Database Query Results : , , Bcl-2

Bcl-2, B-cell CLL/lymphoma 2: Click to Expand ⟱
Source: HalifaxProj (inhibit) CGL-Driver Genes
Type: Antiapoptotic Oncogene
The proteins of BCL-2 family are classified into three subgroups, i.e., the anti-apoptotic/pro-survival proteins represented by BCL-2 and BCL-XL, the pro-apoptotic proteins represented by BAX and Bak, and the pro-apoptotic BH3-only proteins represented by BAD and BID.
Since the expression of Bcl-2 protein in tumor cells is much higher than that in normal cells, inhibitors targeting it have little effect on normal cells.


Scientific Papers found: Click to Expand⟱
1- Aco,    Acoschimperoside P, 2'-acetate: a Hedgehog signaling inhibitory constituent from Vallaris glabra
- in-vitro, PC, PANC1 - in-vitro, Pca, DU145
HH↓, PTCH1↓, Bcl-2↓, Gli1↓,
233- AL,  5-FU,    Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathway
- in-vivo, Liver, NA
ROS↑, MMP↓, Casp3↑, PARP↑, Bcl-2↓,
234- AL,    Allicin Induces Anti-human Liver Cancer Cells through the p53 Gene Modulating Apoptosis and Autophagy
- in-vitro, HCC, Hep3B
ROS↑, *toxicity∅, MMP↓, BAX↑, Bcl-2↓, AIF↑, Casp3↑, Casp8↑, Casp9↑, eff↓, γH2AX↑, selectivity↑, DNA-PK↑,
235- AL,    Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway
- in-vitro, GBM, U87MG
Apoptosis↑, Bcl-2↓, BAX↑, MAPK↑, p‑ERK↑, ROS↑, eff↓,
245- AL,    Allicin: a promising modulator of apoptosis and survival signaling in cancer
- Review, Var, NA
Fas↑, Bcl-2↓, BAX↑, PI3k/Akt/mTOR↝, Casp3↑, Casp8↑, Casp9↑, Apoptosis↓, *toxicity↓, Cyt‑c↑,
248- AL,    Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway
- in-vitro, GBM, U87MG
Bcl-2↓, BAX↑, MAPK↑, ERK↑, ROS↑, p38↑, JNK↑,
249- AL,    Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway
- in-vitro, GC, MGC803
Casp3↑, p38↑, BAX↑, Bcl-2↓, p38↑, MAPK↑,
250- AL,    Allicin Induces p53-Mediated Autophagy in Hep G2 Human Liver Cancer Cells
- in-vitro, Liver, HepG2
P53↓, PI3K↓, mTOR↓, Bcl-2↓, AMPK↑, TSC2↑, Beclin-1↑, TumAuto↑, tumCV↓, ATG7↑, MMP↓,
254- AL,    Allicin and Cancer Hallmarks
- Review, Var, NA
NRF2⇅, BAX↑, Bcl-2↓, Fas↑, MMP↓, Bax:Bcl2↑, Cyt‑c↑, Casp3↑, Casp12↑, GSH↓, TumCCA↑, ROS↑, antiOx↓,
1290- AL,    Bcl-2_and_Bax_protein_in_LM-8_cells">Effect of allicin on the expression of Bcl-2 and Bax protein in LM-8 cells
- in-vitro, OS, LM8
Bcl-2↓, BAX↑, Apoptosis↑, TumCG↓,
2000- AL,    Exploring the ROS-mediated anti-cancer potential in human triple-negative breast cancer by garlic bulb extract: A source of therapeutically active compounds
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, NA
selectivity↑, TumCG?, *toxicity∅, ROS↑, MMP↓, TumCCA↑, P53↑, Bcl-2↓, p‑Akt↓, p‑p38↓, *ROS∅,
2660- AL,    Allicin: A review of its important pharmacological activities
- Review, AD, NA - Review, Var, NA - Review, Park, NA - Review, Stroke, NA
*Inflam↓, AntiCan↑, *antiOx↑, *cardioP↑, *hepatoP↑, *BBB↑, *Half-Life↝, *H2S↑, *BP↓, *neuroP↑, *cognitive↑, *neuroP↑, *ROS↓, *GutMicro↑, *LDH↓, *ROS↓, *lipid-P↓, *antiOx↑, *other↑, *PI3K↓, *Akt↓, *NF-kB↓, *NO↓, *iNOS↓, *PGE2↓, *COX2↓, *IL6↓, *TNF-α↓, *MPO↓, *eff↑, *NRF2↑, *Keap1↓, *TBARS↓, *creat↓, *LDH↓, *AST↓, *ALAT↓, *MDA↓, *SOD↑, *GSH↑, *GSTs↑, *memory↑, chemoP↑, IL8↓, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, Casp12↑, p38↑, Fas↑, P53↑, P21↑, CHK1↓, CycB↓, GSH↓, ROS↑, TumCCA↑, Hif1a↓, Bcl-2↓, VEGF↓, TumCMig↓, STAT3↓, VEGFR2↓, p‑FAK↓,
281- ALA,    Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation
- in-vitro, Lung, H460
mt-ROS↑, Apoptosis↑, Casp9↑, Bcl-2↓, eff↓, eff↑, H2O2↑, Dose↑,
278- ALA,    The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment
- Review, NA, NA
ROS↑, NRF2↑, Inflam↓, frataxin↑, *BioAv↓, ChemoSen↑, Hif1a↓, eff↑, FAK↓, ITGB1↓, MMP2↓, MMP9↓, EMT↓, Snail↓, Vim↓, Zeb1↓, P53↑, MGMT↓, Mcl-1↓, Bcl-xL↓, Bcl-2↓, survivin↓, Casp3↑, Casp9↑, BAX↑, p‑Akt↓, GSK‐3β↓, *antiOx↑, *ROS↓, selectivity↑, angioG↓, MMPs↓, NF-kB↓, ITGB3↓, NADPH↓,
267- ALA,    α-Lipoic Acid Targeting PDK1/NRF2 Axis Contributes to the Apoptosis Effect of Lung Cancer Cells
- vitro+vivo, Lung, A549 - vitro+vivo, Lung, PC9
Apoptosis↑, ROS↑, PDK1↓, NRF2↓, PDK1↓, Bcl-2↓, Casp9↑, Dose∅,
258- ALA,    Effects of α-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells
- in-vitro, BC, MDA-MB-231
TumCG↓, p‑Akt↓, Akt↓, HER2/EBBR2↓, Bcl-2↓, BAX↑, Casp3↑,
1253- aLinA,    The Antitumor Effects of α-Linolenic Acid
- Review, NA, NA
PPARγ↑, COX2↓, E6↓, E7↓, P53↑, p‑ERK↓, p38↓, lipid-P↑, ROS⇅, MPT↑, MMP↓, Cyt‑c↑, Casp↑, iNOS↓, NO↓, Casp3↑, Bcl-2↓, Hif1a↓, FASN↓, CRP↓, IL6↓, IL1β↓, IFN-γ↓, TNF-α↓, Twist↓, VEGF↓, MMP2↓, MMP9↓,
1158- And,  GEM,    Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer
TumCP↓, TumCCA↑, Apoptosis↑, STAT3↓, Akt↓, P21↑, BAX↑, cycD1↓, cycE↓, survivin↓, XIAP↓, Bcl-2↓, eff↑,
1279- And,    Andrographolide Exhibits Anticancer Activity against Breast Cancer Cells (MCF-7 and MDA-MB-231 Cells) through Suppressing Cell Proliferation and Inducing Cell Apoptosis via Inactivation of ER-α Receptor and PI3K/AKT/mTOR Signaling
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
Apoptosis↑, Bcl-2↓, BAX↑, ERα↓, PI3K↓, mTOR↓,
1151- Api,    Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo study
- in-vitro, Pca, PC3 - in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
TumCCA↑, Apoptosis↑, HDAC↓, P21↑, BAX↑, TumCG↓, Bcl-2↓, Bax:Bcl2↑, HDAC1↓, HDAC3↓,
577- Api,  PacT,    Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells
- in-vitro, Ovarian, SKOV3
p‑Akt↓, Bcl-xL↓, Bcl-2↓, AXL↓, Tyro3↓,
581- Api,  Cisplatin,    The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy
- in-vitro, Pca, CD44+
Bcl-2↓, survivin↓, Casp8↑, P53↑, Sharpin↓, APAF1↑, p‑Akt↓, NF-kB↓, P21↑, Cyc↓, CDK2↓, CDK4/6↓, Snail↓, ChemoSen↑,
586- Api,  5-FU,    5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (ΔΨm)-mediated apoptosis in hepatocellular carcinoma
- in-vivo, HCC, NA
ROS↑, MMP↓, Bcl-2↓, Casp3↑, PARP↑,
208- Api,    Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70–Bax interaction in prostate cancer
- in-vivo, Pca, PC3 - in-vivo, Pca, DU145
XIAP↓, survivin↓, Bcl-xL↓, Bcl-2↓, BAX↑,
211- Api,    Suppression of NF-κB and NF-κB-Regulated Gene Expression by Apigenin through IκBα and IKK Pathway in TRAMP Mice
- in-vivo, Pca, NA
IKKα↓, NF-kB↓, cycD1↓, COX2↓, Bcl-2↓, Bcl-xL↓, VEGF↓, PCNA↓, BAX↑,
178- Api,    Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells
- in-vivo, BC, MDA-MB-231 - in-vitro, BC, T47D
Casp3↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, BAX↑,
2632- Api,    Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress
- in-vitro, EC, NA
TumCP↓, TumCCA↑, Apoptosis↑, Bcl-2↓, BAX↑, Bak↑, Casp↑, ER Stress↑, Ca+2↑, ATF4↑, CHOP↑, ROS↑, MMP↓, TumCMig↓, TumCI↓, eff↑, P53↑, P21↑, Cyt‑c↑, Casp9↑, Casp3↑, Bcl-xL↓,
2640- Api,    Apigenin: A Promising Molecule for Cancer Prevention
- Review, Var, NA
chemoP↑, ITGB4↓, TumCI↓, TumMeta↓, Akt↓, ERK↓, p‑JNK↓, *Inflam↓, *PKCδ↓, *MAPK↓, EGFR↓, CK2↓, TumCCA↑, CDK1↓, P53↓, P21↑, Bax:Bcl2↑, Cyt‑c↑, APAF1↑, Casp↑, cl‑PARP↑, VEGF↓, Hif1a↓, IGF-1↓, IGFBP3↑, E-cadherin↑, β-catenin/ZEB1↓, HSPs↓, Telomerase↓, FASN↓, MMPs↓, HER2/EBBR2↓, CK2↓, eff↑, AntiAg↑, eff↑, FAK↓, ROS↑, Bcl-2↓, Cyt‑c↑, cl‑Casp3↑, cl‑Casp7↑, cl‑Casp8↑, cl‑Casp9↑, cl‑IAP2↑, AR↓, PSA↓, p‑pRB↓, p‑GSK‐3β↓, CDK4↓, ChemoSen↑, Ca+2↑, cal2↑,
1301- Api,    Bcl-2 inhibitor and apigenin worked synergistically in human malignant neuroblastoma cell lines and increased apoptosis with activation of extrinsic and intrinsic pathways
- in-vitro, neuroblastoma, NA
BAX↑, Bcl-2↓, Cyt‑c↑, cal2↑, Casp3↑,
1537- Api,    Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer
- Review, PC, NA
TumCP↓, TumCCA↑, Apoptosis↑, MMPs↓, Akt↓, *BioAv↑, *BioAv↓, Half-Life∅, Hif1a↓, GLUT1↓, VEGF↓, ChemoSen↑, ROS↑, Bcl-2↓, Bcl-xL↓, BAX↑, BIM↑,
1564- Api,    Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation
- in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
MDM2↓, NF-kB↓, p65↓, P21↑, ROS↑, GSH↓, MMP↓, Cyt‑c↑, Apoptosis↑, P53↑, eff↓, Bcl-xL↓, Bcl-2↓, BAX↑, Casp↑, TumCG↓, TumVol↓, TumW↓,
1545- Api,    The Potential Role of Apigenin in Cancer Prevention and Treatment
- Review, NA, NA
TNF-α↓, IL6↓, IL1α↓, P53↑, Bcl-xL↓, Bcl-2↓, BAX↑, Hif1a↓, VEGF↓, TumCCA↑, DNAdam↑, Apoptosis↑, CycB↓, cycA1↓, CDK1↓, PI3K↓, Akt↓, mTOR↓, IKKα↓, ERK↓, p‑Akt↓, p‑P70S6K↓, p‑S6↓, p‑ERK↓, p‑P90RSK↑, STAT3↓, MMP2↓, MMP9↓, TumCP↓, TumCMig↓, TumCI↓, Wnt/(β-catenin)↓,
1563- Api,  MET,    Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells
- in-vitro, Nor, HDFa - in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
selectivity↑, selectivity↑, selectivity↓, ROS↑, eff↑, tumCV↓, MMP↓, Dose∅, eff↓, DNAdam↑, Apoptosis↑, TumAuto↑, Necroptosis↑, p‑P53↑, BIM↑, BAX↑, p‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Bcl-2↓, AIF↑, p62↑, LC3B↑, MLKL↑, p‑MLKL↓, RIP3↑, p‑RIP3↑, TumCG↑, TumW↓,
3383- ART/DHA,    Dihydroartemisinin: A Potential Natural Anticancer Drug
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, angioG↓, TumAuto↑, ER Stress↑, ROS↑, Ca+2↑, p38↑, HSP70/HSPA5↓, PPARγ↑, GLUT1↓, Glycolysis↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, lactateProd↓, GlucoseCon↓, EMT↓, Slug↓, Zeb1↓, ZEB2↓, Twist↓, Snail?, CAFs/TAFs↓, TGF-β↓, p‑STAT3↓, M2 MC↓, uPA↓, HH↓, AXL↓, VEGFR2↓, JNK↑, Beclin-1↑, GRP78/BiP↑, eff↑, eff↑, eff↑, eff↑, eff↑, eff↑, IL4↓, DR5↑, Cyt‑c↑, Fas↑, FADD↑, cl‑PARP↑, cycE↓, CDK2↓, CDK4↓, Mcl-1↓, Ki-67↓, Bcl-2↓, CDK6↓, VEGF↓, COX2↓, MMP9↓,
1079- ART/DHA,    Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2
- in-vitro, GC, BGC-823 - in-vitro, GC, HGC27 - in-vitro, GC, MGC803
TumCP↓, Apoptosis↑, COX2↓, BAX↑, Bcl-2↓, Casp3↑, Casp9↑, MMP↓,
2323- ART/DHA,    Dihydroartemisinin represses esophageal cancer glycolysis by down-regulating pyruvate kinase M2
- in-vitro, ESCC, Eca109 - in-vitro, ESCC, EC9706
PKM2↓, lactateProd↓, GlucoseCon↓, cycD1↓, Bcl-2↓, MMP2↓, VEGF↓, Casp3↑, cl‑PARP↑, BAX↑, DNAdam↑, ROS↑,
1295- AS,  Cisplatin,    Chemosensitizing Effect of Astragalus Polysaccharides on Nasopharyngeal Carcinoma Cells by Inducing Apoptosis and Modulating Expression of Bax/Bcl-2 Ratio and Caspases
- in-vivo, Laryn, NA
AntiTum↑, Apoptosis↑, Bcl-2↓, BAX↑, Casp3↑, Casp9↑, Bax:Bcl2↑,
1338- AS,    The Modulatory Properties of Astragalus membranaceus Treatment on Triple-Negative Breast Cancer: An Integrated Pharmacological Method
- in-vitro, BC, NA
TumCI↓, Apoptosis↑, Symptoms↓, PIK3CA↓, Akt↓, Bcl-2↓,
1304- ASA,    Aspirin Inhibits Colorectal Cancer via the TIGIT-BCL2-BAX pathway in T Cells
- in-vitro, CRC, NA - in-vivo, NA, NA
TumCP↓, Apoptosis↑, Bcl-2↓, BAX↑, IL10↓, TNF-β↓,
1360- Ash,  immuno,    Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer
- in-vitro, Lung, H1650 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
PD-L1↑, eff↓, ROS↑, ER Stress↑, Apoptosis↑, BAX↑, Bak↑, BAD↑, Bcl-2↓, XIAP↓, survivin↓, cl‑PARP↑, CHOP↑, p‑eIF2α↑, ICD↑, eff↑,
1369- Ash,    Withaferin A inhibits cell proliferation of U266B1 and IM-9 human myeloma cells by inducing intrinsic apoptosis
- in-vitro, Melanoma, U266
tumCV↓, Apoptosis↑, BAX↑, Cyt‑c↑, Bcl-2↓, cl‑PARP↑, cl‑Casp3↑, cl‑Casp9↑, ROS↑, eff↓,
1433- Ash,  SFN,    A Novel Combination of Withaferin A and Sulforaphane Inhibits Epigenetic Machinery, Cellular Viability and Induces Apoptosis of Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
eff↑, Bcl-2↓, BAX↑, tumCV↓, DNMT1↓, DNMT3A↓, HDAC↓,
1142- Ash,    Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer
- Review, BC, MCF-7 - NA, BC, MDA-MB-231 - NA, Nor, HMEC
Apoptosis↑, ROS↑, DNAdam↑, OXPHOS↓, *ROS∅, Bcl-2↓, XIAP↓, survivin↓, DR5↑, IKKα↓, NF-kB↓, selectivity↑, *ROS∅, eff↓, Paraptosis↑,
3160- Ash,    Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal
- Review, Var, NA
TumCCA↑, H3↑, P21↑, cycA1↓, CycB↓, cycE↓, CDC2↓, CHK1↓, Chk2↓, p38↑, MAPK↑, E6↓, E7↓, P53↑, Akt↓, FOXO3↑, ROS↑, γH2AX↑, MMP↓, mitResp↓, eff↑, TumCD↑, Mcl-1↓, ER Stress↑, ATF4↑, ATF3↑, CHOP↑, NOTCH↓, NF-kB↓, Bcl-2↓, STAT3↓, CDK1↓, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, Cyt‑c↑, eff↑, CDK4↓, p‑RB1↓, PARP↑, cl‑Casp3↑, cl‑Casp9↑, NRF2↑, ER-α36↓, LDHA↓, lipid-P↑, AP-1↓, COX2↓, RenoP↑, PDGFR-BB↓, SIRT3↑, MMP2↓, MMP9↓, NADPH↑, NQO1↑, GSR↑, HO-1↑, *SOD2↑, *Prx↑, *Casp3?, eff↑, Snail↓, Slug↓, Vim↓, CSCs↓, HEY1↓, MMPs↓, VEGF↓, uPA↓, *toxicity↓, CDK2↓, CDK4↓, HSP90↓,
3166- Ash,    Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives
- Review, Var, NA
*p‑PPARγ↓, *cardioP↑, *AMPK↑, *BioAv↝, *Half-Life↝, *Half-Life↝, *Dose↑, *chemoP↑, IL6↓, STAT3↓, ROS↓, OXPHOS↓, PCNA↓, LDH↓, AMPK↑, TumCCA↑, NOTCH3↓, Akt↓, Bcl-2↓, Casp3↑, Apoptosis↑, eff↑, NF-kB↓, CSCs↓, HSP90↓, PI3K↓, FOXO3↑, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, FASN↓, ACLY↓, ROS↑, NRF2↑, HO-1↑, NQO1↑, JNK↑, mTOR↓, neuroP↑, *TNF-α↓, *IL1β↓, *IL6↓, *IL8↓, *IL18↓, RadioS↑, eff↑,
1302- AV,    Quantitative measurement of Bax and Bcl2 genes and protein expression in MCF7 cell-line when treated by Aloe Vera extract
- in-vitro, BC, MCF-7
BAX↑, Bcl-2↓,
874- B-Gluc,    Potential promising anticancer applications of β-glucans: a review
- Review, NA, NA
AntiCan↑, TumCG↓, BAX↑, Bcl-2↓, IFN-γ↑, PI3K/Akt↑, MAPK↑, NFAT↑, NF-kB↑, ROS↑, NK cell↑, TumCCA↑, ERK↓, Telomerase↓,
1288- Ba,    The Traditional Chinese Medicine Baicalein Potently Inhibits Gastric Cancer Cells
- in-vitro, GC, SGC-7901
TumCG↓, TumCCA↑, Apoptosis↑, MMP↓, Bcl-2↓, BAX↑,
1533- Ba,    Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species Generation
- in-vitro, BrCC, MCF-7 - in-vitro, Nor, MCF10
tumCV↓, i-ROS↑, MMP↓, Bcl-2↓, BAX↑, Cyt‑c↑, Casp9↑, Casp3↑, eff↓, selectivity↑, *toxicity∅, Apoptosis↑, Fenton↑,
1521- Ba,    Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells
- in-vitro, Bladder, 5637
TumCG↓, Apoptosis↑, IAP1↓, IAP2↓, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, MMP↓, Casp8↑, BID↑, ROS?, eff↓, DR4↑, DR5↑, FasL↑, TRAIL↑,
1523- Ba,    Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression
- in-vitro, OS, MG63 - in-vitro, Nor, hFOB1.19
TumCD↑, Apoptosis↑, ROS↑, eff↓, Casp3↑, Bcl-2↓, selectivity↑, Cyt‑c↑, LDH?, BNIP3?, BAX↑,
1532- Ba,    Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives
- Review, NA, NA
ROS↑, ER Stress↑, Ca+2↑, MMPs↓, Cyt‑c↑, Casp3↑, ROS↑, DR5↑, ROS↑, BAX↑, Bcl-2↓, MMP↓, Casp3↑, Casp9↑, P53↑, p16↑, P21↑, p27↑, HDAC10↑, MDM2↓, Apoptosis↑, PI3K↓, Akt↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, p‑IκB↓, IκB↑, BAX↑, Bcl-2↓, ROS⇅, BNIP3↑, p38↑, 12LOX↓, Mcl-1↓, Wnt?, GLI2↓, AR↓, eff↑,
2047- BA,    Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells
- in-vitro, CRC, T24 - in-vitro, Nor, SV-HUC-1 - in-vitro, Bladder, 5637 - in-vivo, NA, NA
HDAC↓, AntiTum↑, TumCMig↓, AMPK↑, mTOR↑, TumAuto↑, ROS↑, miR-139-5p↑, BMI1↓, TumCI?, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, Bcl-xL↓, MMP↓, PINK1↑, PARK2↑, TumMeta↓, TumCG↓, LC3II↑, p62↓, eff↓,
2597- Ba,    Baicalein – An Intriguing Therapeutic Phytochemical in Pancreatic Cancer
- Review, PC, NA
