| Source: |
| Type: |
| Matrix metalloproteinase-2 (MMP-2) is an enzyme that plays a significant role in the degradation of extracellular matrix components, which is crucial for various physiological processes, including tissue remodeling, wound healing, and angiogenesis. Elevated levels of MMP-2 have been associated with poor prognosis in various cancers, including breast, lung, and colorectal cancers. MMP2 and MMP9: two enzymes are critical to tumor invasion. |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 278- | ALA, | The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment |
| - | Review, | NA, | NA |
| 283- | ALA, | alpha-Lipoic acid reduces matrix metalloproteinase activity in MDA-MB-231 human breast cancer cells |
| - | in-vitro, | BC, | MDA-MB-231 |
| 1123- | aLinA, | Linoleic acid induces an EMT-like process in mammary epithelial cells MCF10A |
| - | in-vitro, | BC, | NA | - | in-vitro, | NA, | MCF10 |
| 1253- | aLinA, | The Antitumor Effects of α-Linolenic Acid |
| - | Review, | NA, | NA |
| 1157- | And, | Andrographolide suppresses the migratory ability of human glioblastoma multiforme cells by targeting ERK1/2-mediated matrix metalloproteinase-2 expression |
| - | in-vitro, | GBM, | GBM8401 | - | in-vitro, | GBM, | U251 |
| 1093- | And, | Andrographolide attenuates epithelial‐mesenchymal transition induced by TGF‐β1 in alveolar epithelial cells |
| - | in-vitro, | Lung, | A549 |
| 244- | Api, | Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma |
| - | in-vivo, | Melanoma, | B16-F10 | - | in-vivo, | Melanoma, | A375 | - | in-vivo, | Melanoma, | G361 |
| 2583- | Api, | Rad, | The influence of apigenin on cellular responses to radiation: From protection to sensitization |
| - | Review, | Var, | NA |
| 2639- | Api, | Plant flavone apigenin: An emerging anticancer agent |
| - | Review, | Var, | NA |
| 1545- | Api, | The Potential Role of Apigenin in Cancer Prevention and Treatment |
| - | Review, | NA, | NA |
| 1547- | Api, | Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading |
| - | Review, | NA, | NA |
| 1560- | Api, | Apigenin as an anticancer agent |
| - | Review, | NA, | NA |
| 3382- | ART/DHA, | Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge? |
| - | Review, | Var, | NA |
| 3391- | ART/DHA, | Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug |
| - | Review, | Var, | NA |
| 556- | ART/DHA, | Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing |
| - | Review, | NA, | NA |
| 564- | ART/DHA, | Cisplatin, | Dihydroartemisinin as a Putative STAT3 Inhibitor, Suppresses the Growth of Head and Neck Squamous Cell Carcinoma by Targeting Jak2/STAT3 Signaling |
| - | in-vitro, | NA, | HN30 |
| 2323- | ART/DHA, | Dihydroartemisinin represses esophageal cancer glycolysis by down-regulating pyruvate kinase M2 |
| - | in-vitro, | ESCC, | Eca109 | - | in-vitro, | ESCC, | EC9706 |
| 1177- | Ash, | Withaferin A downregulates COX-2/NF-κB signaling and modulates MMP-2/9 in experimental endometriosis |
| - | in-vivo, | EC, | NA |
| 3160- | Ash, | Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal |
| - | Review, | Var, | NA |
| 2605- | Ba, | BA, | Potential therapeutic effects of baicalin and baicalein |
| - | Review, | Var, | NA | - | Review, | Stroke, | NA | - | Review, | IBD, | NA | - | Review, | Arthritis, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 2606- | Ba, | Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma |
| - | Review, | HCC, | NA |
| 2617- | Ba, | Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review |
| - | Review, | Var, | NA |
| 2615- | Ba, | The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling Pathways |
| - | Review, | Var, | NA |
| 2290- | Ba, | Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal Cancer |
| - | Review, | GI, | NA |
| 2292- | Ba, | BA, | Baicalin and baicalein in modulating tumor microenvironment for cancer treatment: A comprehensive review with future perspectives |
| - | Review, | Var, | NA |
| 2296- | Ba, | The most recent progress of baicalein in its anti-neoplastic effects and mechanisms |
| - | Review, | Var, | NA |
