| Source: HalifaxProj (inactivate) |
| Type: |
| β-catenin and ZEB1 are two important proteins that play significant roles in cancer biology, particularly in the processes of cell adhesion, epithelial-mesenchymal transition (EMT), and tumor progression. β-catenin is a key component of the Wnt signaling pathway, which is crucial for cell proliferation, differentiation, and survival. It also plays a role in cell-cell adhesion by linking cadherins to the actin cytoskeleton. Role in Cancer: ZEB1 is often upregulated in cancer and is associated with increased invasiveness and metastasis. It can repress epithelial markers (like E-cadherin) and promote mesenchymal markers (like N-cadherin and vimentin), facilitating the transition to a more aggressive cancer phenotype. (MMP)-2 and MMP-9, which are the down-stream targets of β-catenin and play a crucial role in cancer cell metastasis. |
| 2646- | AL, | Anti-Cancer Potential of Homemade Fresh Garlic Extract Is Related to Increased Endoplasmic Reticulum Stress |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Melanoma, | RPMI-8226 |
| 2648- | AL, | Allicin Inhibits Osteosarcoma Growth by Promoting Oxidative Stress and Autophagy via the Inactivation of the lncRNA MALAT1-miR-376a-Wnt/β-Catenin Signaling Pathway |
| - | in-vitro, | OS, | SaOS2 | - | in-vivo, | OS, | NA |
| 2666- | AL, | Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals |
| - | Review, | Var, | NA |
| 1124- | ALA, | Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells |
| - | in-vitro, | Thyroid, | BCPAP | - | in-vitro, | Thyroid, | HTH-83 | - | in-vitro, | Thyroid, | CAL-62 | - | in-vitro, | Thyroid, | FTC-133 | - | in-vivo, | NA, | NA |
| 1008- | Api, | Apigenin-induced lysosomal degradation of β-catenin in Wnt/β-catenin signaling |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW480 |
| 418- | Api, | Apigenin inhibits the proliferation and invasion of osteosarcoma cells by suppressing the Wnt/β-catenin signaling pathway |
| - | vitro+vivo, | OS, | U2OS | - | vitro+vivo, | OS, | MG63 |
| 2584- | Api, | Chemo, | The versatility of apigenin: Especially as a chemopreventive agent for cancer |
| - | Review, | Var, | NA |
| 2640- | Api, | Apigenin: A Promising Molecule for Cancer Prevention |
| - | Review, | Var, | NA |
| 2639- | Api, | Plant flavone apigenin: An emerging anticancer agent |
| - | Review, | Var, | NA |
| 2314- | Api, | Apigenin Restrains Colon Cancer Cell Proliferation via Targeted Blocking of Pyruvate Kinase M2-Dependent Glycolysis |
| - | in-vitro, | Colon, | HCT116 | - | in-vitro, | Colon, | HT29 | - | in-vitro, | Colon, | DLD1 |
| 3382- | ART/DHA, | Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge? |
| - | Review, | Var, | NA |
| 1099- | ART/DHA, | Dihydroartemisinin inhibits IL-6-induced epithelial–mesenchymal transition in laryngeal squamous cell carcinoma via the miR-130b-3p/STAT3/β-catenin signaling pathway |
| - | in-vitro, | NA, | NA |
| 1333- | AS, | Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway |
| - | in-vitro, | BC, | NA |
| 1097- | AS, | Astragalus Inhibits Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelial Cells by Down-Regulating β-Catenin |
| - | in-vitro, | Nor, | HMrSV5 | - | in-vivo, | NA, | NA |
| 3160- | Ash, | Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal |
| - | Review, | Var, | NA |
| 3162- | Ash, | Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A |
| - | Review, | Var, | NA |
| 3166- | Ash, | Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives |
| - | Review, | Var, | NA |
| 2617- | Ba, | Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review |
| - | Review, | Var, | NA |
| 2292- | Ba, | BA, | Baicalin and baicalein in modulating tumor microenvironment for cancer treatment: A comprehensive review with future perspectives |
| - | Review, | Var, | NA |
| 2021- | BBR, | Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways |
| - | Review, | NA, | NA |