chemoP↑, ChemoSen↑, 12LOX?, Bcl-2↓, BAX↑, Mcl-1↓, ERK↓, Prx6↑, Dose↝, BioAv↓, eff↑,
2600- Ba,    Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells
- in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, Bel-7402
ER Stress↑, Bcl-2↓, Ca+2↑, JNK↑, CHOP↑, Casp9↑, Casp3↑, PARP↑, Apoptosis↑, UPR↑,
2626- Ba,    Molecular targets and therapeutic potential of baicalein: a review
- Review, Var, NA - Review, AD, NA - Review, Stroke, NA
AntiCan↓, *neuroP↑, *cardioP↑, *hepatoP↑, *RenoP↑, TumCCA↑, CDK4↓, cycD1↓, cycE↑, BAX↑, Bcl-2↓, VEGF↓, Hif1a↓, cMyc↓, NF-kB↓, ROS↑, BNIP3↑, *neuroP↑, *cognitive↑, *NO↓, *iNOS↓, *COX2↓, *PGE2↓, *NRF2↑, *p‑AMPK↑, *Ferroptosis↓, *lipid-P↓, *ALAT↓, *AST↓, *Fas↓, *BAX↓, *Apoptosis↓,
2617- Ba,    Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review
- Review, Var, NA
Ca+2↑, MMP2↓, MMP9↓, Vim↓, Snail↓, E-cadherin↑, Wnt↓, β-catenin/ZEB1↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, i-ROS↑, Bcl-2↓, BAX↑, Cyt‑c↑, Casp3↑, Casp9↑, STAT3↓, IL6↓, MMP2↓, MMP9↓, NOTCH↓, PPARγ↓, p‑NRF2↓, HK2↓, LDHA↓, PDK1↓, Glycolysis↓, PTEN↑, Akt↓, Hif1a↓, MMP↓, VEGF↓, VEGFR2↓, TOP2↓, uPA↓, TIMP1↓, TIMP2↓, cMyc↓, TrxR↓, ASK1↑, Vim↓, ZO-1↑, E-cadherin↑, SOX2↓, OCT4↓, Shh↓, Smo↓, Gli1↓, N-cadherin↓, XIAP↓,
2296- Ba,    The most recent progress of baicalein in its anti-neoplastic effects and mechanisms
- Review, Var, NA
CDK1↓, Cyc↓, p27↑, P21↑, P53↑, TumCCA↑, TumCI↓, MMP2↓, MMP9↓, E-cadherin↑, N-cadherin↓, Vim↓, LC3A↑, p62↓, p‑mTOR↓, PD-L1↓, CAFs/TAFs↓, VEGF↓, ROCK1↓, Bcl-2↓, Bcl-xL↓, BAX↑, ROS↑, cl‑PARP↑, Casp3↑, Casp9↑, PTEN↑, MMP↓, Cyt‑c↑, Ca+2↑, PERK↑, IRE1↑, CHOP↑, Copper↑, Snail↓, Vim↓, Twist↓, GSH↓, NRF2↓, HO-1↓, GPx4↓, XIAP↓, survivin↓, DR5↑,
2477- Ba,    Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cells
- in-vitro, CRC, T24
TumCG↓, TumCCA↑, MMP↓, Cyt‑c↑, Casp9↑, Casp3↑, p‑Akt↓, Bcl-2↓, BAX↑, Bax:Bcl2↑, 12LOX↓,
2478- Ba,    The role of Ca2+ in baicalein-induced apoptosis in human breast MDA-MB-231 cancer cells through mitochondria- and caspase-3-dependent pathway
- in-vitro, BC, MDA-MB-231
Bcl-2↓, BAX↓, Cyt‑c↑, Casp3↑, Ca+2↓,
1390- BBR,  Rad,    Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells
- in-vitro, Pca, PC3
RadioS↑, Apoptosis↑, ROS↑, eff↑, BAX↑, Casp3↑, P53↑, p38↑, JNK↑, Bcl-2↓, ERK↓, HO-1↓,
1398- BBR,    Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damage
- in-vitro, Kidney, NA
TumCP↓, TumCMig↓, ROS↑, Apoptosis↑, BAX↑, BAD↑, Bak↑, Cyt‑c↑, cl‑Casp3↑, cl‑Casp9↑, E-cadherin↑, TIMP1↑, γH2AX↑, Bcl-2↓, N-cadherin↓, Vim↓, Snail↓, RAD51↓, PCNA↓,
1393- BBR,  EPI,    Berberine promotes antiproliferative effects of epirubicin in T24 bladder cancer cells by enhancing apoptosis and cell cycle arrest
- in-vitro, Bladder, T24
ChemoSen↑, TumCCA↑, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, BAX↑, P53↑, P21↑, Bcl-2↓, ROS↑,
1394- BBR,  DL,    Synergistic Inhibitory Effect of Berberine and d-Limonene on Human Gastric Carcinoma Cell Line MGC803
- in-vitro, GC, MGC803
eff↑, ROS↑, MMP↓, Casp3↑, Bcl-2↓, TumCCA↑,
1400- BBR,    Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells
- in-vitro, Melanoma, U266
ROS↑, TumCCA↑, Apoptosis↑, miR-21↓, Bcl-2↓, NF-kB↓, Set9↑,
1386- BBR,    Berberine-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, ROS↑, JNK↑, MMP↓, Bcl-2↓, BAX↑, Cyt‑c↑, AIF↝,
2674- BBR,    Berberine: A novel therapeutic strategy for cancer
- Review, Var, NA - Review, IBD, NA
Inflam↓, AntiCan↑, Apoptosis↑, TumAuto↑, TumCCA↑, TumMeta↓, TumCI↓, eff↑, eff↑, CD4+↓, TNF-α↓, IL1↓, BioAv↓, BioAv↓, other↓, AMPK↑, MAPK↓, NF-kB↓, IL6↓, MCP1↓, PGE2↓, COX2↓, *ROS↓, *antiOx↑, *GPx↑, *Catalase↑, AntiTum↑, TumCP↓, angioG↓, Fas↑, FasL↑, ROS↑, ATM↑, P53↑, RB1↑, Casp9↑, Casp8↑, Casp3↓, BAX↑, Bcl-2↓, Bcl-xL↓, IAP1↓, XIAP↓, survivin↓, MMP2↓, MMP9↓, CycB↓, CDC25↓, CDC25↓, Cyt‑c↑, MMP↓, RenoP↑, mTOR↓, MDM2↓, LC3II↑, ERK↓, COX2↓, MMP3↓, TGF-β↓, EMT↑, ROCK1↓, FAK↓, RAS↓, Rho↓, NF-kB↓, uPA↓, MMP1↓, MMP13↓, ChemoSen↑,
2686- BBR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Nor, NA
Inflam↓, IL6↓, MCP1↓, COX2↓, PGE2↓, MMP2↓, MMP9↓, DNAdam↑, eff↝, Telomerase↓, Bcl-2↓, AMPK↑, ROS↑, MMP↓, ATP↓, p‑mTORC1↓, p‑S6K↓, ERK↓, PI3K↓, PTEN↑, Akt↓, Raf↓, MEK↓, Dose↓, Dose↑, selectivity↑, TumCCA↑, eff↑, EGFR↓, Glycolysis↓, Dose?, p27↑, CDK2↓, CDK4↓, cycD1↓, cycE↓, Bax:Bcl2↑, Casp3↑, Casp9↑, VEGFR2↓, ChemoSen↑, eff↑, eff↑, PGE2↓, JAK2↓, STAT3↓, CXCR4↓, CCR7↓, uPA↓, CSCs↓, EMT↓, Diff↓, CD133↓, Nestin↓, n-MYC↓, NOTCH↓, SOX2↓, Hif1a↓, VEGF↓, RadioS↑,
2670- BBR,    Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases
- Review, Var, NA
*Inflam↓, *antiOx↑, *Ca+2↓, *BioAv↓, *BioAv↑, *BioAv↑, *angioG↑, *MAPK↓, *AMPK↓, *NF-kB↓, VEGF↓, PI3K↓, Akt↓, MMP2↓, Bcl-2↓, ERK↓,
2335- BBR,    Chemoproteomics reveals berberine directly binds to PKM2 to inhibit the progression of colorectal cancer
- in-vitro, CRC, HT29 - in-vitro, CRC, HCT116 - in-vivo, NA, NA
PKM2↓, Glycolysis↓, p‑STAT3↓, Bcl-2↓, cycD1↓, TumCG↓, Ki-67↓, lactateProd↓, glucose↓,
2748- BetA,    Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy
- Review, Var, NA
Bcl-2↓, MMP↓, Cyt‑c↑, Casp↑, Diablo↑, AIF↑, angioG↓, BioAv↓, NF-kB↓,
2746- BetA,    Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo
- in-vitro, CRC, HCT116 - in-vivo, CRC, NA
TumCG↓, BAX↑, Bcl-2↓, ROS↑, MMP↓, TIMP2↑, TumVol↓,
2743- BetA,    Betulinic acid and the pharmacological effects of tumor suppression
- Review, Var, NA
ROS↓, MMP↓, Cyt‑c↑, Apoptosis↑, TumCCA↑, Sp1/3/4↓, STAT3↓, NF-kB↓, EMT↓, TOP1↓, MAPK↑, p38↑, JNK↑, Casp↑, Bcl-2↓, BAX↑, VEGF↓, LAMs↓,
2716- BetA,    Cellular and molecular mechanisms underlying the potential of betulinic acid in cancer prevention and treatment
- Review, Var, NA
AntiCan↑, TumCD↑, TumCCA↑, ROS↑, NF-kB↓, Bcl-2↓, Half-Life↝, GLUT1↓, VEGF↓, PDK1↓,
2721- BetA,    Proteomic Investigation into Betulinic Acid-Induced Apoptosis of Human Cervical Cancer HeLa Cells
- in-vitro, Cerv, HeLa
ROS↑, Dose↝, Bcl-2↓, BAX↑, ER Stress↑,
2737- BetA,    Multiple molecular targets in breast cancer therapy by betulinic acid
- Review, Var, NA
TumCP↓, Cyc↓, TOP1↓, TumCCA↑, angioG↓, NF-kB↓, Sp1/3/4↓, VEGF↓, MMPs↓, ChemoSen↑, eff↑, MMP↓, ROS↑, Bcl-2↓, Bcl-xL↓, Mcl-1↓, lipid-P↑, RadioS↑, eff↑,
2732- BetA,  Chemo,    Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
ChemoSen↑, selectivity↑, GRP78/BiP↑, ER Stress↑, PERK↑, Ca+2↑, Cyt‑c↑, BAX↑, Bcl-2↓,
1285- BetA,    Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells
- in-vitro, Var, NA
Apoptosis↑, Bcl-2↓, cycD1↓, BAX↑,
1305- BetA,    Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells
- in-vitro, UEC, NA
Apoptosis↑, Bcl-2↓, BAX↑,
726- Bor,    Redox Mechanisms Underlying the Cytostatic Effects of Boric Acid on Cancer Cells—An Issue Still Open
- Review, NA, NA
NAD↝, SAM-e↝, PSA↓, IGF-1↓, Cyc↓, P21↓, p‑MEK↓, p‑ERK↓, ROS↑, SOD↓, Catalase↓, MDA↑, GSH↓, IL1↓, IL6↓, TNF-α↓, BRAF↝, MAPK↝, PTEN↝, PI3K/Akt↝, eIF2α↑, ATF4↑, ATF6↑, NRF2↑, BAX↑, BID↑, Casp3↑, Casp9↑, Bcl-2↓, Bcl-xL↓,
702- Bor,  GEN,  SeMet,  Rad,    Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States)
- Analysis, NA, NA
Risk↓, TumCMig↓, Bcl-2↓,
742- Bor,    In Vitro Effects of Boric Acid on Cell Cycle, Apoptosis, and miRNAs in Medullary Thyroid Cancer Cells
- in-vitro, Thyroid, NA
NOXA↑, APAF1↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, Bcl-xL↓, miR-21↓,
743- Bor,    Boric Acid (Boron) Attenuates AOM-Induced Colorectal Cancer in Rats by Augmentation of Apoptotic and Antioxidant Mechanisms
- in-vitro, CRC, NA
BAX↑, Bcl-2↓, GPx↑, SOD↑, Catalase↑, MDA↓, TNF-α↓, IL6↓, IL10↑,
749- Bor,    Comparative effects of boric acid and calcium fructoborate on breast cancer cells
P53↓, Bcl-2↓, Casp3↑, Apoptosis↑,
750- Bor,    Calcium fructoborate regulate colon cancer (Caco-2) cytotoxicity through modulation of apoptosis
- in-vitro, CRC, Caco-2
Bcl-2↓, BAX↑, Akt↓, p70S6↓, PTEN↑, TSC2↑,
1169- Bos,    Boswellic Acid Inhibits Growth and Metastasis of Human Colorectal Cancer in Orthotopic Mouse Model By Downregulating Inflammatory, Proliferative, Invasive, and Angiogenic Biomarkers
- in-vivo, CRC, NA
TumCG↓, TumVol↓, Weight∅, ascitic↓, TumMeta↓, Ki-67↓, CD31↓, NF-kB↓, COX2↓, Bcl-2↓, Bcl-xL↓, IAP1↓, survivin↓, cycD1↓, ICAM-1↓, MMP9↓, CXCR4↓, VEGF↓,
1420- Bos,    Acetyl-11-keto-β-boswellic acid inhibits proliferation and induces apoptosis of gastric cancer cells through the phosphatase and tensin homolog /Akt/ cyclooxygenase-2 signaling pathway
- vitro+vivo, GC, BGC-823
TumCP↓, TumCG↓, PTEN↑, BAX↑, Bcl-2↓, p‑Akt↓, COX2↓,
1426- Bos,  CUR,  Chemo,    Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer
- in-vivo, CRC, NA - in-vitro, CRC, HCT116 - in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vitro, RCC, SW-620 - in-vitro, RCC, HT-29 - in-vitro, CRC, Caco-2
miR-34a↑, miR-27a-3p↓, TumCG↓, BAX↑, Bcl-2↓, PARP1↓, TumCCA↑, Apoptosis↑, cMyc↓, CDK4↓, CDK6↓, cycD1↓, ChemoSen↑, miR-34a↑, miR-27a-3p↓,
2773- Bos,    Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: Potential role in prevention and therapy of cancer
- Review, Var, NA
Inflam↓, TumCCA↑, Casp3↑, Casp8↑, Casp9↑, STAT3↑, SHP1↓, NF-kB↓, cycD1↓, COX2↓, Ki-67↓, CD31↓, IAP1↓, MMPs↓, Bcl-2↓, Bcl-xL↓,
1640- CA,  MET,    Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines
- in-vitro, Cerv, SiHa
GLS↓, NADPH↓, ROS↑, TumCD↑, AMPK↑, Hif1a↓, GLUT1↓, GLUT3↓, HK2↓, PFK↓, PKM2↓, LDH↓, cMyc↓, BAX↓, cycD1↓, PDH↓, ROS↑, Apoptosis↑, eff↑, ACLY↓, FASN↓, Bcl-2↓, Glycolysis↓,
1262- CAP,    Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway
- vitro+vivo, BC, NA
FBI-1↓, Ki-67↓, Bcl-2↓, survivin↓, BAX↑, Casp3↑, TumCP↓, Apoptosis↑,
2012- CAP,    Capsaicin induces cytotoxicity in human osteosarcoma MG63 cells through TRPV1-dependent and -independent pathways
- NA, OS, MG63
AntiTum↑, Apoptosis↑, TRPV1↑, ROS↑, SOD↓, AMPK↑, P53↑, JNK↑, Bcl-2↓, Cyt‑c↑, cl‑Casp3↑, cl‑PARP↑, Ca+2↑, MMP↓,
1517- CAP,    Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX) and Sirtuin1 (SIRT1)
- in-vitro, Bladder, TSGH8301 - in-vitro, CRC, T24
ENOX2↓, TumCCA↑, ERK↓, p‑FAK↓, p‑pax↓, TumCMig↓, EMT↓, SIRT1↓, Dose∅, ROS↑, MMP↓, Bcl-2↓, Bak↑, cl‑PARP↑, Casp3↑, SIRT1↓, ac‑P53↑, BIM↑, p‑RB1↓, cycD1↓, Dose∅, β-catenin/ZEB1↓, N-cadherin↓, E-cadherin↑,
1287- CAR,    Bcl-2CytC_signaling_pathway">Carvacrol induces apoptosis in human breast cancer cells via Bcl-2/CytC signaling pathway
- in-vitro, BC, HCC1937
TumCP↓, TumCCA↑, Apoptosis↑, BAX↑, Cyt‑c↑, Casp3↑, Bcl-2↓,
1298- CGA,    Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells
- in-vitro, Lung, A549
Bcl-2↓, BAX↑, Casp3↑, p38↑, JNK↑, Nanog↓, SOX2↓, OCT4↓,
4487- Chit,  PreB,    Unravelling the Role of Chitin and Chitosan in Prebiotic Activity and Correlation With Cancer: A Narrative Review
- Review, NA, NA
*GutMicro↑, Apoptosis↑, BAX↑, Bcl-2↓, *Inflam↓, AntiTum↑,
2795- CHr,    Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53
- in-vitro, Liver, HepG2
ChemoSen↑, P53↑, ERK↑, BAX↑, DR5↑, Bcl-2↓, Casp8↑, Cyt‑c↑, Casp9↑,
1145- CHr,    Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways
- in-vitro, Cerv, HeLa
tumCV↓, BAX↑, BID↑, BOK↑, APAF1↑, TNF-α↑, FasL↑, Fas↑, FADD↑, Casp3↑, Casp7↑, Casp8↑, Casp9↑, Mcl-1↓, NAIP↓, Bcl-2↓, CDK4↓, CycB↓, cycD1↓, cycE1↓, TRAIL↑, p‑Akt↓, Akt↓, mTOR↓, PDK1↓, BAD↓, GSK‐3β↑, AMPK↑, p27↑, P53↑,
1055- Cin,    Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1
- vitro+vivo, Melanoma, NA - vitro+vivo, CRC, NA - vitro+vivo, lymphoma, NA
TumCP↓, NF-kB↓, AP-1↓, Bcl-2↓, Bcl-xL↓, survivin↓,
1585- Citrate,    Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S - in-vitro, Nor, HEK293
Apoptosis↑, Ferroptosis↑, Ca+2↓, CaMKII ↓, Akt↓, mTOR↓, Hif1a↓, ROS↑, ChemoSen↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Cyt‑c↑, GlucoseCon↓, lactateProd↓, Pyruv↓, GLUT1↓, HK2↓, PFKP↓, Glycolysis↓, Hif1a↓, p‑Akt↓, p‑mTOR↓, Iron↑, lipid-P↑, MDA↑, ROS↑, H2O2↑, mtDam↑, GSH↓, GPx↓, GPx4↓, NADPH/NADP+↓, eff↓, FTH1↓, LC3‑Ⅱ/LC3‑Ⅰ↑, NCOA4↑, eff↓, TumCG↓,
2315- Citrate,    Why and how citrate may sensitize malignant tumors to immunotherapy
- Review, Var, NA
Bcl-2↓, Mcl-1↓, survivin↓, Casp3↑, Casp9↑, Ferroptosis↑, lipid-P↑, Ca+2↓, Akt↓, mTOR↓, Hif1a↓, MCU↓, ATP↓, ROS↑, eff↑,
1572- Cu,    Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy
- Review, NA, NA
eff↑, Fenton↑, ROS↑, eff↑, mtDam↑, BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑, Casp3↑, ER Stress↑, CHOP↑, Apoptosis↑, selectivity↑, eff↑, Pyro↑, Paraptosis↑, Cupro↑, ChemoSen↑, eff↑,
141- CUR,    Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancer
- in-vivo, Pca, PC3
BAX↑, Bcl-2↓,
137- CUR,    Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating Notch signaling
- in-vitro, Pca, DU145
NOTCH1↓, cycD1↓, CDK2↓, P21↑, p27↑, P53↑, Bcl-2↓, Casp3↑, Casp9↑,
136- CUR,  docx,    Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
Bcl-2↓, Bcl-xL↓, Mcl-1↓, BAX↑, BID↑, PARP↑, NF-kB↓, CDK1↓, COX2↓, RTK-RAS↓, PI3K/Akt↓, EGFR↓, HER2/EBBR2↓, P53↑,
170- CUR,    Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis
- vitro+vivo, Pca, PC3
TRAILR↑, BAX↑, P21↑, p27↑, NF-kB↓, cycD1↓, VEGF↓, uPA↓, MMP2↓, MMP9↓, Bcl-2↓, Bcl-xL↓,
9- CUR,    Curcumin Suppresses Malignant Glioma Cells Growth and Induces Apoptosis by Inhibition of SHH/GLI1 Signaling Pathway in Vitro and Vivo
- vitro+vivo, MG, U87MG - vitro+vivo, MG, T98G
HH↓, Shh↓, Gli1↓, cycD1↓, Bcl-2↓, Foxm1↓, Bax:Bcl2↑,
12- CUR,    Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells
- in-vitro, MB, DAOY
HH↓, Shh↓, Gli1↓, PTCH1↓, cMyc↓, n-MYC↓, cycD1↓, Bcl-2↓, NF-kB↓, Akt↓, β-catenin/ZEB1↓, survivin↓,
118- CUR,    Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
ROS↑, Bcl-2↓, PARP↑, cDC2↓, CycB↓, MDM2↓,
424- CUR,    Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Src↓, p‑STAT1↓, p‑Akt↓, p‑p44↓, p‑p42↓, RAS↓, Raf↓, Vim↓, β-catenin/ZEB1↓, P53↓, Bcl-2↓, Mcl-1↓, PIAS-3↑, SOCS-3↑, SOCS1↑, ROS↑, NF-kB↓, PAO↑, SSAT↑, P21↑, Bak↑,
425- CUR,    Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells
- in-vitro, BC, T47D - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468
CDC25↓, cDC2↓, P21↑, p‑Akt↓, p‑mTOR↓, Bcl-2↓, BAX↑, Casp3↑,
426- CUR,    Use of cancer chemopreventive phytochemicals as antineoplastic agents
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, CAL51
Bcl-2↓, ROS↑, BAX↑, RAD51↑, γH2AX↑,
432- CUR,    Curcumin-Induced Global Profiling of Transcriptomes in Small Cell Lung Cancer Cells
- in-vitro, Lung, H446
Bcl-2↓, cycF↓, LOX1↓, VEGF↓, MRGPRF↓, BAX↑, Cyt‑c↑, miR-548ah-5p↑,
417- CUR,    Curcumin inhibits the growth of triple‐negative breast cancer cells by silencing EZH2 and restoring DLC1 expression
- vitro+vivo, BC, MCF-7 - vitro+vivo, BC, MDA-MB-231 - vitro+vivo, BC, MDA-MB-468
EZH2↓, DLC1↑, cycA1↓, CDK1↓, Bcl-2↓, Casp9↑, DLC1↑,
406- CUR,    Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2
- in-vitro, BC, MCF-7 - in-vitro, Hepat, HepG2
GSH↓, Apoptosis↑, Bcl-2↓, cMyc↓,
461- CUR,    Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, miR-30a-5p↑, PCLAF↓, Bcl-2↓, Casp3↓, BAX↑, cl‑Casp3↑,