| 1299- | BBR, | Effects of Berberine and Its Derivatives on Cancer: A Systems Pharmacology Review |
| - | Review, | NA, | NA |
| 1396- | BBR, | Berberine induced down-regulation of matrix metalloproteinase-1, -2 and -9 in human gastric cancer cells (SNU-5) in vitro |
| - | in-vitro, | GC, | SNU1041 | - | in-vitro, | GC, | SNU5 |
| 2699- | BBR, | Plant Isoquinoline Alkaloid Berberine Exhibits Chromatin Remodeling by Modulation of Histone Deacetylase To Induce Growth Arrest and Apoptosis in the A549 Cell Line |
| - | in-vitro, | Lung, | A549 |
| 2674- | BBR, | Berberine: A novel therapeutic strategy for cancer |
| - | Review, | Var, | NA | - | Review, | IBD, | NA |
| 2678- | BBR, | Berberine as a Potential Agent for the Treatment of Colorectal Cancer |
| - | Review, | CRC, | NA |
| 2685- | BBR, | Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells |
| - | in-vitro, | neuroblastoma, | NA |
| 2686- | BBR, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | Nor, | NA |
| 2691- | BBR, | Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells |
| - | in-vitro, | Oral, | KB |
| 2670- | BBR, | Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases |
| - | Review, | Var, | NA |
| 2742- | BetA, | Betulinic acid impairs metastasis and reduces immunosuppressive cells in breast cancer models |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | BC, | 4T1 | - | in-vitro, | BC, | MCF-7 |
| 2741- | BetA, | Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress |
| - | in-vitro, | GC, | SNU16 | - | in-vitro, | GC, | NCI-N87 | - | in-vivo, | NA, | NA |
| 2729- | BetA, | Betulinic acid in the treatment of tumour diseases: Application and research progress |
| - | Review, | Var, | NA |
| 2738- | BetA, | Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vivo, | NA, | NA |
| - | Review, | Var, | NA |
| 3521- | Bor, | A new hope for obesity management: Boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway |
| - | in-vitro, | Obesity, | 3T3 |
| 1416- | Bos, | Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent |
| - | Review, | NA, | NA |
| 2767- | Bos, | The potential role of boswellic acids in cancer prevention and treatment |
| - | Review, | Var, | NA |
| 2775- | Bos, | The journey of boswellic acids from synthesis to pharmacological activities |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | PSA, | NA |
| 1646- | CA, | Caffeic acid: a brief overview of its presence, metabolism, and bioactivity |
| - | Review, | Nor, | NA |
| 1650- | CA, | Adjuvant Properties of Caffeic Acid in Cancer Treatment |
| - | Review, | Var, | NA |
| 1651- | CA, | PBG, | Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer |
| - | Review, | Var, | NA |
| 1264- | CAP, | Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells |
| - | in-vitro, | HCC, | NA |
| 1106- | CGA, | Chlorogenic Acid Inhibits Epithelial-Mesenchymal Transition and Invasion of Breast Cancer by Down-Regulating LRP6 |
| - | vitro+vivo, | BC, | MCF-7 |
| 4489- | Chit, | Se, | Inhibiting Metastasis and Improving Chemosensitivity via Chitosan-Coated Selenium Nanoparticles for Brain Cancer Therapy |
| - | in-vitro, | GBM, | U87MG |
| 2784- | CHr, | Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review) |
| - | Review, | Var, | NA |
| 2785- | CHr, | Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin |
| - | Review, | Var, | NA |
| 2790- | CHr, | Chrysin: Pharmacological and therapeutic properties |
| - | Review, | Var, | NA |
| 1418- | CUR, | Potential complementary and/or synergistic effects of curcumin and boswellic acids for management of osteoarthritis |
| - | Review, | Arthritis, | NA |
| 170- | CUR, | Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis |
| - | vitro+vivo, | Pca, | PC3 |
| 181- | CUR, | The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo |
| - | vitro+vivo, | Pca, | DU145 |
| 464- | CUR, | Curcumin inhibits the viability, migration and invasion of papillary thyroid cancer cells by regulating the miR-301a-3p/STAT3 axis |
| - | in-vitro, | Thyroid, | BCPAP | - | in-vitro, | Thyroid, | TPC-1 |