| 1010- | BBR, | Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells |
| - | vitro+vivo, | CRC, | NA |
| 2685- | BBR, | Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells |
| - | in-vitro, | neuroblastoma, | NA |
| 2738- | BetA, | Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vivo, | NA, | NA |
| 2767- | Bos, | The potential role of boswellic acids in cancer prevention and treatment |
| - | Review, | Var, | NA |
| 2775- | Bos, | The journey of boswellic acids from synthesis to pharmacological activities |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | PSA, | NA |
| 1651- | CA, | PBG, | Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer |
| - | Review, | Var, | NA |
| 1652- | CA, | Caffeic Acid and Diseases—Mechanisms of Action |
| - | Review, | Var, | NA |
| 1517- | CAP, | Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX) and Sirtuin1 (SIRT1) |
| - | in-vitro, | Bladder, | TSGH8301 | - | in-vitro, | CRC, | T24 |
| 1106- | CGA, | Chlorogenic Acid Inhibits Epithelial-Mesenchymal Transition and Invasion of Breast Cancer by Down-Regulating LRP6 |
| - | vitro+vivo, | BC, | MCF-7 |
| 152- | CUR, | Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer |
| - | in-vivo, | Pca, | NA |
| 12- | CUR, | Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells |
| - | in-vitro, | MB, | DAOY |
| 165- | CUR, | Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells |
| - | in-vitro, | Pca, | LNCaP |
| 126- | CUR, | Modulation of miR-34a in curcumin-induced antiproliferation of prostate cancer cells |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
| 424- | CUR, | Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 420- | CUR, | Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 449- | CUR, | Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a |
| - | vitro+vivo, | CRC, | SW480 |
| 442- | CUR, | 5-FU, | Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress |
| - | in-vitro, | CRC, | HCT116 |
| 443- | CUR, | Reduced Caudal Type Homeobox 2 (CDX2) Promoter Methylation Is Associated with Curcumin’s Suppressive Effects on Epithelial-Mesenchymal Transition in Colorectal Cancer Cells |
| - | in-vitro, | CRC, | SW480 |
| 455- | CUR, | Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin |
| - | in-vitro, | GC, | SGC-7901 |
| 2974- | CUR, | Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | HCT15 | - | in-vitro, | CRC, | COLO205 | - | in-vitro, | CRC, | SW-620 | - | in-vivo, | NA, | NA |
| 3861- | CUR, | Curcumin as a novel therapeutic candidate for cancer: can this natural compound revolutionize cancer treatment? |
| - | Review, | Var, | NA |
| 1183- | DHA, | Docosahexaenoic acid inhibited the Wnt/β-catenin pathway and suppressed breast cancer cells in vitro and in vivo |
| - | in-vitro, | BC, | 4T1 | - | in-vitro, | BC, | MCF-7 | - | in-vivo, | BC, | NA |
| 1621- | EA, | The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art |
| - | Review, | Var, | NA |
| 1012- | EGCG, | Inhibition of beta-catenin/Tcf activity by white tea, green tea, and epigallocatechin-3-gallate (EGCG): minor contribution of H(2)O(2) at physiologically relevant EGCG concentrations |
| - | in-vitro, | Nor, | HEK293 |
| 692- | EGCG, | EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement |
| - | Review, | NA, | NA |
| - | in-vitro, | PC, | NA |
| 3208- | EGCG, | Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2α/ATF4 and IRE1α |
| - | in-vitro, | Colon, | HT29 | - | in-vitro, | Nor, | 3T3 |
| 3243- | EGCG, | (−)-Epigallocatechin-3-Gallate Inhibits Colorectal Cancer Stem Cells by Suppressing Wnt/β-Catenin Pathway |
| 2992- | EGCG, | Effects of Epigallocatechin-3-Gallate on Matrix Metalloproteinases in Terms of Its Anticancer Activity |
| - | Review, | Var, | NA |
| 1654- | FA, | Molecular mechanism of ferulic acid and its derivatives in tumor progression |
| - | Review, | Var, | NA |
| 1113- | FIS, | Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 2852- | FIS, | A comprehensive view on the fisetin impact on colorectal cancer in animal models: Focusing on cellular and molecular mechanisms |