462- CUR,    Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress
- in-vitro, Pca, PC3
Bcl-2↓, MMP↓, cl‑Casp3↑, BAX↑, BIM↑, p‑PARP↑, PUMA↑, p‑P53↑, ROS↑, p‑ERK↑, p‑eIF2α↑, CHOP↑, ATF4↑,
441- CUR,    Curcumin Regulates ERCC1 Expression and Enhances Oxaliplatin Sensitivity in Resistant Colorectal Cancer Cells through Its Effects on miR-409-3p
- in-vitro, CRC, HCT116
ERCC1↓, Bcl-2↓, GSTP1/GSTπ↓, MRP↓, P-gp↓, miR-409-3p↑, survivin↓,
444- CUR,  Cisplatin,    LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells
- vitro+vivo, CRC, HCT8
TumVol↓, Apoptosis↑, Bcl-2↓, Cyt‑c↑, BAX↑, cl‑Casp3↑, cl‑PARP1↑, miR-497↑, KCNQ1OT1↓,
447- CUR,  OXA,    Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway
- vitro+vivo, CRC, HCT116
p‑p65↓, Bcl-2↓, Casp3↑, EMT↓, p‑SMAD2↓, p‑SMAD3↓, N-cadherin↓, TGF-β↓, E-cadherin↑, TumVol↓, TumCMig↓,
448- CUR,    Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation
- in-vitro, CRC, HT-29
Apoptosis↑, TumCCA↑, p‑Akt↓, Akt↓, Bcl-2↓, p‑BAD↓, BAD↑, cl‑PARP↑, ROS↑, HSP27↑, Beclin-1↑, p62↑, GPx1↓, GPx4↓,
453- CUR,    Cellular uptake and apoptotic properties of gemini curcumin in gastric cancer cells
- in-vitro, GC, AGS
Bcl-2↓, survivin↓, BAX↑, TumCCA↑,
456- CUR,    Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells
- vitro+vivo, GC, SGC-7901
miR-34a↑, TumCP↓, TumCMig↓, TumCI↓, TumCCA↑, Bcl-2↓, CDK4/6↓, cycD1↓,
457- CUR,    Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling
- in-vitro, GC, SGC-7901 - in-vitro, GC, BGC-823
TumCP↓, Apoptosis↑, TumAuto↑, P53↑, PI3K↓, P21↑, p‑Akt↓, p‑mTOR↓, Bcl-2↓, Bcl-xL↓, LC3I↓, BAX↑, Beclin-1↑, cl‑Casp3↑, cl‑PARP↑, LC3II↑, ATG3↑, ATG5↑,
479- CUR,    Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments
- in-vitro, Tong, CAL27
TumCP↓, TumCMig↓, Apoptosis↑, TumCCA↑, Bcl-2↓, BAX↑, cl‑Casp3↑,
2688- CUR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Var, NA - Review, AD, NA
*ROS↓, *SOD↑, p16↑, JAK2↓, STAT3↓, CXCL12↓, IL6↓, MMP2↓, MMP9↓, TGF-β↓, α-SMA↓, LAMs↓, DNAdam↑, *memory↑, *cognitive↑, *Inflam↓, *antiOx↑, *NO↑, *MDA↓, *ROS↓, DNMT1↓, ROS↑, Casp3↑, Apoptosis↑, miR-21↓, LC3II↓, ChemoSen↑, NF-kB↓, CSCs↓, Nanog↓, OCT4↓, SOX2↓, eff↑, Sp1/3/4↓, miR-27a-3p↓, ZBTB10↑, SOX9?, ChemoSen↑, VEGF↓, XIAP↓, Bcl-2↓, cycD1↓, BioAv↑, Hif1a↓, EMT↓, BioAv↓, PTEN↑, VEGF↓, Akt↑, EZH2↓, NOTCH1↓, TP53↑, NQO1↑, HO-1↑,
1871- DAP,    Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth
- in-vitro, AML, U937 - in-vivo, AML, NA
TumCP↓, Apoptosis↑, TumCG↓, PDK1↓, cl‑PARP↑, Bcl-xL↓, Bcl-2↓, Beclin-1↓, ATG3↓, PI3K↓, Akt↓, eff↑,
1878- DCA,  5-FU,    Synergistic Antitumor Effect of Dichloroacetate in Combination with 5-Fluorouracil in Colorectal Cancer
- in-vitro, CRC, LS174T - in-vitro, CRC, LoVo - in-vitro, CRC, SW-620 - in-vitro, CRC, HT-29
tumCV↓, eff↑, PDKs↓, lactateProd↓, Glycolysis↓, mitResp↑, TumCCA↑, Bcl-2↓, BAX↑, Casp3↑,
4455- DFE,    Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest
- in-vitro, BC, MCF-7 - in-vitro, Nor, 3T3
TumCCA↑, P53↑, BAX↑, Casp3↑, MMP↓, Fas↑, FasL↑, Bcl-2↓, Apoptosis↑, TumCP↓, TUNEL↑, eff↑, selectivity↑,
1621- EA,    The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumMeta↓, TumCI↓, TumAuto↑, VEGFR2↓, MAPK↓, PI3K↓, Akt↓, PD-1↓, NOTCH↓, PCNA↓, Ki-67↓, cycD1↓, CDK2↑, CDK6↓, Bcl-2↓, cl‑PARP↑, BAX↑, Casp3↑, DR4↑, DR5↑, Snail↓, MMP2↓, MMP9↓, TGF-β↑, PKCδ↓, β-catenin/ZEB1↓, SIRT1↓, HO-1↓, ROS↑, CHOP↑, Cyt‑c↑, MMP↓, OCR↓, AMPK↑, Hif1a↓, NF-kB↓, E-cadherin↑, Vim↓, EMT↓, LC3II↑, CIP2A↓, GLUT1↓, PDH↝, MAD↓, LDH↓, GSTs↑, NOTCH↓, survivin↓, XIAP↓, ER Stress↑, ChemoSideEff↓, ChemoSen↑,
1613- EA,    Ellagitannins in Cancer Chemoprevention and Therapy
- Review, Var, NA
ROS↑, angioG↓, ChemoSen↑, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, CDK2↓, CDK4↓, CDK6↓, cycD1↓, cycE1↓, TumCG↓, VEGF↓, Hif1a↓, eff↑, COX2↓, TumCCA↑, selectivity↑, Wnt/(β-catenin)↓, *toxicity∅,
1606- EA,    Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells
- in-vitro, Colon, HCT15
TumCP↓, cycD1↓, Apoptosis↑, PI3K↓, Akt↓, ROS↑, Casp3↑, Cyt‑c↑, Bcl-2↓, TumCCA↑, Dose∅, ALP↓, LDH↓, PCNA↓, P53↑, Bax:Bcl2↑,
1057- EDM,    Evodiamine abolishes constitutive and inducible NF-kappaB activation by inhibiting IkappaBalpha kinase activation, thereby suppressing NF-kappaB-regulated antiapoptotic and metastatic gene expression, up-regulating apoptosis, and inhibiting invasion
NF-kB↓, TNF-α↓, COX2↓, cycD1↓, cMyc↓, MMP9↓, ICAM-1↓, MDR1↓, XIAP↓, Bcl-2↓, Bcl-xL↓, IAP1↓, IAP2↓, cFLIP↓, Bfl-1↓,
23- EGCG,    (-)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells
- in-vitro, Chon, SW1353 - in-vitro, Chon, CRL-7891
HH↓, Gli1↓, PTCH1↓, Bcl-2↓, BAX↑,
22- EGCG,    Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics
- in-vitro, PC, CD133+ - in-vitro, PC, CD44+ - in-vitro, PC, CD24+ - in-vitro, PC, ESA+
HH↓, Smo↓, PTCH1↓, PTCH2↓, Gli1↓, GLI2↓, Gli↓, Bcl-2↓, XIAP↓, Shh↓, EMT↓, survivin↓, Nanog↓, Casp3↑, Casp7↑,
20- EGCG,    Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer
- in-vivo, Liver, NA - in-vivo, Tong, NA
HH↓, Gli1↓, Smo↓, TNF-α↓, COX2↓, *antiOx↑, Hif1a↓, NF-kB↓, VEGF↓, STAT3↓, Bcl-2↓, P53↑, Akt↓, p‑Akt↓, p‑mTOR↓, EGFR↓, AP-1↓, BAX↑, ROS↑, Casp3↑, Apoptosis↑, NRF2↑, *H2O2↓, *NO↓, *SOD↑, *Catalase↑, *GPx↑, *ROS↓,
651- EGCG,    Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications
ROS↑, p‑AMPK↑, mTOR↓, FAK↓, Smo↓, Gli1↓, HH↓, TumCMig↓, TumCI↓, NOTCH↓, JAK↓, STAT↓, Bcl-2↓, Bcl-xL↓, BAX↑, Casp9↑,
685- EGCG,  CUR,  SFN,  RES,  GEN  The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein
- Analysis, NA, NA
Bcl-2↓, survivin↓, XIAP↓, EMT↓, Apoptosis↑, Nanog↓, cMyc↓, OCT4↓, Snail↓, Slug↓, Zeb1↓, TCF↓,
680- EGCG,    Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea
- Review, NA, NA
NF-kB↓, STAT3↓, PI3K↓, HGF/c-Met↓, Akt↓, ERK↓, MAPK↓, AR↓, Casp↑, Ki-67↓, PARP↑, Bcl-2↓, BAX↑, PCNA↓, p27↑, P21↑,
668- EGCG,    The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment
- Review, BC, MCF-7 - Review, BC, MDA-MB-231
HER2/EBBR2↓, EGFR↓, mtDam↑, ROS↑, PI3K/Akt↓, P53↑, P21↑, Casp3↑, Casp9↑, BAX↑, PTEN↑, Bcl-2↓, hTERT↓, STAT3↓, TumCCA↑, Hif1a↓,
1516- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*Dose∅, Half-Life∅, BioAv∅, BBB↑, toxicity∅, eff↓, Apoptosis↑, Casp3↑, Cyt‑c↑, cl‑PARP↑, DNMTs↓, Telomerase↓, angioG↓, Hif1a↓, NF-kB↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, IGF-1↓, H3↓, HDAC1↓, *LDH↓, *ROS↓,
1303- EGCG,    (-)-Epigallocatechin-3-gallate induces apoptosis in human endometrial adenocarcinoma cells via ROS generation and p38 MAP kinase activation
- in-vitro, EC, NA
TumCP↓, ER-α36↓, cycD1↓, ERK↑, Jun↓, BAX↑, Bcl-2↓, cl‑Casp3↑, ROS↑, p38↑,
3201- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*AntiCan↑, *cardioP↑, *neuroP↑, *BioAv↝, *BioAv↓, *BioAv↓, *Dose↝, *Half-Life↝, *BioAv↑, *BBB↑, *hepatoP↓, *other↓, *Inflam↓, *NF-kB↓, *AP-1↓, *iNOS↓, *COX2↓, *ROS↓, *RNS↓, *IL8↓, *JAK↓, *PDGFR-BB↓, *IGF-1R↓, *MMP2↓, *P53↓, *NRF2↑, *TNF-α↓, *IL6↓, *E2Fs↑, *SOD1↑, *SOD2↑, Casp3↑, Cyt‑c↑, PARP↑, DNMTs↓, Telomerase↓, Hif1a↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, TumCP↓, MAPK↓, HGF/c-Met↓, TIMP1↑, HDAC↓, MMP9↓, uPA↓, GlutMet↓, ChemoSen↑, chemoP↑,
1324- EMD,    Is Emodin with Anticancer Effects Completely Innocent? Two Sides of the Coin
- Review, Var, NA
*toxicity↑, *BioAv↓, Akt↓, ERK↓, ROS↑, MMP↓, Bcl-2↓, BAX↑, TumCCA↑,
1325- EMD,  PacT,    Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivo
- vitro+vivo, Lung, A549
TumCP↓, Apoptosis↑, BAX↑, Casp3↑, Bcl-2↓, p‑Akt↓, p‑ERK↓, ChemoSideEff∅, ChemoSen↑,
1327- EMD,    Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway
- in-vitro, Lung, A549
Cyt‑c↑, Casp2↑, Casp3↑, Casp9↑, ERK↓, Akt↓, ROS↑, MMP↓, Bcl-2↓, BAX↑,
1296- EMD,    Emodin inhibits LOVO colorectal cancer cell proliferation via the regulation of the Bcl-2/Bax ratio and cytochrome c
- in-vitro, CRC, LoVo
BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑,
3460- EP,    Picosecond pulsed electric fields induce apoptosis in HeLa cells via the endoplasmic reticulum stress and caspase-dependent signaling pathways
- in-vitro, Cerv, HeLa
tumCV↓, Apoptosis↑, TumCCA↑, GRP78/BiP↑, GRP94↑, CEBPA↑, CHOP↑, Ca+2↑, Casp12↑, Casp9↑, Casp3↑, Cyt‑c↑, BAX↑, Bcl-2↓, ER Stress↑, MMP↓,
1289- FA,    Cytotoxic and Apoptotic Effects of Ferulic Acid on Renal Carcinoma Cell Line (ACHN)
- in-vitro, RCC, NA
Bcl-2↓, BAX↑, Apoptosis↑,
1656- FA,    Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling
- Review, Var, NA
tyrosinase↓, CK2↓, TumCP↓, TumCMig↓, FGF↓, FGFR1↓, PI3K↓, Akt↓, VEGF↓, FGFR1↓, FGFR2↓, PDGF↓, ALAT↓, AST↓, TumCCA↑, CDK2↓, CDK4↓, CDK6↓, BAX↓, Bcl-2↓, MMP2↓, MMP9↓, P53↑, PARP↑, PUMA↑, NOXA↑, Casp3↑, Casp9↑, TIMP1↑, lipid-P↑, mtDam↑, EMT↓, Vim↓, E-cadherin↓, p‑STAT3↓, COX2↓, CDC25↓, RadioS↑, ROS↑, DNAdam↑, γH2AX↑, PTEN↑, LC3II↓, Beclin-1↓, SOD↓, Catalase↓, GPx↓, Fas↑, *BioAv↓, cMyc↓, Beclin-1↑, LC3‑Ⅱ/LC3‑Ⅰ↓,
1654- FA,    Molecular mechanism of ferulic acid and its derivatives in tumor progression
- Review, Var, NA
AntiCan↑, Inflam↓, RadioS↑, ROS↑, Apoptosis↑, TumCCA↑, TumCMig↑, TumCI↓, angioG↓, ChemoSen↑, ChemoSideEff↓, P53↑, cycD1↓, CDK4↓, CDK6↓, TumW↓, miR-34a↑, Bcl-2↓, Casp3↑, BAX↑, β-catenin/ZEB1↓, cMyc↓, Bax:Bcl2↑, SOD↓, GSH↓, LDH↓, ERK↑, eff↑, JAK2↓, STAT6↓, NF-kB↓, PYCR1↓, PI3K↓, Akt↓, mTOR↓, Ki-67↓, VEGF↓, FGFR1↓, EMT↓, CAIX↓, LC3II↑, p62↑, PKM2↓, Glycolysis↓, *BioAv↓,
2844- FIS,    Fisetin, a dietary flavonoid induces apoptosis via modulating the MAPK and PI3K/Akt signalling pathways in human osteosarcoma (U-2 OS) cells
- in-vitro, OS, U2OS
tumCV↓, Apoptosis↑, Casp3↑, Casp8↑, Casp9↑, BAX↑, BAD↑, Bcl-2↓, Bcl-xL↓, PI3K↓, Akt↓, ERK↓, p‑JNK↑, p‑cJun↑, p‑p38↑, ROS↑, MMP↓, mTORC1↓, PTEN↑, p‑GSK‐3β↓, GSK‐3β↑, NF-kB↓, IKKα↑, Cyt‑c↑,
2845- FIS,    Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, p38↓, *antiOx↑, *neuroP↑, Casp3↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, AMPK↑, ACC↑, DNAdam↑, MMP↓, eff↑, ROS↑, cl‑PARP↑, Cyt‑c↑, Diablo↑, P53↑, p65↓, Myc↓, HSP70/HSPA5↓, HSP27↓, COX2↓, Wnt↓, EGFR↓, NF-kB↓, TumCCA↑, CDK2↓, CDK4↓, cycD1↓, cycA1↓, P21↑, MMP2↓, MMP9↓, TumMeta↓, MMP1↓, MMP3↓, MMP7↓, MET↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↑, uPA↓, ChemoSen↑, EMT↓, Twist↓, Zeb1↓, cFos↓, cJun↓, EGF↓, angioG↓, VEGF↓, eNOS↓, *NRF2↑, HO-1↑, NRF2↓, GSTs↓, ATF4↓,
2849- FIS,    Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells
- in-vitro, Melanoma, U266
TumCD↑, TumCCA↑, Casp3↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, AMPK↑, ACC↑, p‑Akt↓, p‑mTOR↓, ROS↑, eff↓,
2856- FIS,    N -acetyl- L -cysteine enhances fisetin-induced cytotoxicity via induction of ROS-independent apoptosis in human colonic cancer cells
- in-vitro, Colon, COLO205
eff↑, ROS↑, tumCV↓, Casp3↑, Bcl-2↓, MMP↓, eff↑,
2857- FIS,    A review on the chemotherapeutic potential of fisetin: In vitro evidences
- Review, Var, NA
COX2↓, PGE2↓, EGFR↓, Wnt↓, β-catenin/ZEB1↓, TCF↑, Apoptosis↑, Casp3↑, cl‑PARP↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, Akt↓, mTOR↓, ACC↑, Cyt‑c↑, Diablo↑, cl‑Casp8↑, Fas↑, DR5↑, TRAIL↑, Securin↓, CDC2↓, CDC25↓, HSP70/HSPA5↓, CDK2↓, CDK4↓, cycD1↓, MMP2↓, uPA↓, NF-kB↓, cFos↓, cJun↓, MEK↓, p‑ERK↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↓, NF-kB↑, ROS↑, DNAdam↑, MMP↓, CHOP↑, eff↑, ChemoSen↑,
2827- FIS,    The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment
- Review, Var, NA
*antiOx↑, *Inflam↓, neuroP↑, hepatoP↑, RenoP↑, cycD1↓, TumCCA↑, MMPs↓, VEGF↓, MAPK↓, NF-kB↓, angioG↓, Beclin-1↑, LC3s↑, ATG5↑, Bcl-2↓, BAX↑, Casp↑, TNF-α↓, Half-Life↓, MMP↓, mt-ROS↑, cl‑PARP↑, CDK2↓, CDK4↓, Cyt‑c↑, Diablo↑, DR5↑, Fas↑, PCNA↓, Ki-67↓, p‑H3↓, chemoP↑, Ca+2↑, Dose↝, CDC25↓, CDC2↓, CHK1↑, Chk2↑, ATM↑, PCK1↓, RAS↓, p‑p38↓, Rho↓, uPA↓, MMP7↓, MMP13↓, GSK‐3β↑, E-cadherin↑, survivin↓, VEGFR2↓, IAP2↓, STAT3↓, JAK1↓, mTORC1↓, mTORC2↓, NRF2↑,
2828- FIS,    Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review
- Review, Var, NA
*neuroP↑, *antiOx↑, *Inflam↓, RenoP↑, COX2↓, Wnt↓, EGFR↓, NF-kB↓, Casp3↑, Ca+2↑, Casp8↑, TumCCA↑, CDK1↓, PI3K↓, Akt↓, mTOR↓, MAPK↓, *P53↓, *P21↓, *p16↓, mTORC1↓, mTORC2↓, P53↑, P21↑, cycD1↓, cycA1↓, CDK2↓, CDK4↓, BAX↑, Bcl-2↓, PCNA↓, HER2/EBBR2↓, Cyt‑c↑, MMP↓, cl‑Casp9↑, MMP2↓, MMP9↓, cl‑PARP↑, uPA↓, DR4↑, DR5↑, ROS↓, AIF↑, CDC25↓, Dose↑, CHOP↑, ROS↑, cMyc↓, cardioP↑,
2832- FIS,    Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies
- Review, Var, NA
MMP↓, mtDam↑, Cyt‑c↑, Diablo↑, Casp↑, cl‑PARP↑, Bak↑, BIM↑, Bcl-xL↓, Bcl-2↓, P53↑, ROS↑, AMPK↑, Casp9↑, Casp3↑, BID↑, AIF↑, Akt↓, mTOR↓, MAPK↓, Wnt↓, β-catenin/ZEB1↓, TumCCA↑, P21↑, p27↑, cycD1↓, cycE↓, CDK2↓, CDK4↓, CDK6↓, TumMeta↓, uPA↓, E-cadherin↑, Vim↓, EMT↓, Twist↓, DNAdam↑, ROS↓, COX2↓, PGE2↓, HSF1↓, cFos↓, cJun↓, AP-1↓, Mcl-1↓, NF-kB↓, IRE1↑, ER Stress↑, ATF4↑, GRP78/BiP↑, MMP2↓, MMP9↓, TCF-4↓, MMP7↓, RadioS↑, TOP1↓, TOP2↓,
2839- FIS,    Dietary flavonoid fisetin for cancer prevention and treatment
- Review, Var, NA
DNAdam↑, ROS↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp9↑, cl‑Casp3↑, Cyt‑c↑, lipid-P↓, TumCG↓, TumCA↓, TumCMig↓, TumCI↓, uPA↓, ERK↓, MMP9↓, NF-kB↓, cFos↓, cJun↓, AP-1↓, TumCCA↑, AR↓, mTORC1↓, mTORC2↓, TSC2↑, EGF↓, TGF-β↓, EMT↓, P-gp↓, PI3K↓, Akt↓, mTOR↓, eff↑, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, ChemoSen↑, CDK2↓, CDK4↓, cycE↓, cycD1↓, P21↑, COX2↓, Wnt↓, EGFR↓, β-catenin/ZEB1↓, TCF-4↓, MMP7↓, RadioS↑, eff↑,
1300- GA,  PacT,  carbop,    Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell line
- in-vitro, BC, MCF-7
TumCCA↑, Apoptosis↑, P53↑, BAX↑, Casp3↑, Bcl-2↓,
1967- GamB,    Gambogic acid induces apoptotic cell death in T98G glioma cells
- in-vitro, GBM, T98G
BAX↑, AIF↑, Cyt‑c↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↓, Bcl-2↓, ROS↑,
1959- GamB,    Gambogic acid induces GSDME dependent pyroptotic signaling pathway via ROS/P53/Mitochondria/Caspase-3 in ovarian cancer cells
- in-vitro, Ovarian, NA - in-vivo, NA, NA
AntiCan↑, Pyro↑, tumCV?, CellMemb↓, cl‑Casp3↑, GSDME-N↑, ROS?, p‑P53↑, eff↓, MMP↓, Bcl-2↓, BAX↑, mtDam↑, Cyt‑c↑, TumCG↓, CD4+↑, CD8+↑,
831- GAR,  CUR,    Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells
- in-vitro, AML, HL-60
Apoptosis↑, Casp3↑, MMP↓, Cyt‑c↑, proCasp9↑, Bcl-2↓, BAX↑, PARP↓, DNAdam↑, DFF45↓,
826- GAR,    Inhibition of STAT3 dimerization and acetylation by garcinol suppresses the growth of human hepatocellular carcinoma in vitro and in vivo
- vitro+vivo, HCC, HepG2 - vitro+vivo, Liver, HUH7
STAT3↓, TumCP↓, cycD1↓, Bcl-2↓, Bcl-xL↓, Mcl-1↓, survivin↓, VEGF↓, TumCCA↑, TumVol↓,
823- GAR,    Garcinol Potentiates TRAIL-Induced Apoptosis through Modulation of Death Receptors and Antiapoptotic Proteins
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10 - in-vitro, CRC, HCT116
Casp3↑, Casp9↑, Casp8↑, DR5↑, survivin↓, Bcl-2↓, XIAP↓, cFLIP↓, BAX↑, Cyt‑c↑, ROS↑, GSH↓, *eff↓,
820- GAR,    Garcinol in gastrointestinal cancer prevention: recent advances and future prospects
- Review, NA, NA