| 2974- | CUR, | Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | HCT15 | - | in-vitro, | CRC, | COLO205 | - | in-vitro, | CRC, | SW-620 | - | in-vivo, | NA, | NA |
| 2688- | CUR, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 19- | Deg, | Deguelin inhibits proliferation and migration of human pancreatic cancer cells in vitro targeting hedgehog pathway |
| - | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | PC, | PANC1 |
| 1621- | EA, | The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art |
| - | Review, | Var, | NA |
| 1607- | EA, | Exploring the Potential of Ellagic Acid in Gastrointestinal Cancer Prevention: Recent Advances and Future Directions |
| - | Review, | GC, | NA |
| 1605- | EA, | Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence |
| - | Review, | Var, | NA |
| 27- | EA, | Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice |
| - | in-vivo, | PC, | NA |
| 639- | EGCG, | Immunomodulatory Effects of Green Tea Catechins and Their Ring Fission Metabolites in a Tumor Microenvironment Perspective |
| - | Review, | NA, | NA |
| 3201- | EGCG, | Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential |
| - | Review, | NA, | NA |
| 3211- | EGCG, | Antioxidation Function of EGCG by Activating Nrf2/HO-1 Pathway in Mice with Coronary Heart Disease |
| - | in-vivo, | NA, | NA |
| 3238- | EGCG, | Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications |
| - | Review, | Var, | NA |
| 3233- | EGCG, | Epigallocatechin gallate inhibits HeLa cells by modulation of epigenetics and signaling pathways |
| - | in-vitro, | Cerv, | HeLa |
| 2992- | EGCG, | Effects of Epigallocatechin-3-Gallate on Matrix Metalloproteinases in Terms of Its Anticancer Activity |
| - | Review, | Var, | NA |
| 1322- | EMD, | The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers |
| - | Review, | Var, | NA |
| 1656- | FA, | Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling |
| - | Review, | Var, | NA |
| 1113- | FIS, | Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 2845- | FIS, | Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy |
| - | Review, | Var, | NA |
| 2847- | FIS, | Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells |
| - | in-vitro, | CCA, | NA |
| 2857- | FIS, | A review on the chemotherapeutic potential of fisetin: In vitro evidences |
| - | Review, | Var, | NA |
| 2858- | FIS, | Fisetin inhibits cell migration via inducing HO-1 and reducing MMPs expression in breast cancer cell lines |
| - | in-vitro, | BC, | 4T1 |
| 2825- | FIS, | Exploring the molecular targets of dietary flavonoid fisetin in cancer |
| - | Review, | Var, | NA |
| 2828- | FIS, | Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review |
| - | Review, | Var, | NA |
| 2829- | FIS, | Fisetin: An anticancer perspective |
| - | Review, | Var, | NA |
| 2830- | FIS, | Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent |
| - | Review, | Var, | NA |
| 2832- | FIS, | Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies |
| - | Review, | Var, | NA |
| 2843- | FIS, | Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential |
| - | Review, | Var, | NA |
| 2426- | GamB, | Anti-cancer natural products isolated from chinese medicinal herbs |
| - | Review, | Var, | NA |
| 820- | GAR, | Garcinol in gastrointestinal cancer prevention: recent advances and future prospects |
| - | Review, | NA, | NA |
| 812- | GAR, | Anti-proliferative and anti-invasive effects of garcinol from Garcinia indica on gallbladder carcinoma cells |
| - | in-vitro, | Gall, | GBC-SD | - | in-vitro, | Gall, | NOZ |
| 811- | GAR, | Garcinol exhibits anti-proliferative activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells |
| - | in-vitro, | CRC, | HT-29 |
| 795- | GAR, | Garcinol—A Natural Histone Acetyltransferase Inhibitor and New Anti-Cancer Epigenetic Drug |
| - | Review, | NA, | NA |
| 802- | GAR, | Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway |
| - | in-vitro, | GC, | HGC27 |
| 1118- | Ge, | Grape Seed Proanthocyanidins Inhibit Migration and Invasion of Bladder Cancer Cells by Reversing EMT through Suppression of TGF- β Signaling Pathway |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | 5637 |
