1020- | UA, | Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway |
| - | in-vitro, | Melanoma, | RPMI-8226 |
| 1836- | VitC, | VitK3, | Chemo, | Vitamins C and K3: A Powerful Redox System for Sensitizing Leukemia Lymphocytes to Everolimus and Barasertib |
| - | in-vitro, | AML, | NA |
| 3109- | VitC, | Vitamin C Inhibited Pulmonary Metastasis through Activating Nrf2/HO-1 Pathway |
| - | in-vitro, | Lung, | H1299 |
| 3142- | VitC, | Vitamin C promotes apoptosis in breast cancer cells by increasing TRAIL expression |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF12A |
| 633- | VitC, | Diverse antitumor effects of ascorbic acid on cancer cells and the tumor microenvironment |
| - | Analysis, | NA, | NA |
| 631- | VitC, | Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2 |
| - | vitro+vivo, | Liver, | NA |
| 599- | VitC, | Generation of Hydrogen Peroxide in Cancer Cells: Advancing Therapeutic Approaches for Cancer Treatment |
| - | Review, | NA, | NA |
| 610- | VitC, | Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues |
| - | in-vitro, | lymphoma, | JPL119 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | HS587T | - | in-vitro, | Nor, | NA |
| 2366- | VitD3, | Vitamin D3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 1816- | VitK2, | Role of Vitamin K in Selected Malignant Neoplasms in Women |
| - | Review, | Var, | NA |
| 1840- | VitK2, | The mechanisms of vitamin K2-induced apoptosis of myeloma cells |
| - | in-vitro, | Melanoma, | NA |
| 1824- | VitK2, | Vitamin K and its analogs: Potential avenues for prostate cancer management |
| - | Review, | Pca, | NA |
| 1822- | VitK2, | Vitamin K: A novel cancer chemosensitizer |
| - | Review, | Var, | NA |
| 1817- | VitK2, | Research progress on the anticancer effects of vitamin K2 |
| - | Review, | Var, | NA |
| 1839- | VitK3, | Vitamin K3 derivative inhibits androgen receptor signaling in targeting aggressive prostate cancer cells |
| - | in-vitro, | Pca, | NA |
| 1838- | VitK3, | PDT, | Photodynamic Effects of Vitamin K3 on Cervical Carcinoma Cells Activating Mitochondrial Apoptosis Pathways |
| - | in-vitro, | Cerv, | NA |
| 1756- | WBV, | Low-frequency mechanical vibration induces apoptosis of A431 epidermoid carcinoma cells |
| - | in-vitro, | MB, | A431 |
| 604- | ZO, | Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications |
| - | Review, | NA, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:1 prod#:% Target#:14 State#:0 Dir#:2
wNotes=0 sortOrder:rid,rpid