Fas↑, TRAIL↑, PARP↑, BAX↑, Bcl-2↓, ROS↑, STAT3↓, Apoptosis↑, MMP2↓, MMP9↓,
795- GAR,    Garcinol—A Natural Histone Acetyltransferase Inhibitor and New Anti-Cancer Epigenetic Drug
- Review, NA, NA
HATs↓, BAX↑, PARP↑, Bcl-2↓, Casp3↑, Casp9↑, DR5↑, cFLIP↓, MMP2↓, MMP9↓, STAT3↓, p‑Akt↓,
798- GAR,    Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17β-estradiol
- in-vitro, BC, MCF-7
TumCP↓, TumCCA↑, Apoptosis↑, ac‑H3↑, ac‑H4∅, NF-kB↓, ac‑p65↑, cycD1↓, Bcl-2↓, Bcl-xL↓,
801- GAR,  Cisplatin,    Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers
- in-vivo, HNSCC, NA
Apoptosis↑, cycD1↓, Bcl-2↓, survivin↓, VEGF↓, TumCG↓, Ki-67↓, CD31↓,
802- GAR,    Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway
- in-vitro, GC, HGC27
TumCP↓, TumCI↓, Apoptosis↑, PI3K/Akt↓, Akt↓, p‑mTOR↓, cycD1↓, MMP2↓, MMP9↓, BAX↑, Bcl-2↓,
805- GAR,  Cisplatin,  PacT,    Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells
- Review, NA, NA
ERK↓, PI3K/Akt↓, Wnt/(β-catenin)↓, STAT3↓, NF-kB↓, ChemoSen↑, COX2↓, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, VEGF↓, TGF-β↓, HATs↓, E-cadherin↑, Vim↓, Zeb1↓, ZEB2↓, Let-7↑, MMP9↓, TumCCA↑, ROS↑, MMP↓, IL6↓, NOTCH1↓,
4505- GLA,    Gamma linolenic acid suppresses hypoxia-induced proliferation and invasion of non-small cell lung cancer cells by inhibition of HIF1α
- in-vitro, NSCLC, Calu-1
TumCP↓, PCNA↓, Ki-67↓, MCM2↓, Bcl-2↓, BAX↑, cl‑Casp3↑, TumCMig↓, TumCI↓, Hif1a↓, VEGF↓,
401- GoldNP,  MF,    In vitro evaluation of electroporated gold nanoparticles and extremely-low frequency electromagnetic field anticancer activity against Hep-2 laryngeal cancer cells
- in-vitro, Laryn, HEp2
Casp3↑, P53↑, BAX↑, Bcl-2↓,
851- Gra,    Antiproliferation Activity and Apoptotic Mechanism of Soursop (Annona muricata L.) Leaves Extract and Fractions on MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, Nor, CV1
Bcl-2↓, Casp9↑, Casp3↑, other↑, *toxicity↓,
843- Gra,    Graviola (Annona muricata) Exerts Anti-Proliferative, Anti-Clonogenic and Pro-Apoptotic Effects in Human Non-Melanoma Skin Cancer UW-BCC1 and A431 Cells In Vitro: Involvement of Hedgehog Signaling
- in-vitro, NMSC, A431 - in-vitro, NMSC, UW-BCC1 - in-vitro, Nor, NHEKn
TumCG↓, TumCCA↑, Cyc↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, HH↓, Smo↓, Gli1↓, GLI2↓, Shh↓, Sufu↑, BAX↑, Bcl-2↓, *toxicity↓,
841- Gra,    The Chemopotential Effect of Annona muricata Leaves against Azoxymethane-Induced Colonic Aberrant Crypt Foci in Rats and the Apoptotic Effect of Acetogenin Annomuricin E in HT-29 Cells: A Bioassay-Guided Approach
- in-vitro, CRC, HT-29 - in-vitro, Nor, CCD841
PCNA↓, Bcl-2↓, BAX↑, *MDA↓, lipid-P↓, TumCG↓, MMP↓, Cyt‑c↑, Casp3↑, Casp7↑, Casp9↑, *ROS↓, LDH↓, *toxicity↓, selectivity↑,
838- Gra,    Antiproliferative activity of aqueous leaf extract of Annona muricata L. on the prostate, BPH-1 cells, and some target genes
- in-vitro, Pca, BPH1
BAX↑, Bcl-2↓, TumVol↓,
835- Gra,    Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB
- in-vitro, Lung, A549
ROS↑, MMP↓, BAX↑, Bcl-2↓, Cyt‑c↑, Casp9↑, Casp3↑, Apoptosis↑, TumCCA↑,
858- Gra,    Annona muricata leaves induce G₁ cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells
- in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116
TumCCA↑, Apoptosis↑, ROS↑, MMP↓, Cyt‑c↑, Casp↑, BAX↑, Bcl-2↓, TumCMig↓, TumCI↓,
1232- Gra,    Graviola: A Systematic Review on Its Anticancer Properties
- Review, NA, NA
EGFR↓, cycD1↓, Bcl-2↓, TumCCA↑, Apoptosis↑, ROS↑, MMP↓, BAX↑, Cyt‑c↑, Hif1a↓, NF-kB↓, GLUT1↓, GLUT4↓, HK2↓, LDHA↓, ATP↓,
1629- HCA,  Tam,    Hydroxycitric acid reverses tamoxifen resistance through inhibition of ATP citrate lyase
- in-vitro, BC, MCF-7
ACLY↓, eff↓, tumCV↓, eff↑, Casp3↑, BAX↑, Bcl-2↓,
8- HCO3,    Hedgehog/GLI-mediated transcriptional inhibitors from Zizyphus cambodiana
- in-vitro, PC, HaCaT - in-vitro, Pca, PANC1
HH↓, Gli1↓, PTCH1↓, Bcl-2↓,
1153- HNK,    Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
tumCV↓, Apoptosis↑, TumCMig↓, TumCI↓, Bcl-2↓, EGFR↓, CD133↓, Nestin↓, Akt↓, ERK↓, Casp3↑, p‑STAT3↓, TumCG↓,
1154- HNK,  MET,    Honokiol inhibits the growth of hormone-resistant breast cancer cells: its promising effect in combination with metformin
- in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-231
cl‑PARP↑, Bcl-2↓, ERα↓,
2082- HNK,    Revealing the role of honokiol in human glioma cells by RNA-seq analysis
- in-vitro, GBM, U87MG - in-vitro, GBM, U251
AntiCan↑, TumCP↑, TumAuto↑, Apoptosis↑, *BioAv↑, *neuroP↑, *NF-kB↑, MAPK↑, GPx4↑, Tf↑, BAX↑, Bcl-2↓, antiOx↑, Hif1a↓, Ferroptosis↑,
1286- HNK,    The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells
- in-vitro, CLL, NA
Apoptosis↑, Casp3↑, Casp8↑, Casp9↑, cl‑PARP↑, Bcl-2↓, BAX↑,
2073- HNK,    Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo
- in-vitro, OS, U2OS - in-vivo, NA, NA
TumCD↑, TumAuto↑, Apoptosis↑, TumCCA↑, GRP78/BiP↑, ROS↑, eff↓, p‑ERK↑, selectivity↑, Ca+2↑, MMP↓, Casp3↑, Casp9↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, survivin↓, LC3B-II↑, ATG5↑, TumVol↓, TumW↓, ER Stress↑,
4523- HNK,  MAG,  BA,    Honokiol-Magnolol-Baicalin Possesses Synergistic Anticancer Potential and Enhances the Efficacy of Anti-PD-1 Immunotherapy in Colorectal Cancer by Triggering GSDME-Dependent Pyroptosis
- in-vitro, CRC, HCT116 - in-vitro, CRC, LoVo - in-vivo, CRC, HCT116
AntiCan↑, eff↑, TumCP↓, TumCCA↓, cycD1↓, Pyro↑, Apoptosis↑, cl‑GSDME↑, Bcl-2↓, Cyt‑c↑, Casp9↑, TumCG↓,
2868- HNK,    Honokiol: A review of its pharmacological potential and therapeutic insights
- Review, Var, NA - Review, Sepsis, NA
*P-gp↓, *ROS↓, *TNF-α↓, *IL10↓, *IL6↓, eIF2α↑, CHOP↑, GRP78/BiP↑, BAX↑, cl‑Casp9↑, p‑PERK↑, ER Stress↑, Apoptosis↑, MMPs↓, cFLIP↓, CXCR4↓, Twist↓, HDAC↓, BMPs↑, p‑STAT3↓, mTOR↓, EGFR↓, NF-kB↓, Shh↓, VEGF↓, tumCV↓, TumCMig↓, TumCI↓, ERK↓, Akt↓, Bcl-2↓, Nestin↓, CD133↓, p‑cMET↑, RAS↑, chemoP↑, *NRF2↑, *NADPH↓, *p‑Rac1↓, *ROS↓, *IKKα↑, *NF-kB↓, *COX2↓, *PGE2↓, *Casp3↓, *hepatoP↑, *antiOx↑, *GSH↑, *Catalase↑, *RenoP↑, *ALP↓, *AST↓, *ALAT↓, *neuroP↑, *cardioP↑, *HO-1↑, *Inflam↓,
1927- JG,    Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway
- in-vitro, GC, SGC-7901
Apoptosis↑, ROS↑, Bcl-2↓, BAX↑, MMP↓, Cyt‑c↑, Casp3?, Bax:Bcl2↑,
1926- JG,    Mechanism of juglone-induced apoptosis of MCF-7 cells by the mitochondrial pathway
- in-vitro, BC, MCF-7
TumCG↓, ROS↑, MMP↓, i-Ca+2↑, BAX↑, Bcl-2↓, Cyt‑c↑, Casp3?,
1923- JG,    Mechanism of Juglone-Induced Cell Cycle Arrest and Apoptosis in Ishikawa Human Endometrial Cancer Cells
- in-vitro, Endo, NA
TumCP↓, TumCCA↑, cycA1↓, ROS↑, P21↑, CDK2↓, CDK1↓, CDC25↓, Bcl-2↓, Bcl-xL↓, BAX↑, BAD↑, Cyt‑c↑,
866- Lae,    Amygdalin from Apricot Kernels Induces Apoptosis and Causes Cell Cycle Arrest in Cancer Cells: An Updated Review
- Review, NA, NA
BAX↑, Casp3↑, Bcl-2↓, TumCCA↑,
862- Lae,    Molecular mechanism of amygdalin action in vitro: review of the latest research
- Review, NA, NA
BAX↑, Casp3↑, Bcl-2↓, Akt↓, mTOR↓, p19↑, TumCCA↑, other↓,
860- Lae,    Amygdalin as a Promising Anticancer Agent: Molecular Mechanisms and Future Perspectives for the Development of New Nanoformulations for Its Delivery
- Review, NA, NA
eff↑, Casp3↑, Bcl-2↓,
1306- LE,    Modulations of the Bcl-2/Bax family were involved in the chemopreventive effects of licorice root (Glycyrrhiza uralensis Fisch) in MCF-7 human breast cancer cell
- in-vitro, BC, MCF-7
Bcl-2↓, BAX↑, Apoptosis↑, TumCCA↑,
1317- LT,    Luteolin Suppresses Teratoma Cell Growth and Induces Cell Apoptosis via Inhibiting Bcl-2
- vitro+vivo, Ovarian, PA1
Bcl-2↓, BAX↑, Apoptosis↑, TumCG↓,
2915- LT,    Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells
- in-vitro, Colon, HT29 - in-vitro, CRC, SNU-407 - in-vitro, Nor, FHC
DNMTs↓, TET1↑, NRF2↑, HDAC↓, tumCV↓, BAX↑, Casp9↑, Casp3↑, Bcl-2↓, ROS↓, GSS↑, Catalase↑, HO-1↑, DNMT1↓, DNMT3A↓, TET1↑, TET3↑, TET2↓, P53↑, P21↑,
2916- LT,    Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies
- Review, Var, NA - Review, AD, NA - Review, Park, NA
proCasp9↓, CDC2↓, CycB↓, Casp9↑, Casp3↑, Cyt‑c↑, cycA1↑, CDK2↓, APAF1↑, TumCCA↑, P53↑, BAX↑, VEGF↓, Bcl-2↓, Apoptosis↑, p‑Akt↓, p‑EGFR↓, p‑ERK↓, p‑STAT3↓, cardioP↑, Catalase↓, SOD↓, *BioAv↓, *antiOx↑, *ROS↓, *NO↓, *GSTs↑, *GSR↑, *SOD↑, *Catalase↑, *lipid-P↓, PI3K↓, Akt↓, CDK2↓, BNIP3↑, hTERT↓, DR5↑, Beclin-1↑, TNF-α↓, NF-kB↓, IL1↓, IL6↓, EMT↓, FAK↓, E-cadherin↑, MDM2↓, NOTCH↓, MAPK↑, Vim↓, N-cadherin↓, Snail↓, MMP2↓, Twist↓, MMP9↓, ROS↑, MMP↓, *AChE↓, *MMP↑, *Aβ↓, *neuroP↑, Trx1↑, ROS↓, *NRF2↑, NRF2↓, *BBB↑, ChemoSen↑, GutMicro↑,
2917- LT,  Rad,    Luteolin acts as a radiosensitizer in non‑small cell lung cancer cells by enhancing apoptotic cell death through activation of a p38/ROS/caspase cascade
- in-vitro, Lung, NA
Bcl-2↓, Casp3↑, Casp8↑, Casp9↑, p‑p38↑, ROS↑, RadioS↑,
2919- LT,    Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence
- Review, Var, NA
RadioS↑, ChemoSen↑, chemoP↑, *lipid-P↓, *Catalase↑, *SOD↑, *GPx↑, *GSTs↑, *GSH↑, *TNF-α↓, *IL1β↓, *Casp3↓, *IL10↑, NRF2↓, HO-1↓, NQO1↓, GSH↓, MET↓, p‑MET↓, p‑Akt↓, HGF/c-Met↓, NF-kB↓, Bcl-2↓, SOD2↓, Casp8↑, Casp3↑, PARP↑, MAPK↓, NLRP3↓, ASC↓, Casp1↓, IL6↓, IKKα↓, p‑p65↓, p‑p38↑, MMP2↓, ICAM-1↓, EGFR↑, p‑PI3K↓, E-cadherin↓, ZO-1↑, N-cadherin↓, CLDN1↓, β-catenin/ZEB1↓, Snail↓, Vim↑, ITGB1↓, FAK↓, p‑Src↓, Rac1↓, Cdc42↓, Rho↓, PCNA↓, Tyro3↓, AXL↓, CEA↓, NSE↓, SOD↓, Catalase↓, GPx↓, GSR↓, GSTs↓, GSH↓, VitE↓, VitC↓, CYP1A1↓, cFos↑, AR↓, AIF↑, p‑STAT6↓, p‑MDM2↓, NOTCH1↓, VEGF↓, H3↓, H4↓, HDAC↓, SIRT1↓, ROS↑, DR5↑, Cyt‑c↑, p‑JNK↑, PTEN↓, mTOR↓, CD34↓, FasL↑, Fas↑, XIAP↓, p‑eIF2α↑, CHOP↑, LC3II↑, PD-1↓, STAT3↓, IL2↑, EMT↓, cachexia↓, BioAv↑, *Half-Life↝, *eff↑,
2921- LT,    Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies
- Review, Nor, NA
*hepatoP↑, *AMPK↑, *SIRT1↑, *ROS↓, STAT3↓, TNF-α↓, NF-kB↓, *IL2↓, *IFN-γ↓, *GSH↑, *SREBP1↓, *ZO-1↑, *TLR4↓, BAX↑, Bcl-2↓, XIAP↓, Fas↑, Casp8↑, Beclin-1↑, *TXNIP↓, *Casp1↓, *IL1β↓, *IL18↓, *NLRP3↓, *MDA↓, *SOD↑, *NRF2↑, *ER Stress↓, *ALAT↓, *AST↓, *iNOS↓, *IL6↓, *HO-1↑, *NQO1↑, *PPARα↑, *ATF4↓, *CHOP↓, *Inflam↓, *antiOx↑, *GutMicro↑,
2903- LT,    Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
ER Stress↑, ROS↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, Casp12↑, eff↓, UPR↑, MMP↓, Cyt‑c↑, Bcl-2↓, BAX↑, TumCG↓, Weight∅, ALAT∅, AST∅,
2912- LT,    Luteolin: a flavonoid with a multifaceted anticancer potential
- Review, Var, NA
ROS↑, TumCCA↑, TumCP↓, angioG↓, ER Stress↑, mtDam↑, PERK↑, ATF4↑, eIF2α↑, cl‑Casp12↑, EMT↓, E-cadherin↑, N-cadherin↓, Vim↓, *neuroP↑, NF-kB↓, PI3K↓, Akt↑, XIAP↓, MMP↓, Ca+2↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, Cyt‑c↑, IronCh↑, SOD↓, *ROS↓, *LDHA↑, *SOD↑, *GSH↑, *BioAv↓, Telomerase↓, cMyc↓, hTERT↓, DR5↑, Fas↑, FADD↑, BAD↑, BOK↑, BID↑, NAIP↓, Mcl-1↓, CDK2↓, CDK4↓, MAPK↓, AKT1↓, Akt2↓, *Beclin-1↓, Hif1a↓, LC3II↑, Beclin-1↑,
1126- Lyco,    Lycopene Inhibits Epithelial–Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal Pathway
- vitro+vivo, Oral, NA
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, EMT↓, PI3K↓, Akt↓, mTOR↓, E-cadherin↓, BAX↑, N-cadherin↓, p‑PI3K↓, p‑Akt↓, p‑mTOR↓, Bcl-2↓,
2533- M-Blu,  PDT,    Methylene blue-mediated photodynamic therapy enhances apoptosis in lung cancer cells
- in-vitro, Lung, A549
MMP↓, p‑MAPK↑, ROS↑, cl‑PARP↑, Bcl-2↓, Mcl-1↓, eff↓,
1314- MAG,    Magnolol induces apoptosis via activation of both mitochondrial and death receptor pathways in A375-S2 cells
- in-vitro, Melanoma, A375
TumCP↓, Casp3↑, Casp8↑, Casp9↑, Bcl-2↓, BAX↑,
4534- MAG,    Molecular mechanisms of apoptosis induced by magnolol in colon and liver cancer cells
- in-vitro, Liver, HepG2 - in-vitro, CRC, COLO205
AntiCan↑, Apoptosis↑, selectivity↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, Bcl-2↓,
4531- MAG,    Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway
- in-vitro, CRC, HCT116
Apoptosis↑, DNAdam↑, Casp3↑, cl‑PARP↑, p‑AMPK↑, Bcl-2↓, P53↑, BAX↑, Cyt‑c↑, TumCMig↓, TumCI↓,
4527- MAG,    Magnolol inhibits growth and induces apoptosis in esophagus cancer KYSE-150 cell lines via the MAP kinase pathway
- in-vitro, ESCC, TE1 - in-vitro, ESCC, Eca109 - vitro+vivo, SCC, KYSE150
TumCP↓, TumCMig↓, MMP2↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, BAX↑, Bcl-2↓, p‑p38↓, TumCG↓,
4518- MAG,  Cisplatin,    Evaluating the Magnolol Anticancer Potential in MKN-45 Gastric Cancer Cells
- in-vitro, GC, MKN45
ChemoSen↑, tumCV↓, BAX↑, Bcl-2↓, P21↑, P53↑, MMP9↓,
1782- MEL,    Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumCG↑, TumMeta↑, ChemoSideEff↓, radioP↑, ChemoSen↑, *ROS↓, *SOD↑, *GSH↑, *GPx↑, *Catalase↑, Dose∅, VEGF↓, eff↑, Hif1a↓, GLUT1↑, GLUT3↑, CAIX↑, P21↑, p27↑, PTEN↑, Warburg↓, PI3K↓, Akt↓, NF-kB↓, cycD1↓, CDK4↓, CycB↓, CDK4↓, MAPK↑, IGF-1R↓, STAT3↓, MMP9↓, MMP2↓, MMP13↓, E-cadherin↑, Vim↓, RANKL↓, JNK↑, Bcl-2↓, P53↑, Casp3↑, Casp9↑, BAX↑, DNArepair↑, COX2↓, IL6↓, IL8↓, NO↓, T-Cell↑, NK cell↑, Treg lymp↓, FOXP3↓, CD4+↑, TNF-α↑, Th1 response↑, BioAv↝, RadioS↑, OS↑,
1063- MEL,    HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways
- in-vitro, Lung, A549 - in-vitro, Lung, PC9
AntiCan↑, TumCMig↓, GSH↓, Casp3↑, Apoptosis↑, ROS↑, HDAC1↓, Ac-histone H3↑, PUMA↑, BAX↑, PCNA↓, Bcl-2↓,
496- MF,    Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, ZR-75-1 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
ROS↑, PI3K↓, Akt↓, GSK‐3β↑, Apoptosis↑, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, CycB↓, TumCCA↑, p‑Akt↓, p‑Akt↓,
2259- MFrot,  MF,    Method and apparatus for oncomagnetic treatment
- in-vitro, GBM, NA
MMP↓, Bcl-2↓, BAX↑, Bak↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, ROS↑, lactateProd↑, Apoptosis↑, MPT↑, *selectivity↑, eff↑, MMP↓, selectivity↑, TCA?, H2O2↑, eff↑, *antiOx↑, H2O2↑, eff↓, GSH/GSSG↓, *toxicity∅, OS↑,
1890- MGO,    The Dual-Role of Methylglyoxal in Tumor Progression – Novel Therapeutic Approaches
- Review, Var, NA
AntiCan?, TumCG↓, GAPDH↓, Apoptosis↑, TumCCA↑, MAPK↑, Bcl-2↓, MMP9↓, eff↑,
930- MushShi,    Active Hexose Correlated Compound (AHCC) Inhibits the Proliferation of Ovarian Cancer Cells by Suppressing Signal Transducer and Activator of Transcription 3 (STAT3) Activation
- in-vitro, Ovarian, NA
p‑STAT3↓, PTPN6↑, cycD1↓, Bcl-2↓, Mcl-1↓, survivin↓, VEGF↓,
1807- NarG,    A Systematic Review of the Preventive and Therapeutic Effects of Naringin Against Human Malignancies
- Review, NA, NA
AntiTum↑, TumCP↓, tumCV↓, TumCCA↑, Mcl-1↓, RAS↓, e-Raf↓, VEGF↓, AntiAg↑, MMP2↓, MMP9↓, TIMP2↑, TIMP1↑, p38↓, Wnt↓, β-catenin/ZEB1↑, Casp↑, P53↑, BAX↑, COX2↓, GLO-I↓, CYP1A1↑, lipid-P↓, p‑Akt↓, p‑mTOR↓, VCAM-1↓, P-gp↓, survivin↓, Bcl-2↓, ROS↑, ROS↑, MAPK↑, STAT3↓, chemoP↑,
946- Nimb,    Nimbolide retards T cell lymphoma progression by altering apoptosis, glucose metabolism, pH regulation, and ROS homeostasis
- in-vivo, NA, NA
Apoptosis↑, Bcl-2↓, P53↑, cl‑Casp3↑, Cyt‑c↑, ROS↑, SOD↓, Catalase↓, Glycolysis↓, GLUT3↓, LDHA↓, MCT1↓, NHE1↓, ATPase↓, CAIX↓,