| 1241- | Ge, | PACs, | Grape seed proanthocyanidins inhibit angiogenesis via the downregulation of both vascular endothelial growth factor and angiopoietin signaling |
| - | in-vitro, | Nor, | NA |
| 2998- | GEN, | Cellular and Molecular Mechanisms Modulated by Genistein in Cancer |
| - | Review, | Var, | NA |
| 1116- | GI, | 6-Shogaol Inhibits the Cell Migration of Colon Cancer by Suppressing the EMT Process Through the IKKβ/NF-κB/Snail Pathway |
| - | in-vitro, | Colon, | Caco-2 | - | in-vitro, | CRC, | HCT116 |
| 1643- | HCAs, | Mechanisms involved in the anticancer effects of sinapic acid |
| - | Review, | Var, | NA |
| 1649- | HCAs, | Anticancer Properties of Hydroxycinnamic Acids -A Review |
| - | Review, | Var, | NA |
| 1087- | HNK, | Honokiol Inhibits Non-Small Cell Lung Cancer Cell Migration by Targeting PGE2-Mediated Activation of β-Catenin Signaling |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | H460 | - | in-vitro, | Lung, | H226 |
| 2894- | HNK, | Pharmacological features, health benefits and clinical implications of honokiol |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 2891- | HNK, | Honokiol, an Active Compound of Magnolia Plant, Inhibits Growth, and Progression of Cancers of Different Organs |
| - | Review, | Var, | NA |
| 2916- | LT, | Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 2919- | LT, | Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence |
| - | Review, | Var, | NA |
| 2927- | LT, | Luteolin Causes 5′CpG Demethylation of the Promoters of TSGs and Modulates the Aberrant Histone Modifications, Restoring the Expression of TSGs in Human Cancer Cells |
| - | in-vitro, | Cerv, | HeLa |
| 2914- | LT, | Therapeutic Potential of Luteolin on Cancer |
| - | Review, | Var, | NA |
| 3277- | Lyco, | Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent |
| - | Review, | Var, | NA |
| 3267- | Lyco, | Lycopene inhibits angiogenesis both in vitro and in vivo by inhibiting MMP-2/uPA system through VEGFR2-mediated PI3K-Akt and ERK/p38 signaling pathways |
| - | in-vitro, | Nor, | HUVECs |
| 4528- | MAG, | Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update |
| - | Review, | Nor, | NA |
| 4527- | MAG, | Magnolol inhibits growth and induces apoptosis in esophagus cancer KYSE-150 cell lines via the MAP kinase pathway |
| - | in-vitro, | ESCC, | TE1 | - | in-vitro, | ESCC, | Eca109 | - | vitro+vivo, | SCC, | KYSE150 |
| 1782- | MEL, | Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities |
| - | Review, | Var, | NA |
| 225- | MFrot, | MF, | Extremely low frequency magnetic fields regulate differentiation of regulatory T cells: Potential role for ROS-mediated inhibition on AKT |
| - | vitro+vivo, | Lung, | NA |
| 1141- | Myr, | Myricetin: targeting signaling networks in cancer and its implication in chemotherapy |
| - | Review, | NA, | NA |
| 1311- | NarG, | Rad, | Naringenin sensitizes lung cancer NCI-H23 cells to radiation by downregulation of akt expression and metastasis while promoting apoptosis |
| - | in-vitro, | Lung, | H23 |
| 1807- | NarG, | A Systematic Review of the Preventive and Therapeutic Effects of Naringin Against Human Malignancies |
| - | Review, | NA, | NA |
| 1799- | NarG, | Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics |
| - | Review, | NA, | NA |
| 1994- | Part, | Parthenolide Inhibits Tumor Cell Growth and Metastasis in Melanoma A2058 Cells |
| - | in-vitro, | Melanoma, | A2058 | - | in-vitro, | Nor, | L929 |
| 1662- | PBG, | The immunomodulatory and anticancer properties of propolis |
| - | Review, | Var, | NA |
| 1680- | PBG, | Protection against Ultraviolet A-Induced Skin Apoptosis and Carcinogenesis through the Oxidative Stress Reduction Effects of N-(4-bromophenethyl) Caffeamide, a Propolis Derivative |
| - | in-vitro, | Nor, | HS68 |
| 3249- | PBG, | Can Propolis Be a Useful Adjuvant in Brain and Neurological Disorders and Injuries? A Systematic Scoping Review of the Latest Experimental Evidence |
| - | Review, | Var, | NA |
| 1257- | PI, | Piperlongumine attenuates bile duct ligation-induced liver fibrosis in mice via inhibition of TGF-β1/Smad and EMT pathways |
| - | ex-vivo, | LiverDam, | NA |
| 3597- | PI, | Chronic diseases, inflammation, and spices: how are they linked? |
| - | Review, | AD, | NA | - | Review, | Park, | NA | - | Review, | Var, | NA |
| 3587- | PI, | Piperine: A review of its biological effects |
| - | Review, | Park, | NA | - | Review, | AD, | NA |
| 1131- | PI, | Piperlongumine‑loaded nanoparticles inhibit the growth, migration and invasion and epithelial‑to‑mesenchymal transition of triple‑negative breast cancer cells |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 |
| 2973- | PL, | The Natural Alkaloid Piperlongumine Inhibits Metastatic Activity and Epithelial-to-Mesenchymal Transition of Triple-Negative Mammary Carcinoma Cells |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | 4T1 |
| 3930- | PTS, | A Review of Pterostilbene Antioxidant Activity and Disease Modification |
| - | Review, | Var, | NA | - | Review, | adrenal, | NA | - | Review, | Stroke, | NA |
| 2343- | QC, | Pharmacological Activity of Quercetin: An Updated Review |
| - | Review, | Nor, | NA |
| 2341- | QC, | Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 3353- | QC, | Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells |
| - | in-vitro, | Oral, | KON | - | in-vitro, | Nor, | MRC-5 |
| 3372- | QC, | FIS, | KaempF, | Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers |
| - | Review, | HNSCC, | NA |
| 3380- | QC, | Quercetin as a JAK–STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases |
| - | Review, | Var, | NA | - | Review, | Park, | NA | - | Review, | AD, | NA |
| 3374- | QC, | Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis |
| - | Review, | Oral, | NA | - | Review, | AD, | NA |
| 3370- | QC, | Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3) |
| - | in-vitro, | Pca, | PC3 |
| 3369- | QC, | Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects |
| - | Review, | Pca, | NA |
| 3368- | QC, | The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update |
| - | Review, | Var, | NA |
| 54- | QC, | Quercetin‑3‑methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways |
| - | in-vitro, | BC, | MCF-7 |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | PATU-8988 |
| 923- | QC, | Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health |
| - | Review, | Var, | NA |
| 910- | QC, | The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism |
| 3076- | RES, | Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells |
| - | Review, | Var, | NA |
| 3077- | RES, | Resveratrol attenuates matrix metalloproteinase-9 and -2-regulated differentiation of HTB94 chondrosarcoma cells through the p38 kinase and JNK pathways |
| - | in-vitro, | Chon, | HTB94 |
| 3078- | RES, | The Effects of Resveratrol on Prostate Cancer through Targeting the Tumor Microenvironment |
| - | Review, | Pca, | NA |
| 3095- | RES, | Resveratrol suppresses migration, invasion and stemness of human breast cancer cells by interfering with tumor-stromal cross-talk |
| - | in-vitro, | BC, | NA |
| 3092- | RES, | Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action |
| - | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MCF-7 |
| 3089- | RES, | The Role of Resveratrol in Cancer Therapy |
| - | Review, | Var, | NA |
| 3086- | RES, | Resveratrol inhibits the tumor migration and invasion by upregulating TET1 and reducing TIMP2/3 methylation in prostate carcinoma cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
| 1745- | RosA, | Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 3010- | RosA, | Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation |
| - | in-vitro, | Lung, | A549 | - | in-vivo, | NA, | NA |
| 3003- | RosA, | Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 3004- | RosA, | Rosmarinic acid counteracts activation of hepatic stellate cells via inhibiting the ROS-dependent MMP-2 activity: Involvement of Nrf2 antioxidant system |
| - | in-vitro, | Nor, | HSC-T6 |
| 3007- | RosA, | Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action |