1227- OLST,    Anti-Obesity Drug Orlistat Alleviates Western-Diet-Driven Colitis-Associated Colon Cancer via Inhibition of STAT3 and NF-κB-Mediated Signaling
- in-vivo, CRC, NA
OS↑, Inflam↓, TumCG↓, STAT3↓, NF-kB↓, β-catenin/ZEB1↓, Slug↓, XIAP↓, CDK4↓, cycD1↓, Bcl-2↓,
1993- Part,    Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer
- in-vitro, Cerv, HeLa
tumCV↓, TumAuto↑, Casp3↑, BAX↑, Beclin-1↑, ATG3↑, ATG5↑, Bcl-2↓, mTOR↓, PI3K↓, Akt↓, PTEN↑, ROS↑, MMP↓,
2048- PB,    Sodium Phenylbutyrate Inhibits Tumor Growth and the Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma In Vitro and In Vivo
- in-vitro, OS, CAL27 - in-vitro, Oral, HSC3 - in-vitro, OS, SCC4 - in-vivo, NA, NA
*NH3↓, *HDAC↓, *ER Stress↓, Apoptosis?, Bcl-2↓, cl‑Casp3↑, TGF-β↑, N-cadherin↓, E-cadherin↑, TumVol↓, eff↑,
2045- PB,    Phenylbutyrate—a pan-HDAC inhibitor—suppresses proliferation of glioblastoma LN-229 cell line
- in-vitro, GBM, LN229 - in-vitro, GBM, LN-18
HDAC↓, TumCG↓, TumCCA↑, P21↑, Bcl-2↓, Bcl-xL↓, BioAv↑,
2028- PB,    Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms
- Review, Var, NA
HDAC↓, TumCCA↑, P21↑, Dose↝, Telomerase↓, IGFBP3↑, p‑p38↑, JNK↑, ERK↑, BAX↑, Casp3↑, Bcl-2↓, Cyt‑c↝, FAK↓, survivin↓, VEGF↓, angioG↓, DNArepair↓, TumMeta↓, HSP27↑, ASK1↑, ROS↑, eff↑, ER Stress↓, GRP78/BiP↓, CHOP↑, AR↓, other?,
1668- PBG,    Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms
- Review, Var, NA
antiOx↑, Inflam↓, AntiCan↑, TumCP↓, Apoptosis↑, eff↝, MMPs↓, TNF-α↓, iNOS↓, COX2↓, IL1β↑, *BioAv↓, BAX↑, Casp3↑, Cyt‑c↑, Bcl-2↓, eff↑, selectivity↑, P53↑, ROS↑, Casp↑, eff↑, ERK↓, Dose∅, TRAIL↑, NF-kB↑, ROS↑, Dose↑, MMP↓, DNAdam↑, TumAuto↑, LC3II↑, p62↓, EGF↓, Hif1a↓, VEGF↓, TLR4↓, GSK‐3β↓, NF-kB↓, Telomerase↓, ChemoSen↑, ChemoSideEff↓,
1682- PBG,    Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits
- Review, Var, NA
i-LDH↓, Akt↓, MAPK↓, NF-kB↓, IL1β↓, IL6↓, TNF-α↓, iNOS↓, COX2↓, ROS↓, Bcl-2↓, PARP↓, P53↑, BAX↑, Casp3↑, TumCCA↑, Cyt‑c↑, MMP↓, eff↑,
1678- PBG,  5-FU,  sericin,    In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway
- in-vitro, CRC, Caco-2 - in-vivo, NA, NA
PI3K↓, Akt↓, mTOR↓, TumCP↓, Bcl-2↓, BAX↑, Casp3↑, Casp9↑, ROS↓, FOXO1↑, *toxicity∅, eff↑,
1676- PBG,    Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical Studies
- Review, Var, NA
ROS↑, MMP↓, Bcl-2↓, eff↑, tumCV↓, TumCCA↑, angioG↓, PAK1↓, HDAC1↓, HDAC2↓, P53↑, PCNA↓, cycD1↓, cycE↓, P21?, BAX↑, cl‑Casp3↑, cl‑PARP↑, ChemoSen↑,
34- PFB,    Naturally occurring small-molecule inhibitors of hedgehog/GLI-mediated transcription
- in-vitro, PC, PANC1
HH↓, Gli1↓, GLI2↓, PTCH1↓, Bcl-2↓,
1768- PG,    Propyl gallate reduces the growth of lung cancer cells through caspase‑dependent apoptosis and G1 phase arrest of the cell cycle
- in-vitro, Lung, Calu-6 - in-vitro, Lung, A549
TumCG↓, TumCCA↓, Dose∅, Bcl-2↓, cl‑PARP↑, MMP↓, Casp3↑, Casp8↑,
1938- PL,    Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation
- Study, PSA, NA - in-vivo, NA, NA
ROS↑, Apoptosis↑, MMP↓, TumCCA↑, DNAdam↑, STAT3↓, Akt↓, PCNA↓, Ki-67↓, cycD1↓, Bcl-2↓, K17↓, HDAC↓, ROS↑, *IL1β↓, *IL6↓, *TNF-α↓, *IL17↓, *IL22↓,
1944- PL,    Piperlongumine, a Novel TrxR1 Inhibitor, Induces Apoptosis in Hepatocellular Carcinoma Cells by ROS-Mediated ER Stress
- in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2
ER Stress↑, TrxR1↓, ROS↑, eff↓, Bcl-2↓, proCasp3↓, BAX↓, cl‑Casp3↑, TumCCA↑, p‑PERK↑, ATF4↑, TumCG↓, lipid-P↑, selectivity↑,
1947- PL,    Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer
- in-vitro, GC, SGC-7901 - in-vitro, GC, NA
TrxR1↓, ROS↑, ER Stress↑, mtDam↑, selectivity↑, NO↑, TumCCA↑, mt-ROS↑, Casp9↑, Bcl-2↓, Bcl-xL↓, cl‑PARP↑, eff↓, lipid-P↑,
2950- PL,    Overview of piperlongumine analogues and their therapeutic potential
- Review, Var, NA
AntiAg↑, neuroP↑, Inflam↓, NO↓, PGE2↓, MMP3↓, MMP13↓, TumCMig↓, TumCI↓, p38↑, JNK↑, NF-kB↑, ROS↑, Foxm1↓, TrxR1↓, GSH↓, Trx↓, cMyc↓, Casp3↑, Bcl-2↓, Mcl-1↓, STAT3↓, AR↓, DNAdam↑,
2948- PL,    The promising potential of piperlongumine as an emerging therapeutics for cancer
- Review, Var, NA
tumCV↓, TumCP↓, TumCI↓, angioG↓, EMT↓, TumMeta↓, *hepatoP↑, *lipid-P↓, *GSH↑, cardioP↑, CycB↓, cycD1↓, CDK2↓, CDK1↓, CDK4↓, CDK6↓, PCNA↓, Akt↓, mTOR↓, Glycolysis↓, NF-kB↓, IKKα↓, JAK1↓, JAK2↓, STAT3↓, ERK↓, cFos↓, Slug↓, E-cadherin↑, TOP2↓, P53↑, P21↑, Bcl-2↓, BAX↑, Casp3↑, Casp7↑, Casp8↑, p‑HER2/EBBR2↓, HO-1↑, NRF2↑, BIM↑, p‑FOXO3↓, NA↓, Sp1/3/4↓, cMyc↓, EGFR↓, survivin↓, cMET↓, NQO1↑, SOD2↑, TrxR↓, MDM2↓, p‑eIF2α↑, ATF4↑, CHOP↑, MDA↑, Ki-67↓, MMP9↓, Twist↓, SOX2↓, Nanog↓, OCT4↓, N-cadherin↓, Vim↓, Snail↓, TumW↓, TumCG↓, HK2↓, RB1↓, IL6↓, IL8↓, SOD1↑, RadioS↑, ChemoSen↑, toxicity↓, Sp1/3/4↓, GSH↓, SOD↑,
2945- PL,    Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells
- in-vitro, CRC, HCT116
ROS↑, SMAD4↑, ChemoSen↑, P53↑, P21↑, BAX↑, Bcl-2↓, survivin↓, TumCMig↓,
2944- PL,    Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells
- in-vitro, Thyroid, IHH4 - in-vitro, Thyroid, 8505C - in-vivo, NA, NA
ROS↑, selectivity↑, tumCV↓, TumCCA↑, Apoptosis↑, ERK↑, Akt↓, mTOR↓, neuroP↑, Bcl-2↓, Casp3↑, PARP↑, JNK↑, *toxicity↓, eff↓, TumW↓,
1237- PTS,    Pterostilbene induces cell apoptosis and inhibits lipogenesis in SKOV3 ovarian cancer cells by activation of AMPK-induced inhibition of Akt/mTOR signaling cascade
- in-vitro, Ovarian, SKOV3
TumCMig↓, TumCI↓, MDA↑, ROS↑, BAX↑, Casp3↑, Bcl-2↓, SREBP1↓, FASN↓, AMPK↓, p‑AMPK↑, p‑P53↑, p‑TSC2↑, p‑Akt↓, p‑mTOR↓, p‑S6K↓, p‑4E-BP1↓,
3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, selectivity↑, TumCCA↑, TumCMig↓, TumCI↓, Apoptosis↑, TumMeta↓, Bcl-2↓, BAX↑, TIMP1↑, MMP2↓, MMP9↓, *Inflam↓, *neuroP↑, *cardioP↑, p38↓, MAPK↓, Twist↓, P21↓, cycD1↓, Casp3↑, Casp9↑, p‑Akt↓, p‑ERK↓, CD44↓, CD24↓, ChemoSen↑, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑, Hif1a↓, VEGF↓,
3373- QC,    The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway
- in-vitro, Pca, DU145
TumCP↓, Casp3↑, Bcl-2↓, Apoptosis↑, TumCI↓, TumCMig↓, CXCL12↓, CXCR4↓,
3369- QC,    Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects
- Review, Pca, NA
FAK↓, TumCCA↑, p‑pRB↓, CDK2↑, CycB↓, CDK1↓, EMT↓, PI3K↓, MAPK↓, Wnt↓, ROS↑, miR-21↑, Akt↓, NF-kB↓, FasL↑, Bak↑, BAX↑, Bcl-2↓, Casp3↓, Casp9↑, P53↑, p38↑, MAPK↑, Cyt‑c↑, PARP↓, CHOP↑, ROS↓, LDH↑, GRP78/BiP↑, ERK↑, MDA↓, SOD↑, GSH↑, NRF2↑, VEGF↓, PDGF↓, EGF↓, FGF↓, TNF-α↓, TGF-β↓, VEGFR2↓, EGFR↓, FGFR1↓, mTOR↓, cMyc↓, MMPs↓, LC3B-II↑, Beclin-1↑, IL1β↓, CRP↓, IL10↓, COX2↓, IL6↓, TLR4↓, Shh↓, HER2/EBBR2↓, NOTCH↓, DR5↑, HSP70/HSPA5↓, CSCs↓, angioG↓, MMP2↓, MMP9↓, IGFBP3↑, uPA↓, uPAR↓, RAS↓, Raf↓, TSP-1↑,
3603- QC,    Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitus
- Review, AD, NA - Review, Diabetic, NA
*MAPK↓, *neuroP↑, *ROS↓, *Akt↓, *PI3K↓, *IL6↓, *TNF-α↓, *VEGF↓, *EGFR↓, *Casp3↓, *Bcl-2↓, *IL1β↓,
77- QC,  EGCG,    The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition
- in-vitro, Pca, CD44+ - in-vitro, NA, CD133+ - in-vitro, NA, PC3 - in-vitro, NA, LNCaP
Casp3↑, Casp7↑, Bcl-2↓, survivin↓, XIAP↓, EMT↓, Vim↓, Slug↓, Snail↓, β-catenin/ZEB1↓, LEF1↓, TCF↓, Nanog↓,
78- QC,    Effects of quercetin on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) secretion and induction of apoptosis in human prostate cancer cells
- in-vitro, Pca, PC3
IGF-1↓, IGF-2↓, IGFBP3↑, Bcl-2↓, Bcl-xL↓, Casp3↑,
50- QC,    Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer
- vitro+vivo, Ovarian, A2780S
Casp3↑, Casp9↑, Mcl-1↓, Bcl-2↓, BAX↑, angioG↓,
52- QC,    Effect of Quercetin on Cell Cycle and Cyclin Expression in Ovarian Carcinoma and Osteosarcoma Cell Lines
- in-vitro, BC, MCF-7
Bcl-2↓, BAX↑, PI3K/Akt↓,
55- QC,    Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling
- in-vitro, GC, GCSCs
Bcl-2↓, BAX↑, Cyt‑c↑, MMP↓, PI3K/Akt↓, Casp3↑, Casp9↑,
58- QC,  doxoR,    Quercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin
- in-vitro, CRC, HT-29 - in-vitro, NA, CD133+
Bcl-2↓,
60- QC,  EGCG,  isoFl,  isoFl,  isoFl  The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition
- in-vitro, Pca, pCSCs
Casp3↑, Casp7↑, Bcl-2↓, survivin↓, XIAP↓, EMT↓, Slug↓, Snail↓, β-catenin/ZEB1↓, LEF1↓,
83- QC,    Quercetin induces p53-independent apoptosis in human prostate cancer cells by modulating Bcl-2-related proteins: a possible mediation by IGFBP-3
- in-vitro, Pca, PC3
Bcl-2↓, Bcl-xL↓, BAX↑, IGFBP3↑,
42- QC,    Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells
- in-vitro, AML, HL-60
Bcl-2↓, BAX↑, Casp3↑, COX2↓,
39- QC,    A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells
- Analysis, NA, NA
ROS↑, GSH↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, MAPK↑, ERK↑, SOD↑, ATP↓, Casp↑, PI3K/Akt↓, mTOR↓, NOTCH1↓, Bcl-2↓, BAX↑, IFN-γ↓, TumCP↓, TumCCA↑, Akt↓, P70S6K↓, *Keap1↓, *GPx↑, *Catalase↑, *HO-1↑, *NRF2↑, NRF2↑, eff↑, HIF-1↓,
84- QC,    Quercetin-induced growth inhibition and cell death in prostatic carcinoma cells (PC-3) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression
- in-vitro, Pca, PC3
P21↑, cDC2↓, CDK1↓, CycB↓, Casp3↑, Bcl-2↓, Bcl-xL↓, BAX↑, pRB↓,
91- QC,    The roles of endoplasmic reticulum stress and mitochondrial apoptotic signaling pathway in quercetin-mediated cell death of human prostate cancer PC-3 cells
- in-vitro, Pca, PC3
CDK2↓, cycE↓, cycD1↓, ATFs↑, GRP78/BiP↑, Bcl-2↓, BAX↑, Casp3↑, Casp8↑, Casp9↑, ER Stress↑, CHOP↑,
96- QC,  docx,    Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways
- vitro+vivo, Pca, LNCaP - in-vitro, Pca, PC3
PI3K/Akt↓, Ki-67↓, BAX↑, Bcl-2↓, EpCAM↓, Twist↓, E-cadherin↑, P-gp↓,
923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, GSH↓, Ca+2↝, MMP↓, Casp3↑, Casp8↑, Casp9↑, other↓, *ROS↓, *NRF2↑, HO-1↑, TumCCA↑, Inflam↓, STAT3↓, DR5↑, P450↓, MMPs↓, IFN-γ↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, cl‑PARP↑, Apoptosis↑, P53↑, Sp1/3/4↓, survivin↓, TRAILR↑, Casp10↑, DFF45↑, TNFR 1↑, Fas↑, NF-kB↓, IKKα↓, cycD1↓, Bcl-2↓, BAX↑, PI3K↓, Akt↓, E-cadherin↓, Vim↓, β-catenin/ZEB1↓, cMyc↓, EMT↓, MMP2↓, NOTCH1↓, MMP7↓, angioG↓, TSP-1↑, CSCs↓, XIAP↓, Snail↓, Slug↓, LEF1↓, P-gp↓, EGFR↓, GSK‐3β↓, mTOR↓, RAGE↓, HSP27↓, VEGF↓, TGF-β↓, COL1↓, COL3A1↓,
103- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- vitro+vivo, BC, 4T1
ROS↑, MMP↓, Bcl-2↓, BAX↑, Casp9↑, T-Cell↑, TGF-β↓,
882- RES,    Resveratrol: A Double-Edged Sword in Health Benefits
- Review, NA, NA
AntiTum↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Bcl-xL↓, P53↑, NAF1↓, NRF2↑, ROS↑, Apoptosis↑, HDAC↓, TumCCA↑, TumAuto↑, angioG↓, iNOS↓,
1489- RES,    Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer
- Review, Var, NA
RadioS↑, ChemoSen↑, *BioAv↓, *BioAv↑, Ferroptosis↑, lipid-P↑, xCT↓, GPx4↓, *BioAv↑, COX2↓, cycD1↓, FasL↓, FOXP3↓, HLA↑, p‑NF-kB↓, BAX↑, Bcl-2↓, MALAT1↓,
2329- RES,    Resveratrol induces apoptosis in human melanoma cell through negatively regulating Erk/PKM2/Bcl-2 axis
- in-vitro, Melanoma, A375
P53↑, Bcl-2↓, BAX↑, Cyt‑c↑, ERK↓, PKM2↓, Apoptosis↑, γH2AX↑, Casp3↑, cl‑PARP1↑,
3061- RES,    The Anticancer Effects of Resveratrol: Modulation of Transcription Factors
- Review, Var, NA
AhR↓, NRF2↑, *NQO1↑, *HO-1↑, *GSH↑, P53↑, Cyt‑c↑, Diablo↑, Bcl-2↓, Bcl-xL↓, survivin↓, XIAP↓, FOXO↑, p‑PI3K↓, p‑Akt↓, BIM↑, DR4↑, DR5↑, p27↑, cycD1↓, SIRT1↑, NF-kB↓, ATF3↑,
3054- RES,    Resveratrol induced reactive oxygen species and endoplasmic reticulum stress-mediated apoptosis, and cell cycle arrest in the A375SM malignant melanoma cell line
- in-vitro, Melanoma, A375
TumCG↓, P21↑, p27↑, CycB↓, ROS↑, ER Stress↑, p‑p38↑, P53↑, p‑eIF2α↑, EP4↑, CHOP↑, Bcl-2↓, BAX↓, TumCCA↑, NRF2↓, ChemoSen↑, GSH↓,
3098- RES,    Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers
- Review, Var, NA
NOTCH2↓, Wnt↓, β-catenin/ZEB1↓, p‑SMAD2↓, p‑SMAD3↓, PTCH1↓, Smo↓, Gli1↓, E-cadherin↑, NOTCH⇅, TAC?, NKG2D↑, DR4↑, survivin↓, DR5↑, BAX↑, p27↑, cycD1↓, Bcl-2↓, STAT3↓, STAT5↓, JAK↓, DNAdam↑, γH2AX↑,
3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, tumCV↓, TumCI↓, TumMeta↓, *antiOx↑, *cardioP↑, *Inflam↓, *neuroP↑, *Keap1↓, *NRF2↑, *ROS↓, p62↓, IL1β↓, CRP↓, VEGF↓, Bcl-2↓, MMP2↓, MMP9↓, FOXO4↓, POLD1↓, CK2↓, MMP↓, ROS↑, Apoptosis↑, TumCCA↑, Beclin-1↓, Ki-67↓, ATP↓, GlutMet↓, PFK↓, TGF-β↓, SMAD2↓, SMAD3↓, Vim?, Snail↓, Slug↓, E-cadherin↑, EMT↓, Zeb1↓, Fibronectin↓, IGF-1↓, PI3K↓, Akt↓, HO-1↑, eff↑, PD-1↓, CD8+↑, Th1 response↑, CSCs↓, RadioS↑, SIRT1↑, Hif1a↓, mTOR↓,
1747- RosA,    Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature Review
- Review, BC, MDA-MB-231 - Review, BC, MDA-MB-468
TumCCA↑, TNF-α↑, GADD45A↑, BNIP3↑, survivin↓, Bcl-2↓, BAX↑, HH↓, eff↑, ChemoSen↑, RadioS↑, TumCP↓, TumCMig↓, Apoptosis↑, RenoP↑, CardioT↓,
1748- RosA,    The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity
- Review, Var, NA
AntiCan↑, *BioAv↝, *CardioT↓, *Iron↓, *ROS↓, *SOD↑, *Catalase↑, *GPx↑, *NRF2↑, MARK4↓, MMP9↓, TumCCA↑, Bcl-2↓, BAX↑, Apoptosis↑, E-cadherin↑, N-cadherin↓, Vim↓, Gli1↓, HDAC2↓, Warburg↓, Hif1a↓, miR-155↓, p‑PI3K↑, ROS↑, *IronCh↑,
3003- RosA,    Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases
- Review, Var, NA - Review, AD, NA - Review, Park, NA
*Inflam↓, *antiOx↑, *neuroP↑, *IL6↓, *IL1β↓, *NF-kB↓, *PGE2↓, *COX2↓, *MMP↑, *memory↑, *ROS↓, *Aβ↓, *HMGB1↓, TumCG↓, MARK4↓, Zeb1↓, MDM2↓, BNIP3↑, ASC↑, NLRP3↓, PI3K↓, Akt↓, Casp1↓, E-cadherin↑, STAT3↓, TLR4↓, MMP↓, ICAM-1↓, AMPK↓, IL6↑, MMP2↓, Warburg↓, Bcl-xL↓, Bcl-2↓, TumCCA↑, EMT↓, TumMeta↓, mTOR↓, HSP27↓, Casp3↑, GlucoseCon↓, lactateProd↓, VEGF↓, p‑p65↓, GIT1↓, Foxm1↓, cycD1↓, CDK4↓, MMP9↓, HDAC2↓,
3005- RosA,    Nanoformulated rosemary extract impact on oral cancer: in vitro study
- in-vitro, Laryn, HEp2
TumCCA↑, ROS↑, Bcl-2↓, BAX↑, Casp3↑, P53↑, necrosis↑, eff↑, BioAv↑,
323- Sal,  SNP,    Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy
- in-vitro, BC, MDA-MB-231 - in-vitro, Ovarian, A2780S
TumCD↑, LDH↓, MDA↑, SOD↓, ROS↑, GSH↓, Catalase↓, MMP↓, P53↑, P21↑, BAX↑, Bcl-2↓, Casp3↑, Casp9↑, Apoptosis↑, TumAuto↑,
1307- SANG,    Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway
- in-vitro, CRC, HT-29
Apoptosis↑, BAX↑, Bcl-2↓, Casp3↑, Casp9↑,
1388- Sco,    Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells
- in-vitro, CRC, NA
tumCV↓, Apoptosis↑, Casp3↑, Casp7↑, BAX↑, Bcl-2↓, ROS↑, GSH↓, SOD↓, ER Stress↑, GRP78/BiP↑, CHOP↑, eff↓,
4471- Se,    Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis
- in-vitro, Liver, HepG2
eff↑, ROS↑, MMP↓, Casp9↑, Bcl-2↓, selectivity↑, Apoptosis↑,
4486- Se,  Chit,    Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis
- in-vitro, Liver, HepG2
Apoptosis↑, TumCCA↑, MMP↓, Bcl-2↓, BAX↑, cl‑Casp9↑, cl‑Casp3↑, Risk↓, *BioAv↑, *toxicity↑, TumCG↓, AntiTum↑, ROS↑, Cyt‑c↑, Fas↑, FasL↑, FADD↑,
4484- Se,  Chit,  PEG,    Anti-cancer potential of selenium-chitosan-polyethylene glycol-carvacrol nanocomposites in multiple myeloma U266 cells
- in-vitro, Melanoma, U266
tumCV↓, selectivity↑, ROS↑, MMP↓, Apoptosis↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓,
3656- SFN,    Chronic diseases, inflammation, and spices: how are they linked?