| - | Review, | NA, | NA |
| 3037- | RosA, | Unraveling rosmarinic acid anticancer mechanisms in oral cancer malignant transformation |
| - | in-vitro, | Oral, | SCC9 | - | in-vitro, | Oral, | HSC3 |
| 1062- | Sel, | Sodium Selenite Decreased HDAC Activity, Cell Proliferation and Induced Apoptosis in Three Human Glioblastoma Cells |
| - | in-vitro, | GBM, | LN229 | - | in-vitro, | GBM, | T98G | - | in-vitro, | GBM, | U87MG |
| 1732- | SFN, | Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | SUM159 | - | in-vivo, | NA, | NA |
| 1730- | SFN, | Sulforaphane: An emergent anti-cancer stem cell agent |
| - | Review, | Var, | NA |
| 1729- | SFN, | Discovery and development of sulforaphane as a cancer chemopreventive phytochemical |
| - | Review, | Nor, | NA |
| 1726- | SFN, | Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential |
| - | Review, | Var, | NA |
| 1466- | SFN, | Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway |
| - | vitro+vivo, | Thyroid, | FTC-133 |
| 1508- | SFN, | Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment |
| - | Review, | Var, | NA |
| 3188- | SFN, | Sulforaphane inhibited tumor necrosis factor-α induced migration and invasion in estrogen receptor negative human breast cancer cells |
| - | in-vitro, | BC, | NA |
| 2448- | SFN, | Sulforaphane and bladder cancer: a potential novel antitumor compound |
| - | Review, | Bladder, | NA |
| 111- | SFN, | Sulforaphene Interferes with Human Breast Cancer Cell Migration and Invasion through Inhibition of Hedgehog Signaling |
| - | in-vitro, | BC, | SUM159 |
| 3301- | SIL, | Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid |
| - | Review, | Var, | NA |
| 3282- | SIL, | Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions |
| - | Review, | NA, | NA |
| 3332- | SIL, | Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2 |
| - | in-vitro, | Lung, | A549 |
| 3323- | SIL, | Anticancer therapeutic potential of silibinin: current trends, scope and relevance |
| - | Review, | Var, | NA |
| 3041- | SK, | Promising Nanomedicines of Shikonin for Cancer Therapy |
| - | Review, | Var, | NA |
| 2210- | SK, | Shikonin inhibits the cell viability, adhesion, invasion and migration of the human gastric cancer cell line MGC-803 via the Toll-like receptor 2/nuclear factor-kappa B pathway |
| - | in-vitro, | BC, | MGC803 |
| 359- | SNP, | Anti-cancer & anti-metastasis properties of bioorganic-capped silver nanoparticles fabricated from Juniperus chinensis extract against lung cancer cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HEK293 |
| 4559- | SNP, | Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation |
| - | in-vitro, | BC, | SkBr3 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Colon, | Caco-2 |
| 1935- | TQ, | Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis |
| - | Review, | OS, | NA |
| 2127- | TQ, | Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways |
| - | Review, | GBM, | NA |
| 2091- | TQ, | Determination of anti-cancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | GC, | AGS |
| 3573- | TQ, | Chronic diseases, inflammation, and spices: how are they linked? |
| - | Review, | Var, | NA |
| 3427- | TQ, | Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets |
| 3131- | VitC, | Antioxidant Vitamin C attenuates experimental abdominal aortic aneurysm development in an elastase-induced rat model |
| - | in-vivo, | Nor, | NA |
| 3130- | VitC, | Effect of high-dose vitamin C on MMP2 expression and invasive ability in human pancreatic cancer cell line PANC-1 |
| - | in-vitro, | PC, | PANC1 |
| 3129- | VitC, | Therapeutic treatment with vitamin C reduces focal cerebral ischemia-induced brain infarction in rats by attenuating disruptions of blood brain barrier and cerebral neuronal apoptosis |
| - | in-vivo, | Stroke, | NA |
| 1820- | VitK3, | Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells |
| - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | SW-620 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:1 prod#:% Target#:201 State#:0 Dir#:1
wNotes=0 sortOrder:rid,rpid