- Review, AD, NA
*AntiCan↑, *cardioP↑, *NRF2↑, *Inflam↓, *NF-kB↓, *STAT3↓, *ERK↓, *MAPK↓, AP-1↑, Bcl-2↓, Casp3↑, Casp9↑,
1733- SFN,    Sonic Hedgehog Signaling Inhibition Provides Opportunities for Targeted Therapy by Sulforaphane in Regulating Pancreatic Cancer Stem Cell Self-Renewal
- in-vitro, PC, PanCSC - in-vitro, Nor, HPNE - in-vitro, Nor, HNPSC
CSCs↓, Shh↓, Gli↓, Nanog↓, OCT4↓, PDGFRA↓, cycD1↑, Apoptosis↑, Casp↑, Smo↓, Gli1↓, GLI2↓, Bcl-2↓, Casp3↑, Casp7↑,
1464- SFN,    d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway
- in-vitro, GBM, NA
Apoptosis↑, Casp3↑, BAX↑, Bcl-2↓, ROS↑, p‑STAT3↓, JAK2↓, eff↓,
1467- SFN,    Sulforaphane generates reactive oxygen species leading to mitochondrial perturbation for apoptosis in human leukemia U937 cells
- in-vitro, AML, U937
Apoptosis↑, ROS↑, MMP↓, Casp3↑, Bcl-2↓, eff↓,
1469- SFN,    Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vivo, Pca, NA
eff↑, ROS↑, MMP↓, Casp3↑, Casp9↑, DR4↑, DR5↑, BAX↑, Bak↑, BIM↑, NOXA↑, Bcl-2↓, Bcl-xL↓, Mcl-1↓, eff↓, TumCG↓, TumCP↓, eff↑, NF-kB↓, PI3K↓, Akt↓, MEK↓, ERK↓, angioG↓, FOXO3↑,
1315- SFN,    Bcl-2_and_Caspase-3">Sulforaphane Induces Apoptosis of Acute Human Leukemia Cells Through Modulation of Bax, Bcl-2 and Caspase-3
- in-vitro, AML, K562
TumCP↓, BAX↑, Casp3↑, Bcl-2↓,
1508- SFN,    Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment
- Review, Var, NA
*BioAv↑, HDAC↓, TumCCA↓, eff↓, Wnt↓, β-catenin/ZEB1↓, Casp12?, Bcl-2↓, cl‑PARP↑, Bax:Bcl2↑, IAP1↓, Casp3↑, Casp9↑, Telomerase↓, hTERT↓, ROS?, DNMTs↓, angioG↓, VEGF↓, Hif1a↓, cMYB↓, MMP1↓, MMP2↓, MMP9↓, ERK↑, E-cadherin↑, CD44↓, MMP2↓, eff↑, IL2↑, IFN-γ↑, IL1β↓, IL6↓, TNF-α↓, NF-kB↓, ERK↓, NRF2↑, RadioS↑, ChemoSideEff↓,
110- SFN,    Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway
- in-vivo, PC, NA
HH↓, Smo↓, Gli1↓, GLI2↓, Shh↓, VEGF↓, PDGFRA↓, EMT↓, Zeb1↓, Bcl-2↓, XIAP↓, E-cadherin↑, OCT4↓,
3301- SIL,    Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid
- Review, Var, NA
Inflam↓, TumCCA↑, Apoptosis↓, TumMeta↓, TumCG↓, angioG↓, chemoP↑, radioP↑, p‑ERK↓, p‑p38↓, p‑JNK↓, P53↑, Bcl-2↓, Bcl-xL↓, TGF-β↓, MMP2↓, MMP9↓, E-cadherin↑, Wnt↓, Vim↓, VEGF↓, IL6↓, STAT3↓, *ROS↓, IL1β↓, PGE2↓, CDK1↓, CycB↓, survivin↓, Mcl-1↓, Casp3↑, Casp9↑, cMyc↓, COX2↓, Hif1a↓, CXCR4↓, CSCs↓, EMT↓, N-cadherin↓, PCNA↓, cycD1↓, ROS↑, eff↑, eff↑, eff↑, HER2/EBBR2↓,
3304- SIL,    Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells
- in-vitro, GC, AGS - in-vivo, NA, NA
BAX↑, p‑JNK↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, Apoptosis↑, tumCV↓,
3305- SIL,    Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, NA, NA
TumCP↓, tumCV↓, BAX↑, cl‑PARP↑, Casp9↑, p‑JNK↑, Bcl-2↓, p‑p38↓, p‑ERK↓, *toxicity∅, Dose↝, *hepatoP↑, Inflam↓, AntiCan↑,
3288- SIL,    Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations
- Review, Var, NA
Inflam↓, lipid-P↓, TumMeta↓, angioG↓, chemoP↑, EMT↓, HDAC↓, HATs↑, MMPs↓, uPA↓, PI3K↓, Akt↓, VEGF↓, CD31↓, Hif1a↓, VEGFR2↓, Raf↓, MEK↓, ERK↓, BIM↓, BAX↑, Bcl-2↓, Bcl-xL↓, Casp↑, MAPK↓, P53↑, LC3II↑, mTOR↓, YAP/TEAD↓, *BioAv↓, MMP↓, Cyt‑c↑, PCNA↓, cMyc↓, cycD1↓, β-catenin/ZEB1↓, survivin↓, APAF1↑, Casp3↑, MDSCs↓, IL10↓, IL2↑, IFN-γ↑, hepatoP↑, cardioP↑, GSH↑, neuroP↑,
3298- SIL,    Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells
- in-vitro, BC, MCF-7
LC3II↑, Beclin-1↑, Bcl-2↓, ROS↑, MMP↓, ATP↓, eff↓, BNIP3?, TumAuto↑, eff↑,
3296- SIL,    Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway
- in-vitro, Oral, Ca9-22 - in-vivo, Oral, YD10B
TumCP↓, TumCCA↑, ROS↑, SOD1↓, SOD2↓, *JNK↑, toxicity?, TumCMig↓, TumCI↓, N-cadherin↓, Vim↓, E-cadherin↑, EMT↓, P53↑, cl‑Casp3↑, cl‑PARP↑, BAX↑, Bcl-2↓, SOD↓,
3293- SIL,    Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer
- Review, Var, NA
hepatoP↑, TumMeta↓, Inflam↓, chemoP↑, radioP↑, Half-Life↝, *GSTs↑, p‑JNK↑, BAX↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, eff↑, TumCCA↑, STAT3↓, Mcl-1↓, survivin↓, Bcl-xL↓, Casp3↑, Casp9↑, eff↑, CXCR4↓, Dose↝,
3290- SIL,    A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents
- Analysis, Var, NA
hepatoP↑, chemoP↑, *lipid-P↓, *antiOx↑, tumCV↓, TumCMig↓, Apoptosis↑, ROS↑, GSH↓, Bcl-2↓, survivin↓, cycD1↓, NOTCH1↓, BAX↑, NF-kB↓, COX2↓, LOX1↓, iNOS↓, TNF-α↓, IL1↓, Inflam↓, *toxicity↓, CXCR4↓, EGFR↓, ERK↓, MMP↓, Cyt‑c↑, TumCCA↑, RB1↑, P53↑, P21↑, p27↑, cycE↓, CDK4↓, p‑pRB↓, Hif1a↓, cMyc↓, IL1β↓, IFN-γ↓, PCNA↓, PSA↓, CYP1A1↓,
109- SIL,    Silibinin induces apoptosis through inhibition of the mTOR-GLI1-BCL2 pathway in renal cell carcinoma
- vitro+vivo, RCC, 769-P - in-vitro, RCC, 786-O - in-vitro, RCC, ACHN - in-vitro, RCC, OS-RC-2
HH↓, Gli1↓, GLI2↓, mTOR↓, Bcl-2↓,
2232- SK,    Shikonin Induces Autophagy and Apoptosis in Esophageal Cancer EC9706 Cells by Regulating the AMPK/mTOR/ULK Axis
- in-vitro, ESCC, EC9706
tumCV↓, TumCMig↓, TumCI↓, TumAuto↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, AMPK↑, mTOR↑, TumVol↓, OS↑, LC3I↑,
2231- SK,    Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways
- in-vitro, CRC, SNU-407
Apoptosis↑, ER Stress↑, PERK↑, eIF2α↑, CHOP↑, mt-Ca+2↑, MMP↓, Bcl-2↓, Casp3↑, Casp9↑, ERK↑, JNK↑, p38↓,
2230- SK,    Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
TumCG↓, Bcl-2↓, ROS↑, Bcl-xL↓, MMP↓, Casp↑, selectivity↑, cycD1↓, TumCCA↑, eff↓,
2228- SK,    Shikonin induced Apoptosis Mediated by Endoplasmic Reticulum Stress in Colorectal Cancer Cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT15 - in-vivo, NA, NA
Apoptosis↑, Bcl-2↓, Casp3↑, Casp9↑, cl‑PARP↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, JNK↑, eff↓, ER Stress↑, ROS↑, TumCG↓,
2416- SK,    Shikonin induces cell death by inhibiting glycolysis in human testicular cancer I-10 and seminoma TCAM-2 cells
- in-vitro, Testi, TCAM-2
MMP↓, ROS↑, lactateProd↓, Bcl-2↓, cl‑Casp3↓, PKM2↓, GLUT1↓, HK2↓, LC3B↑,
1312- SK,    Shikonin induces apoptosis through reactive oxygen species/extracellular signal-regulated kinase pathway in osteosarcoma cells
- in-vitro, OS, 143B
ROS↑, p‑ERK↑, Bcl-2↓, cl‑PARP↑, Apoptosis↑, TumCCA↑, Bcl-2↑, proCasp3↓,
1344- SK,    Novel multiple apoptotic mechanism of shikonin in human glioma cells
- in-vitro, GBM, U87MG - in-vitro, GBM, Hs683 - in-vitro, GBM, M059K
ROS↑, GSH↓, MMP↓, P53↑, cl‑PARP↑, Catalase↓, SOD1↑, Bcl-2↓, BAX↑, eff↓,
2197- SK,    Shikonin derivatives for cancer prevention and therapy
- Review, Var, NA
ROS↑, Ca+2↑, BAX↑, Bcl-2↓, MMP9↓, NF-kB↓, PKM2↓, Hif1a↓, NRF2↓, P53↑, DNMT1↓, MDR1↓, COX2↓, VEGF↓, EMT↓, MMP7↓, MMP13↓, uPA↓, RIP1↑, RIP3↑, Casp3↑, Casp7↑, Casp9↑, P21↓, DFF45↓, TRAIL↑, PTEN↑, mTOR↓, AR↓, FAK↓, Src↓, Myc↓, RadioS↑,
1291- SM,    Tanshinone IIA inhibits human breast cancer cells through increased Bax to Bcl-xL ratios
- in-vitro, BC, MDA-MB-231
TumCP↓, TumCCA↑, BAX↑, Bcl-2↓,
335- SNP,  PDT,    Biogenic Silver Nanoparticles for Targeted Cancer Therapy and Enhancing Photodynamic Therapy
- Review, NA, NA
ROS↑, GSH↓, GPx↑, Catalase↓, SOD↓, p38↑, BAX↑, Bcl-2↓,
343- SNP,    Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma
- in-vitro, PC, PANC1
BAX↑, Bcl-2↓, P53↑, TumAuto↑,
350- SNP,    Cytotoxic and Apoptotic Effects of Green Synthesized Silver Nanoparticles via Reactive Oxygen Species-Mediated Mitochondrial Pathway in Human Breast Cancer Cells
- in-vitro, BC, MCF-7
ROS↑, MMP↓, P53↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓,
351- SNP,    Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D
Casp9↑, Casp3↑, Casp7↑, Bcl-2↓,
356- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7 - in-vitro, Bladder, HTB-22
Apoptosis↑, P53↑, iNOS↑, NF-kB↑, Bcl-2↓, ROS↑, SOD↑, TumCCA↑, eff↑, Catalase↑, other↑,
324- SNP,  CPT,    Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells
- in-vitro, Cerv, HeLa
ROS↑, Casp3↑, Casp9↑, Casp6↑, GSH↓, SOD↓, GPx↓, MMP↓, P53↑, P21↑, Cyt‑c↑, BID↑, BAX↑, Bcl-2↓, Bcl-xL↓, Akt↓, Raf↓, ERK↓, MAP2K1/MEK1↓, JNK↑, p38↑,
386- SNP,  Tam,    Synergistic anticancer effects and reduced genotoxicity of silver nanoparticles and tamoxifen in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
P53↑, BAX↑, Bcl-2↓, Casp3↑, DNAdam↑, TumCCA↑,
396- SNP,    Systemic Evaluation of Mechanism of Cytotoxicity in Human Colon Cancer HCT-116 Cells of Silver Nanoparticles Synthesized Using Marine Algae Ulva lactuca Extract
- in-vitro, Colon, HCT116
P53↑, BAX↑, P21↑, Bcl-2↓,
381- SNP,    Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes Expression
- in-vitro, Bladder, 5637
ROS↑, BAX↑, Bcl-2↓, Casp3↑, Casp7↑, Apoptosis↑,
382- SNP,    Investigation the apoptotic effect of silver nanoparticles (Ag-NPs) on MDA-MB 231 breast cancer epithelial cells via signaling pathways
- in-vitro, BC, MDA-MB-231
Apoptosis↑, BAX↑, Bcl-2↓, P53↑, PTEN↑, hTERT↓, p‑ERK↓, cycD1↓,
384- SNP,    Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy
- in-vitro, Testi, F9
LDH↓, ROS↑, mtDam↑, DNAdam↑, P53↑, P21↑, BAX↑, Casp3↑, Bcl-2↓, Casp9↑, Nanog↓, OCT4↓,
402- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7
P53↑, iNOS↑, NF-kB↑, Bcl-2↓, miR-125b↓, ROS↑, SOD↑,
398- SNP,    Bcl-2_pathway_fibrosis_via_TGF-ba-SMA_upregulation_in_rats">Silver nanoparticles induced testicular damage targeting NQO1 and APE1 dysregulation, apoptosis via Bax/Bcl-2 pathway, fibrosis via TGF-β/α-SMA upregulation in rats
- in-vivo, Testi, NA
Bcl-2↓, Casp3↑, GSH↓, MDA↑, NO↑, H2O2↑, SOD↓,
397- SNP,  GEM,    Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment
- in-vitro, Ovarian, A2780S
P53↑, P21↑, BAX↑, Bak↑, Cyt‑c↑, Casp3↑, Casp9↑, Bcl-2↓, ROS↑, MMP↓,
393- SNP,    Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity
- in-vitro, NA, HCT116
mtDam↑, ROS↑, TumCCA↑, Casp3↑, BAX↑, Bcl-2↓, P53↑,
385- SNP,    Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatment
- in-vitro, Hepat, HepG2 - in-vitro, Hepat, WI38
TNF-α↑, IL33↑, mTOR↓, MMP9↓, Bcl-2↓, ROS↑, Apoptosis↑,
363- SNP,    Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
ROS↑, lipid-P↑, Apoptosis↑, BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑, Casp3↑, Casp9↑, JNK↑,
369- SNP,    Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
- in-vitro, Liver, NA
ROS↑, GSH↓, DNAdam↑, lipid-P↝, Apoptosis↑, BAX↑, Bcl-2↓, MMP↓, Casp9↑, Casp3↑, JNK↑,
379- SNP,    Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo
- in-vivo, Lung, H1299
NF-kB↓, Bcl-2↓, Casp3↑, survivin↑, TumCG↓,
2287- SNP,    Silver nanoparticles induce endothelial cytotoxicity through ROS-mediated mitochondria-lysosome damage and autophagy perturbation: The protective role of N-acetylcysteine
- in-vitro, Nor, HUVECs
*TumCP↓, *ROS↑, *eff↓, *MDA↑, *GSH↓, *MMP↓, *ATP↓, *LC3II↑, *p62↑, *Bcl-2↓, *BAX↑, *Casp3↑,
4417- SNP,    Caffeine-boosted silver nanoparticles target breast cancer cells by triggering oxidative stress, inflammation, and apoptotic pathways
- in-vitro, BC, MDA-MB-231
ROS↑, MDA↑, COX2↑, IL1β↑, TNF-α↑, GSH↓, Cyt‑c↑, Casp3↑, BAX↑, Bcl-2↓, LDH↓, cycD1↓, CDK2↓, TumCCA↑, mt-Apoptosis↑,
4416- SNP,    Efficacy of curcumin-synthesized silver nanoparticles on MCF-7 breast cancer cells
- in-vitro, BC, MCF-7
TumCMig↓, Apoptosis↑, BAX↑, P53↑, Bcl-2↓,
4415- SNP,  SDT,  CUR,    Examining the Impact of Sonodynamic Therapy With Ultrasound Wave in the Presence of Curcumin-Coated Silver Nanoparticles on the Apoptosis of MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7
tumCV↓, BAX↑, Casp3↑, Bcl-2↓, eff↑, ROS↑, sonoS↑, eff↑, MMP↓, Cyt‑c↑,
4427- SNP,    Silver nanoparticles induce apoptosis and G2/M arrest via PKCζ-dependent signaling in A549 lung cells
- in-vitro, Lung, A549
tumCV↓, LDH↑, TumCCA↑, BAX↑, BID↑, Bcl-2↓, PKCδ↓,
4430- SNP,    Evaluation of the Genotoxic and Oxidative Damage Potential of Silver Nanoparticles in Human NCM460 and HCT116 Cells
- in-vitro, Colon, HCT116 - in-vitro, Nor, NCM460
*Bacteria↓, ROS↑, p‑p38↑, BAX↑, Bcl-2↓, BAX↑, P21↑, TumCD↑, toxicity↝,
139- Tomatine,  CUR,    Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells
- in-vitro, Pca, PC3
NF-kB↓, Bcl-2↓, p‑Akt↓, p‑ERK↓,
2353- TQ,    The effects of thymoquinone on pancreatic cancer: Evidence from preclinical studies
- Review, PC, NA
BioAv↝, BioAv↑, MUC4↓, PKM2↓, eff↑, TumVol↓, HDAC↓, NF-kB↓, Bcl-2↓, Bcl-xL↓, survivin↓, XIAP↓, COX2↓, PGE1↓,
1936- TQ,    Thymoquinone induces apoptosis and increase ROS in ovarian cancer cell line
- in-vitro, Ovarian, CaOV3 - in-vitro, Nor, WRL68
selectivity↑, TumCP↓, MMP↓, Bcl-2↓, BAX↑, ROS↑,
1935- TQ,    Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis
- Review, OS, NA
Apoptosis↑, TumCCA↑, angioG↓, TumMeta↓, ROS↑, P53↑, Twist↓, E-cadherin↑, N-cadherin↓, NF-kB↓, IL8↓, XIAP↓, Bcl-2↓, STAT3↓, MAPK↓, PI3K↓, Akt↓, ERK↓, MMP2↓, MMP9↓, *ROS↓, HO-1↑, selectivity↑, TumCG↓,
1309- TQ,  QC,    Thymoquinone and quercetin induce enhanced apoptosis in non-small cell lung cancer in combination through the Bax/Bcl2 cascade
- in-vitro, Lung, NA
Bcl-2↓, BAX↑, Apoptosis↑,
2127- TQ,    Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways
- Review, GBM, NA
chemoP↑, ChemoSen↑, BioAv↑, PTEN↑, PI3K↓, Akt↓, TumCCA↓, NF-kB↓, p‑Akt↓, p65↓, XIAP↓, Bcl-2↓, COX2↓, VEGF↓, mTOR↓, RAS↓, Raf↓, MEK↓, ERK↓, MMP2↓, MMP9↓, TumCMig↓, TumCI↓, Casp↑, cl‑PARP↑, ROS⇅, ROS↑, MMP↓, eff↑, Telomerase↓, DNAdam↑, Apoptosis↑, STAT3↓, RadioS↑,
2121- TQ,    Thymoquinone Inhibits Tumor Growth and Induces Apoptosis in a Breast Cancer Xenograft Mouse Model: The Role of p38 MAPK and ROS
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
p‑p38↑, ROS↑, TumCP↓, eff↑, XIAP↓, survivin↓, Bcl-xL↓, Bcl-2↓, Ki-67↓, *Catalase↑, *SOD↑, *GSH↑, hepatoP↑, p‑MAPK↑, JNK↓, eff↓,
2120- TQ,    Thymoquinone induces apoptosis of human epidermoid carcinoma A431 cells through ROS-mediated suppression of STAT3
- in-vitro, Melanoma, A431
ROS↑, Apoptosis↑, P53↑, BAX↑, MDM2↓, Bcl-2↓, Bcl-xL↓, Casp9↑, Casp7↑, Casp3↑, STAT3↓, cycD1↓, survivin↓, eff↓,
2102- TQ,    A review on therapeutic potential of Nigella sativa: A miracle herb
- Review, Var, NA
angioG↓, NF-kB↓, PPARγ↓, Bcl-2↓, Bcl-xL↓, MUC4↓, cJun↑, p38↑, P21↑, HDAC↓, radioP↑, hepatoP↑,
2105- TQ,    Thymoquinone Promotes Pancreatic Cancer Cell Death and Reduction of Tumor Size through Combined Inhibition of Histone Deacetylation and Induction of Histone Acetylation
- in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, PC, Hs766t - in-vivo, NA, NA
tumCV↓, TumCP↓, TumCCA↑, Apoptosis↑, P53↑, Bcl-2↓, P21↑, ac‑H4↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, TumVol↓,
2094- TQ,    Cytotoxicity of Nigella sativa Extracts Against Cancer Cells: A Review of In Vitro and In Vivo Studies
- Review, Var, NA
ROS↑, angioG↓, TumMeta↓, VEGF↓, MMPs↓, P53↑, BAX↑, Casp↑, Bcl-2↓, survivin↓, *ROS↓, ChemoSen↑, chemoP↑, MDR1↓, BioAv↓, BioAv↑,
2091- TQ,    Determination of anti-cancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cells
- in-vitro, BC, MCF-7 - in-vitro, GC, AGS
Dose↝, Casp3↑, Bcl-2↓, MMP2↓, MMP9↓, HSP70/HSPA5↓,
2084- TQ,    Thymoquinone, as an anticancer molecule: from basic research to clinical investigation
- Review, Var, NA
*ROS↓, *chemoP↑, ROS↑, ROS⇅, MUC4↓, selectivity↑, AR↓, cycD1↓, Bcl-2↓, Bcl-xL↓, survivin↓, Mcl-1↓, VEGF↓, cl‑PARP↑, ROS↑, HSP70/HSPA5↑, P53↑, miR-34a↑, Rac1↓, TumCCA↑, NOTCH↓, NF-kB↓, IκB↓, p‑p65↓, IAP1↓, IAP2↑, XIAP↓, TNF-α↓, COX2↓, Inflam↓, α-tubulin↓, Twist↓, EMT↓, mTOR↓, PI3K↓, Akt↓, BioAv↓, ChemoSen↑, BioAv↑, PTEN↑, chemoP↑, RadioS↑, *Half-Life↝, *BioAv↝,
2083- TQ,    Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro
- in-vitro, GC, HGC27 - in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901 - in-vivo, NA, NA
p‑STAT3↓, JAK2↓, c-Src↓, Bcl-2↓, cycD1↓, survivin↓, VEGF↓, Casp3?, Casp7?, Casp9?, *toxicity∅, TumVol↓,
2109- TQ,    Thymoquinone Induces Mitochondria-Mediated Apoptosis in Acute Lymphoblastic Leukaemia in Vitro
- in-vitro, AML, CEM
Apoptosis↓, Bcl-2↓, BAX↑, ROS↑, HSP70/HSPA5↑, Casp3↑, Casp8↑,
2110- TQ,    Nigella sativa seed oil suppresses cell proliferation and induces ROS dependent mitochondrial apoptosis through p53 pathway in hepatocellular carcinoma cells
- in-vitro, HCC, HepG2 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, HEK293
P53↑, lipid-P↑, GSH↓, ROS↑, MMP↓, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, tumCV↓, selectivity↑,
1928- TQ,    Thymoquinone Crosstalks with DR5 to Sensitize TRAIL Resistance and Stimulate ROS-Mediated Cancer Apoptosis
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TumCP↓, DR4↑, DR5↑, Casp8↑, FADD↑, Bcl-2↓, ROS↑, NO↑, MDA↑,
3573- TQ,    Chronic diseases, inflammation, and spices: how are they linked?
- Review, Var, NA
NF-kB↓, XIAP↓, PI3K↓, Akt↓, STAT3↓, JAK2↓, cSrc↓, PCNA↓, MMP2↓, ERK↓, Ki-67↓, Bcl-2↓, VEGF↓, p65↓, COX2↓, MMP9↓,
3427- TQ,    Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets
ROS⇅, Fas↑, DR5↑, TRAIL↑, Casp3↑, Casp8↑, Casp9↑, P53↑, mTOR↓, Bcl-2↓, BID↓, CXCR4↓, JNK↑, p38↑, MAPK↑, LC3II↑, ATG7↑, Beclin-1↑, AMPK↑, PPARγ↑, eIF2α↓, P70S6K↓, VEGF↓, ERK↓, NF-kB↓, XIAP↓, survivin↓, p65↓, DLC1↑, FOXO↑, TET2↑, CYP1B1↑, UHRF1↓, DNMT1↓, HDAC1↓, IL2↑, IL1↓, IL6↓, IL10↓, IL12↓, TNF-α↓, iNOS↓, COX2↓, 5LO↓, AP-1↓, PI3K↓, Akt↓, cMET↓, VEGFR2↓, CXCL1↓, ITGA5↓, Wnt↓, β-catenin/ZEB1↓, GSK‐3β↓, Myc↓, cycD1↓, N-cadherin↓, Snail↓, Slug↓, Vim↓, Twist↓, Zeb1↓, MMP2↓, MMP7↓, MMP9↓, JAK2↓, STAT3↓, NOTCH↓, cycA1↓, CDK2↓, CDK4↓, CDK6↓, CDC2↓, CDC25↓, Mcl-1↓, E2Fs↓, p16↑, p27↑, P21↑, ChemoSen↑,
3423- TQ,    Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics
- Review, Var, NA
AntiCan↑, Inflam↓, hepatoP↑, RenoP↑, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, ROS↑, P53↑, PTEN↑, P21↑, p27↑, BRCA1↑, PI3K↓, Akt↓, MAPK↓, ERK↓, p‑ERK↓, MMPs↓, FAK↓, Twist↓, Zeb1↓, EMT↓, TumMeta↓, angioG↓, VEGF↓, HDAC↓, Maspin↑, SIRT1↑, DNMT1↓, DNMT3A↓, HDAC1↓, HDAC4↓,
3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, P53↑, PTEN↑, NF-kB↓, PPARγ↓, cMyc↓, Casp↑, *BioAv↓, BioAv↝, eff↑, survivin↓, Bcl-xL↓, Bcl-2↓, Akt↓, BAX↑, cl‑PARP↑, CXCR4↓, MMP9↓, VEGFR2↓, Ki-67↓, COX2↓, JAK2↓, cSrc↓, Apoptosis↑, p‑STAT3↓, cycD1↓, Casp3↑, Casp7↑, Casp9↑, N-cadherin↓, Vim↓, Twist↓, E-cadherin↑, ChemoSen↑, eff↑, EMT↓, ROS↑, DNMT1↓, eff↑, EZH2↓, hepatoP↑, Zeb1↓, RadioS↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, *NAD↑, *SIRT1↑, SIRT1↓, *Inflam↓, *CRP↓, *TNF-α↓, *IL6↓, *IL1β↓, *eff↑, *MDA↓, *NO↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, PI3K↓, mTOR↓,
3411- TQ,    Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone
- Review, Var, NA
p‑STAT3↓, cycD1↓, JAK2↓, β-catenin/ZEB1↓, cMyc↓, MMP7↓, MET↓, p‑Akt↓, p‑mTOR↓, CXCR4↓, Bcl-2↓, BAX↑, ROS↑, Cyt‑c↑, Twist↓, Zeb1↓, E-cadherin↑, p‑p38↑, p‑MAPK↑, ERK↑, eff↑, ERK↓, TumCP↓, TumCMig↓, TumCI↓,
3413- TQ,    Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src‑mediated phosphorylation of EGF receptor tyrosine kinase
- in-vitro, CRC, HCT116
tumCV↓, Apoptosis↓, BAX↑, Bcl-2↓, Casp9↑, Casp7↑, Casp3↑, cl‑PARP↑, STAT3↓, survivin↓, cMyc↓, cycD1↓, p27↑, P21↑, EGFR↓, ROS↑,
3414- TQ,    Thymoquinone induces apoptosis through inhibition of JAK2/STAT3 signaling via production of ROS in human renal cancer Caki cells
- in-vitro, RCC, Caki-1
tumCV↓, Apoptosis↑, P53↑, BAX↑, Cyt‑c↑, cl‑Casp9↑, cl‑Casp3↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, p‑STAT3↓, p‑JAK2↓, STAT3↓, survivin↓, cycD1↓, ROS↑, eff↓,
4565- TQ,    Thymoquinone in the clinical treatment of cancer: Fact or fiction?
- Review, BC, NA
Dose↝, TumCCA↑, P21↑, cycD1↓, TumCI↑, TumMeta↓, Bcl-2↓, Bcl-xL↓, survivin↓, PTEN↑, Akt↓, P53↑, NF-kB↓, cardioP↑, Dose↝,
3790- UA,    Therapeutic applications of ursolic acid: a comprehensive review and utilization of predictive tools
*Inflam↓, *antiOx↑, AntiCan↑, *neuroP↑, *hepatoP↑, *cardioP↑, *MMP↑, *ROS↓, *PGC-1α↑, *BDNF↑, *cognitive↑, Bcl-2↓, Cyt‑c↑, DR5↑, Casp9↑, Casp8↑, Casp3↑, TumCCA↑, *BioAv↓, *Dose↝, *Half-Life↓, *Half-Life↓,
2411- UA,    Ursolic acid in health and disease
- Review, Var, NA
Inflam↓, antiOx↑, NF-kB↓, Bcl-xL↓, Bcl-2↓, cycD1↓, Ki-67↓, CD31↓, STAT3↓, EGFR↓, P53↑, P21↓, HK2↓, PKM2↓, ATP↓, lactateProd↓, p‑ERK↓, MMP↓, NO↑, ATM↑, Casp3↑, AMPK↑, JNK↑, FAO↑, FASN↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, *GSTs↑, neuroP↑,
1310- UA,    Ursolic acid triggers apoptosis and Bcl-2 downregulation in MCF-7 breast cancer cells
- in-vitro, BC, MCF-7
GR↝, AP-1↝, cl‑PARP↑, Bcl-2↓, NA↑,
1313- VitD3,  MEL,    The effects of melatonin and vitamin D3 on the gene expression of BCl-2 and BAX in MCF-7 breast cancer cell line
- in-vitro, BC, MCF-7
BAX↑, Bcl-2↓, Bax:Bcl2↑, eff↑,
1817- VitK2,    Research progress on the anticancer effects of vitamin K2
- Review, Var, NA
TumCCA↑, Apoptosis↑, TumAuto↑, TumCI↓, TumCG↓, ChemoSen↓, ChemoSideEff↓, toxicity∅, eff↑, cycD1↓, CDK4↓, eff↑, IKKα↓, NF-kB↓, other↑, p27↑, cMyc↓, i-ROS↑, Bcl-2↓, BAX↑, p38↑, MMP↓, Casp9↑, p‑ERK↓, RAS↓, MAPK↓, p‑P53↑, Casp8↑, Casp3↑, cJun↑, MMPs↓, eff↑, eff↑,
2274- VitK2,    Vitamin K2 Modulates Mitochondrial Dysfunction Induced by 6-Hydroxydopamine in SH-SY5Y Cells via Mitochondrial Quality-Control Loop
- in-vitro, Nor, SH-SY5Y
*Bcl-2↓, *BAX↑, *MMP↑, *ROS↓, *p62↓, *LC3A↑, *Dose↝, *Apoptosis↓, *PINK1↑, *PARK2↑,
1839- VitK3,    Vitamin K3 derivative inhibits androgen receptor signaling in targeting aggressive prostate cancer cells
- in-vitro, Pca, NA
TumCP↓, Apoptosis↑, TumCCA↑, ROS↑, eff↓, AR↓, Trx↓, Bcl-2↓,
1838- VitK3,  PDT,    Photodynamic Effects of Vitamin K3 on Cervical Carcinoma Cells Activating Mitochondrial Apoptosis Pathways
- in-vitro, Cerv, NA
eff↑, ROS↑, tumCV↓, TumCG↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, Bcl-xL↑, Cyt‑c↑, Bcl-2↓,
1821- VitK3,    Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration
- in-vitro, Oral, NA - in-vitro, Nor, HEK293 - in-vitro, Nor, HaCaT
selectivity↑, TumCD↓, BAX↑, P53↑, Bcl-2↓, p65↓, E-cadherin↑, EMT↓, Vim↓, Fibronectin↓, TumCG↓, TumCMig↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 360

Results for Effect on Cancer/Diseased Cells:
12LOX?,1,   12LOX↓,2,   p‑4E-BP1↓,1,   5LO↓,1,   Ac-histone H3↑,1,   ACC↑,3,   ACLY↓,3,   AhR↓,1,   AIF↑,8,   AIF↝,1,   Akt↓,64,   Akt↑,2,   p‑Akt↓,32,   AKT1↓,1,   Akt2↓,1,   ALAT↓,1,   ALAT∅,1,   ALP↓,1,   AMPK↓,2,   AMPK↑,15,   p‑AMPK↑,3,   angioG↓,26,   AntiAg↑,3,   AntiCan↓,1,   AntiCan↑,17,   AntiCan?,1,   antiOx↓,1,   antiOx↑,3,   AntiTum↑,8,   AP-1↓,6,   AP-1↑,1,   AP-1↝,1,   APAF1↑,6,   Apoptosis?,1,   Apoptosis↓,4,   Apoptosis↑,138,   mt-Apoptosis↑,1,   AR↓,10,   ASC↓,1,   ASC↑,1,   ascitic↓,1,   ASK1↑,2,   AST↓,1,   AST∅,1,   ATF3↑,2,   ATF4↓,1,   ATF4↑,11,   ATF6↑,1,   ATFs↑,1,   ATG3↓,1,   ATG3↑,2,   ATG5↑,4,   ATG7↑,2,   ATM↑,3,   ATP↓,7,   ATPase↓,1,   AXL↓,3,   BAD↓,1,   BAD↑,9,   p‑BAD↓,1,   Bak↑,14,   BAX↓,5,   BAX↑,228,   Bax:Bcl2↑,12,   BBB↑,1,   Bcl-2↓,358,   Bcl-2↑,1,   Bcl-xL↓,57,   Bcl-xL↑,1,   Beclin-1↓,3,   Beclin-1↑,13,   Bfl-1↓,1,   BID↓,1,   BID↑,8,   BIM↓,1,   BIM↑,11,   BioAv↓,7,   BioAv↑,8,   BioAv↝,3,   BioAv∅,1,   BMI1↓,1,   BMPs↑,1,   BNIP3?,2,   BNIP3↑,5,   BOK↑,2,   BRAF↝,1,   BRCA1↑,1,   Ca+2↓,3,   Ca+2↑,17,   Ca+2↝,1,   i-Ca+2↑,1,   mt-Ca+2↑,1,   cachexia↓,1,   CAFs/TAFs↓,2,   CAIX↓,2,   CAIX↑,1,   cal2↑,2,   CaMKII ↓,1,   cardioP↑,5,   CardioT↓,1,   Casp↑,19,   Casp1↓,2,   Casp10↑,1,   Casp12?,1,   Casp12↑,4,   cl‑Casp12↑,1,   Casp2↑,1,   Casp3?,3,   Casp3↓,3,   Casp3↑,161,   cl‑Casp3↓,1,   cl‑Casp3↑,29,   proCasp3↓,2,   Casp6↑,1,   Casp7?,1,   Casp7↑,14,   cl‑Casp7↑,1,   Casp8↑,28,   cl‑Casp8↑,5,   Casp9?,1,   Casp9↑,89,   cl‑Casp9↑,13,   proCasp9↓,1,   proCasp9↑,1,   Catalase↓,8,   Catalase↑,3,   CCR7↓,1,   CD133↓,3,   CD24↓,1,   CD31↓,5,   CD34↓,1,   CD4+↓,1,   CD4+↑,2,   CD44↓,2,   CD8+↑,2,   CDC2↓,5,   cDC2↓,3,   CDC25↓,9,   Cdc42↓,1,   CDK1↓,12,   CDK2↓,21,   CDK2↑,2,   CDK4↓,26,   CDK4/6↓,2,   CDK6↓,9,   CEA↓,1,   CEBPA↑,1,   CellMemb↓,1,   cFLIP↓,4,   cFos↓,5,   cFos↑,1,   chemoP↑,15,   ChemoSen↓,1,   ChemoSen↑,42,   ChemoSideEff↓,6,   ChemoSideEff∅,1,   CHK1↓,2,   CHK1↑,1,   Chk2↓,1,   Chk2↑,1,   CHOP↑,22,   CIP2A↓,1,   cJun↓,4,   cJun↑,2,   p‑cJun↑,1,   CK2↓,4,   CLDN1↓,1,   cMET↓,2,   p‑cMET↑,1,   cMYB↓,1,   cMyc↓,23,   COL1↓,1,   COL3A1↓,1,   Copper↑,1,   COX2↓,40,   COX2↑,1,   CRP↓,3,   CSCs↓,9,   cSrc↓,2,   Cupro↑,1,   CXCL1↓,1,   CXCL12↓,2,   CXCR4↓,10,   Cyc↓,5,   cycA1↓,7,   cycA1↑,1,   CycB↓,14,   cycD1↓,67,   cycD1↑,1,   cycE↓,9,   cycE↑,1,   cycE1↓,2,   cycF↓,1,   CYP1A1↓,2,   CYP1A1↑,1,   CYP1B1↑,1,   Cyt‑c↑,86,   Cyt‑c↝,1,   DFF45↓,2,   DFF45↑,1,   Diablo↑,6,   Diff↓,1,   DLC1↑,3,   DNA-PK↑,1,   DNAdam↑,22,   DNArepair↓,1,   DNArepair↑,1,   DNMT1↓,7,   DNMT3A↓,3,   DNMTs↓,4,   Dose?,1,   Dose↓,1,   Dose↑,4,   Dose↝,9,   Dose∅,8,   DR4↑,7,   DR5↑,23,   E-cadherin↓,5,   E-cadherin↑,31,   E2Fs↓,1,   E6↓,2,   E7↓,2,   eff↓,38,   eff↑,93,   eff↝,2,   EGF↓,4,   EGFR↓,18,   EGFR↑,1,   p‑EGFR↓,1,   eIF2α↓,1,   eIF2α↑,6,   p‑eIF2α↑,5,   EMT↓,37,   EMT↑,1,   eNOS↓,1,   ENOX2↓,1,   EP4↑,1,   EpCAM↓,1,   ER Stress↓,1,   ER Stress↑,24,   ER-α36↓,2,   ERCC1↓,1,   ERK↓,31,   ERK↑,11,   p‑ERK↓,16,   p‑ERK↑,4,   ERα↓,2,   EZH2↓,3,   FADD↑,5,   FAK↓,10,   p‑FAK↓,2,   FAO↑,1,   Fas↑,17,   FasL↓,1,   FasL↑,7,   FASN↓,6,   FBI-1↓,1,   Fenton↑,2,   Ferroptosis↑,4,   FGF↓,2,   FGFR1↓,4,   FGFR2↓,1,   Fibronectin↓,4,   Foxm1↓,3,   FOXO↑,2,   FOXO1↑,1,   FOXO3↑,3,   p‑FOXO3↓,1,   FOXO4↓,1,   FOXP3↓,2,   frataxin↑,1,   FTH1↓,1,   GADD45A↑,1,   GAPDH↓,1,   GIT1↓,1,   Gli↓,2,   Gli1↓,16,   GLI2↓,7,   GLO-I↓,1,   GLS↓,1,   glucose↓,1,   GlucoseCon↓,4,   GLUT1↓,8,   GLUT1↑,1,   GLUT3↓,2,   GLUT3↑,1,   GLUT4↓,1,   GlutMet↓,2,   Glycolysis↓,10,   GPx↓,4,   GPx↑,2,   GPx1↓,1,   GPx4↓,4,   GPx4↑,1,   GR↝,1,   GRP78/BiP↓,1,   GRP78/BiP↑,11,   GRP94↑,1,   cl‑GSDME↑,1,   GSDME-N↑,1,   GSH↓,27,   GSH↑,2,   GSH/GSSG↓,1,   GSK‐3β↓,4,   GSK‐3β↑,4,   p‑GSK‐3β↓,2,   GSR↓,1,   GSR↑,1,   GSS↑,1,   GSTP1/GSTπ↓,1,   GSTs↓,2,   GSTs↑,1,   GutMicro↑,1,   H2O2↑,5,   H3↓,2,   H3↑,1,   p‑H3↓,1,   ac‑H3↑,1,   H4↓,1,   ac‑H4↑,1,   ac‑H4∅,1,   Half-Life↓,1,   Half-Life↝,2,   Half-Life∅,2,   HATs↓,2,   HATs↑,1,   HDAC↓,18,   HDAC1↓,8,   HDAC10↑,1,   HDAC2↓,5,   HDAC3↓,3,   HDAC4↓,1,   hepatoP↑,8,   HER2/EBBR2↓,7,   p‑HER2/EBBR2↓,1,   HEY1↓,1,   HGF/c-Met↓,3,   HH↓,14,   HIF-1↓,1,   Hif1a↓,35,   HK2↓,7,   HLA↑,1,   HO-1↓,4,   HO-1↑,9,   HSF1↓,1,   HSP27↓,3,   HSP27↑,2,   HSP70/HSPA5↓,5,   HSP70/HSPA5↑,2,   HSP90↓,2,   HSPs↓,1,   hTERT↓,5,   IAP1↓,7,   IAP2↓,3,   IAP2↑,1,   cl‑IAP2↑,1,   ICAM-1↓,4,   ICD↑,1,   IFN-γ↓,4,   IFN-γ↑,3,   IGF-1↓,5,   IGF-1R↓,1,   IGF-2↓,1,   IGFBP3↑,5,   IKKα↓,7,   IKKα↑,1,   IL1↓,5,   IL10↓,4,   IL10↑,1,   IL12↓,1,   IL1α↓,1,   IL1β↓,7,   IL1β↑,2,   IL2↑,4,   IL33↑,1,   IL4↓,1,   IL6↓,21,   IL6↑,1,   IL8↓,6,   Inflam↓,17,   iNOS↓,8,   iNOS↑,2,   IRE1↑,3,   Iron↑,1,   IronCh↑,1,   ITGA5↓,1,   ITGB1↓,2,   ITGB3↓,1,   ITGB4↓,1,   IκB↓,1,   IκB↑,1,   p‑IκB↓,1,   JAK↓,2,   JAK1↓,2,   JAK2↓,10,   p‑JAK2↓,1,   JNK↓,1,   JNK↑,20,   p‑JNK↓,2,   p‑JNK↑,5,   Jun↓,1,   K17↓,1,   KCNQ1OT1↓,1,   Ki-67↓,19,   lactateProd↓,8,   lactateProd↑,1,   LAMs↓,2,   LC3‑Ⅱ/LC3‑Ⅰ↓,1,   LC3‑Ⅱ/LC3‑Ⅰ↑,1,   LC3A↑,1,   LC3B↑,2,   LC3B-II↑,2,   LC3I↓,1,   LC3I↑,1,   LC3II↓,2,   LC3II↑,11,   LC3s↑,1,   LDH?,1,   LDH↓,9,   LDH↑,2,   i-LDH↓,1,   LDHA↓,4,   LEF1↓,3,   Let-7↑,1,   lipid-P↓,4,   lipid-P↑,11,   lipid-P↝,1,   LOX1↓,2,   M2 MC↓,1,   MAD↓,1,   MALAT1↓,1,   MAP2K1/MEK1↓,1,   MAPK↓,16,   MAPK↑,14,   MAPK↝,1,   p‑MAPK↑,3,   MARK4↓,2,   Maspin↑,1,   Mcl-1↓,26,   MCM2↓,1,   MCP1↓,2,   MCT1↓,1,   MCU↓,1,   MDA↓,2,   MDA↑,8,   MDM2↓,8,   p‑MDM2↓,1,   MDR1↓,3,   MDSCs↓,1,   MEK↓,5,   p‑MEK↓,1,   MET↓,3,   p‑MET↓,1,   MGMT↓,1,   miR-125b↓,1,   miR-139-5p↑,1,   miR-155↓,1,   miR-21↓,3,   miR-21↑,1,   miR-27a-3p↓,3,   miR-30a-5p↑,1,   miR-34a↑,5,   miR-409-3p↑,1,   miR-497↑,1,   miR-548ah-5p↑,1,   mitResp↓,1,   mitResp↑,1,   MLKL↑,1,   p‑MLKL↓,1,   MMP↓,97,   MMP1↓,3,   MMP13↓,5,   MMP2↓,40,   MMP3↓,3,   MMP7↓,8,   MMP9↓,46,   MMPs↓,18,   MPT↑,2,   MRGPRF↓,1,   MRP↓,1,   mtDam↑,10,   mTOR↓,36,   mTOR↑,2,   p‑mTOR↓,13,   mTORC1↓,4,   p‑mTORC1↓,1,   mTORC2↓,3,   MUC4↓,3,   Myc↓,3,   N-cadherin↓,22,   n-MYC↓,2,   NA↓,1,   NA↑,1,   NAD↝,1,   NADPH↓,2,   NADPH↑,1,   NADPH/NADP+↓,1,   NAF1↓,1,   NAIP↓,2,   Nanog↓,8,   NCOA4↑,1,   Necroptosis↑,1,   necrosis↑,1,   Nestin↓,3,   neuroP↑,6,   NF-kB↓,71,   NF-kB↑,6,   p‑NF-kB↓,1,   NFAT↑,1,   NHE1↓,1,   NK cell↑,2,   NKG2D↑,1,   NLRP3↓,2,   NO↓,3,   NO↑,4,   NOTCH↓,10,   NOTCH⇅,1,   NOTCH1↓,7,   NOTCH2↓,1,   NOTCH3↓,1,   NOXA↑,3,   NQO1↓,1,   NQO1↑,4,   NRF2↓,7,   NRF2↑,13,   NRF2⇅,1,   p‑NRF2↓,1,   NSE↓,1,   OCR↓,1,   OCT4↓,8,   OS↑,4,   other?,1,   other↓,3,   other↑,3,   OXPHOS↓,2,   P-gp↓,5,   p16↑,3,   p19↑,1,   P21?,1,   P21↓,4,   P21↑,45,   p27↑,17,   p38↓,5,   p38↑,18,   p‑p38↓,5,   p‑p38↑,10,   p‑p42↓,1,   p‑p44↓,1,   P450↓,1,   P53↓,4,   P53↑,84,   p‑P53↑,5,   ac‑P53↑,1,   p62↓,4,   p62↑,3,   p65↓,6,   p‑p65↓,4,   ac‑p65↑,1,   p70S6↓,1,   P70S6K↓,2,   p‑P70S6K↓,1,   p‑P90RSK↑,1,   PAK1↓,1,   PAO↑,1,   Paraptosis↑,2,   PARK2↑,1,   PARP↓,3,   PARP↑,13,   p‑PARP↑,2,   cl‑PARP↓,1,   cl‑PARP↑,46,   PARP1↓,1,   cl‑PARP1↑,2,   p‑pax↓,1,   PCK1↓,1,   PCLAF↓,1,   PCNA↓,19,   PD-1↓,3,   PD-L1↓,1,   PD-L1↑,1,   PDGF↓,2,   PDGFR-BB↓,1,   PDGFRA↓,2,   PDH↓,1,   PDH↝,1,   PDK1↓,6,   PDKs↓,1,   PERK↑,6,   p‑PERK↑,2,   PFK↓,2,   PFKP↓,1,   PGE1↓,1,   PGE2↓,7,   PI3K↓,39,   p‑PI3K↓,3,   p‑PI3K↑,1,   PI3K/Akt↓,8,   PI3K/Akt↑,1,   PI3K/Akt↝,1,   PI3k/Akt/mTOR↝,1,   PIAS-3↑,1,   PIK3CA↓,1,   PINK1↑,1,   PKCδ↓,2,   PKM2↓,10,   POLD1↓,1,   PPARγ↓,3,   PPARγ↑,3,   pRB↓,1,   p‑pRB↓,3,   Prx6↑,1,   PSA↓,3,   PTCH1↓,7,   PTCH2↓,1,   PTEN↓,1,   PTEN↑,20,   PTEN↝,1,   PTPN6↑,1,   PUMA↑,3,   PYCR1↓,1,   Pyro↑,3,   Pyruv↓,1,   Rac1↓,2,   RAD51↓,1,   RAD51↑,1,   radioP↑,4,   RadioS↑,20,   Raf↓,6,   e-Raf↓,1,   RAGE↓,1,   RANKL↓,1,   RAS↓,7,   RAS↑,1,   RB1↓,1,   RB1↑,2,   p‑RB1↓,2,   RenoP↑,6,   Rho↓,3,   RIP1↑,1,   RIP3↑,2,   p‑RIP3↑,1,   Risk↓,2,   ROCK1↓,2,   ROS?,3,   ROS↓,10,   ROS↑,173,   ROS⇅,5,   i-ROS↑,3,   mt-ROS↑,3,   RTK-RAS↓,1,   p‑S6↓,1,   p‑S6K↓,2,   SAM-e↝,1,   Securin↓,1,   selectivity↓,1,   selectivity↑,31,   Set9↑,1,   Sharpin↓,1,   Shh↓,9,   SHP1↓,1,   SIRT1↓,5,   SIRT1↑,3,   SIRT3↑,1,   Slug↓,10,   SMAD2↓,1,   p‑SMAD2↓,2,   SMAD3↓,1,   p‑SMAD3↓,2,   SMAD4↑,1,   Smo↓,8,   Snail?,1,   Snail↓,19,   SOCS-3↑,1,   SOCS1↑,1,   SOD↓,14,   SOD↑,6,   SOD1↓,1,   SOD1↑,2,   SOD2↓,2,   SOD2↑,1,   sonoS↑,1,   SOX2↓,5,   SOX9?,1,   Sp1/3/4↓,6,   Src↓,2,   p‑Src↓,1,   c-Src↓,1,   SREBP1↓,1,   SSAT↑,1,   STAT↓,1,   p‑STAT1↓,1,   STAT3↓,38,   STAT3↑,1,   p‑STAT3↓,12,   STAT5↓,1,   STAT6↓,1,   p‑STAT6↓,1,   Sufu↑,1,   survivin↓,49,   survivin↑,1,   Symptoms↓,1,   T-Cell↑,2,   TAC?,1,   TCA?,1,   TCF↓,2,   TCF↑,1,   TCF-4↓,2,   Telomerase↓,10,   TET1↑,2,   TET2↓,1,   TET2↑,1,   TET3↑,1,   Tf↑,1,   TGF-β↓,11,   TGF-β↑,2,   Th1 response↑,2,   TIMP1↓,1,   TIMP1↑,5,   TIMP2↓,1,   TIMP2↑,2,   TLR4↓,3,   TNF-α↓,19,   TNF-α↑,5,   TNF-β↓,1,   TNFR 1↑,1,   TOP1↓,3,   TOP2↓,3,   toxicity?,1,   toxicity↓,1,   toxicity↝,1,   toxicity∅,2,   TP53↑,1,   TRAIL↑,7,   TRAILR↑,2,   Treg lymp↓,1,   TRPV1↑,1,   Trx↓,2,   Trx1↑,1,   TrxR↓,2,   TrxR1↓,3,   TSC2↑,3,   p‑TSC2↑,1,   TSP-1↑,2,   TumAuto↑,17,   TumCA↓,1,   TumCCA↓,4,   TumCCA↑,104,   TumCD↓,1,   TumCD↑,8,   TumCG?,1,   TumCG↓,46,   TumCG↑,2,   TumCI?,1,   TumCI↓,30,   TumCI↑,1,   TumCMig↓,35,   TumCMig↑,1,   TumCP↓,56,   TumCP↑,1,   tumCV?,1,   tumCV↓,36,   TumMeta↓,20,   TumMeta↑,1,   TumVol↓,15,   TumW↓,6,   TUNEL↑,1,   Twist↓,16,   Tyro3↓,2,   tyrosinase↓,1,   UHRF1↓,1,   uPA↓,16,   uPAR↓,1,   UPR↑,2,   VCAM-1↓,1,   VEGF↓,57,   VEGFR2↓,10,   Vim?,1,   Vim↓,27,   Vim↑,1,   VitC↓,1,   VitE↓,1,   Warburg↓,3,   Weight∅,2,   Wnt?,1,   Wnt↓,12,   Wnt/(β-catenin)↓,3,   xCT↓,1,   XIAP↓,29,   YAP/TEAD↓,1,   ZBTB10↑,1,   Zeb1↓,12,   ZEB2↓,2,   ZO-1↑,2,   α-SMA↓,1,   α-tubulin↓,1,   β-catenin/ZEB1↓,22,   β-catenin/ZEB1↑,1,   γH2AX↑,7,  
Total Targets: 798

Results for Effect on Normal Cells:
AChE↓,1,   Akt↓,2,   ALAT↓,4,   ALP↓,1,   AMPK↓,1,   AMPK↑,2,   p‑AMPK↑,1,   angioG↑,1,   AntiCan↑,2,   antiOx↑,18,   AP-1↓,1,   Apoptosis↓,2,   AST↓,4,   ATF4↓,1,   ATP↓,1,   Aβ↓,2,   Bacteria↓,1,   BAX↓,1,   BAX↑,2,   BBB↑,3,   Bcl-2↓,3,   BDNF↑,1,   Beclin-1↓,1,   BioAv↓,15,   BioAv↑,9,   BioAv↝,4,   BP↓,1,   Ca+2↓,1,   cardioP↑,9,   CardioT↓,1,   Casp1↓,1,   Casp3?,1,   Casp3↓,3,   Casp3↑,1,   Catalase↑,11,   chemoP↑,2,   CHOP↓,1,   cognitive↑,4,   COX2↓,5,   creat↓,1,   CRP↓,1,   Dose↑,1,   Dose↝,3,   Dose∅,1,   E2Fs↑,1,   eff↓,2,   eff↑,3,   EGFR↓,1,   ER Stress↓,2,   ERK↓,1,   Fas↓,1,   Ferroptosis↓,1,   GPx↑,8,   GSH↓,1,   GSH↑,11,   GSR↑,1,   GSTs↑,5,   GutMicro↑,3,   H2O2↓,1,   H2S↑,1,   Half-Life↓,2,   Half-Life↝,6,   HDAC↓,1,   hepatoP↓,1,   hepatoP↑,7,   HMGB1↓,1,   HO-1↑,4,   IFN-γ↓,1,   IGF-1R↓,1,   IKKα↑,1,   IL10↓,1,   IL10↑,1,   IL17↓,1,   IL18↓,2,   IL1β↓,7,   IL2↓,1,   IL22↓,1,   IL6↓,9,   IL8↓,2,   Inflam↓,16,   iNOS↓,4,   Iron↓,1,   IronCh↑,1,   JAK↓,1,   JNK↑,1,   Keap1↓,3,   LC3A↑,1,   LC3II↑,1,   LDH↓,3,   LDHA↑,1,   lipid-P↓,6,   MAPK↓,4,   MDA↓,5,   MDA↑,1,   memory↑,3,   MMP↓,1,   MMP↑,4,   MMP2↓,1,   MPO↓,1,   NAD↑,1,   NADPH↓,1,   neuroP↑,16,   NF-kB↓,6,   NF-kB↑,1,   NH3↓,1,   NLRP3↓,1,   NO↓,5,   NO↑,1,   NQO1↑,2,   NRF2↑,12,   other↓,1,   other↑,1,   P-gp↓,1,   p16↓,1,   P21↓,1,   P53↓,2,   p62↓,1,   p62↑,1,   PARK2↑,1,   PDGFR-BB↓,1,   PGC-1α↑,1,   PGE2↓,4,   PI3K↓,2,   PINK1↑,1,   PKCδ↓,1,   PPARα↑,1,   p‑PPARγ↓,1,   Prx↑,1,   p‑Rac1↓,1,   RenoP↑,2,   RNS↓,1,   ROS↓,27,   ROS↑,1,   ROS∅,3,   selectivity↑,1,   SIRT1↑,2,   SOD↑,12,   SOD1↑,1,   SOD2↑,2,   SREBP1↓,1,   STAT3↓,1,   TBARS↓,1,   TLR4↓,1,   TNF-α↓,8,   toxicity↓,7,   toxicity↑,2,   toxicity∅,8,   TumCP↓,1,   TXNIP↓,1,   VEGF↓,1,   ZO-1↑,1,  
Total Targets: 151

Scientific Paper Hit Count for: Bcl-2, B-cell CLL/lymphoma 2
30 Curcumin
26 Silver-NanoParticles
24 Thymoquinone
20 Quercetin
14 Apigenin (mainly Parsley)
12 Baicalein
12 EGCG (Epigallocatechin Gallate)
11 Allicin (mainly Garlic)
10 Sulforaphane (mainly Broccoli)
10 Berberine
9 Betulinic acid
9 Resveratrol
9 Fisetin
9 Garcinol
9 Silymarin (Milk Thistle) silibinin
8 Luteolin
8 Shikonin
7 Graviola
7 Honokiol
7 Piperlongumine
6 Cisplatin
6 Ashwagandha
6 Boron
6 Magnolol
5 Magnetic Fields
4 5-fluorouracil
4 Alpha-Lipoic-Acid
4 Paclitaxel
4 Boswellia (frankincense)
4 Emodin
4 Propolis -bee glue
4 Rosmarinic acid
3 Metformin
3 Artemisinin
3 Radiotherapy/Radiation
3 Capsaicin
3 chitosan
3 Ellagic acid
3 Ferulic acid
3 Juglone
3 Laetrile B17 Amygdalin
3 Photodynamic Therapy
3 Melatonin
3 Phenylbutyrate
3 isoflavones
3 Selenium
3 Ursolic acid
3 VitK3,menadione
2 Andrographis
2 Gemcitabine (Gemzar)
2 Astragalus
2 Chemotherapy
2 Genistein
2 Chrysin
2 Citric Acid
2 Docetaxel
2 Gambogic Acid
2 tamoxifen
2 Vitamin K2
1 Acoschimperoside P, 2’-acetate
1 alpha Linolenic acid
1 Aspirin -acetylsalicylic acid
1 immunotherapy
1 Aloe vera
1 beta-glucans
1 Butyrate
1 epirubicin
1 D-limonene
1 selenomethionine
1 Caffeic acid
1 Carvacrol
1 Chlorogenic acid
1 Prebiotic
1 Cinnamon
1 Copper and Cu NanoParticlex
1 Oxaliplatin
1 Dichloroacetophenone(2,2-)
1 Dichloroacetate
1 Date Fruit Extract
1 Evodiamine
1 Electrical Pulses
1 Gallic acid
1 carboplatin
1 γ-linolenic acid (Borage Oil)
1 Gold NanoParticles
1 HydroxyCitric Acid
1 Bicarbonate
1 Baicalin
1 Licorice
1 Lycopene
1 Methylene blue
1 Magnetic Field Rotating
1 Methylglyoxal
1 Mushroom Shiitake, AHCC
1 Naringin
1 Nimbolide
1 Orlistat
1 Parthenolide
1 sericin
1 Physalin F & B
1 Propyl gallate
1 Pterostilbene
1 doxorubicin
1 salinomycin
1 Sanguinarine
1 Scoulerine
1 polyethylene glycol
1 Salvia miltiorrhiza
1 Camptothecin
1 SonoDynamic Therapy UltraSound
1 Tomatine
1 Vitamin D3
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:1  prod#:%  Target#:27  State#:0  Dir#:1
wNotes=0 sortOrder:rid,rpid

 

Home Page