| - | Review, | CRC, | NA |
| 2857- | FIS, | A review on the chemotherapeutic potential of fisetin: In vitro evidences |
| - | Review, | Var, | NA |
| 2830- | FIS, | Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent |
| - | Review, | Var, | NA |
| 2832- | FIS, | Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies |
| - | Review, | Var, | NA |
| 2839- | FIS, | Dietary flavonoid fisetin for cancer prevention and treatment |
| - | Review, | Var, | NA |
| 2313- | Flav, | Flavonoids against the Warburg phenotype—concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism |
| - | Review, | Var, | NA |
| 2506- | H2, | Molecular hydrogen suppresses activated Wnt/β-catenin signaling |
| - | in-vivo, | Arthritis, | NA |
| 1087- | HNK, | Honokiol Inhibits Non-Small Cell Lung Cancer Cell Migration by Targeting PGE2-Mediated Activation of β-Catenin Signaling |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | H460 | - | in-vitro, | Lung, | H226 |
| 2883- | HNK, | Honokiol targets mitochondria to halt cancer progression and metastasis |
| - | Review, | Var, | NA |
| 2877- | HNK, | Targeting histone deacetylase-3 blocked epithelial-mesenchymal plasticity and metastatic dissemination in gastric cancer |
| - | in-vitro, | GC, | AGS |
| 1278- | I3C, | Indole-3-carbinol inhibits prostate cancer cell migration via degradation of beta-catenin |
| - | in-vivo, | Pca, | DU145 |
| 1088- | IP6, | Preventive Inositol Hexaphosphate Extracted from Rice Bran Inhibits Colorectal Cancer through Involvement of Wnt/β-Catenin and COX-2 Pathways |
| - | in-vivo, | CRC, | NA |
| 1167- | IVM, | The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer |
| - | vitro+vivo, | NA, | NA |
| 2351- | lamb, | Anti-Warburg effect via generation of ROS and inhibition of PKM2/β-catenin mediates apoptosis of lambertianic acid in prostate cancer cells |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 1171- | LT, | The inhibition of β-catenin activity by luteolin isolated from Paulownia flowers leads to growth arrest and apoptosis in cholangiocarcinoma |
| - | in-vitro, | CCA, | NA |
| 2919- | LT, | Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence |
| - | Review, | Var, | NA |
| 3277- | Lyco, | Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent |
| - | Review, | Var, | NA |
| 1013- | Lyco, | Lycopene induces apoptosis by inhibiting nuclear translocation of β-catenin in gastric cancer cells |
| - | in-vitro, | GC, | AGS |
| 3477- | MF, | Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis |
| - | Review, | NA, | NA |
| 3478- | MF, | One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study |
| - | Trial, | BC, | NA | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | C2C12 |
| 1182- | MushCha, | Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | SW-620 | - | in-vitro, | CRC, | DLD1 |
| 1797- | NarG, | Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway |
| - | in-vitro, | BC, | MDA-MB-231 |
| 1015- | NarG, | Naringin induces endoplasmic reticulum stress-mediated apoptosis, inhibits β-catenin pathway and arrests cell cycle in cervical cancer cells |
| - | in-vitro, | Cerv, | SiHa | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Cerv, | C33A |
| 1227- | OLST, | Anti-Obesity Drug Orlistat Alleviates Western-Diet-Driven Colitis-Associated Colon Cancer via Inhibition of STAT3 and NF-κB-Mediated Signaling |
| - | in-vivo, | CRC, | NA |
| 1673- | PBG, | An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms |
| - | Review, | Var, | NA |
| 1258- | PI, | Piperlongumine Alleviates Mouse Colitis and Colitis-Associated Colorectal Cancer |
| - | in-vivo, | CRC, | NA |
| 1016- | PI, | Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | DLD1 |
| 1131- | PI, | Piperlongumine‑loaded nanoparticles inhibit the growth, migration and invasion and epithelial‑to‑mesenchymal transition of triple‑negative breast cancer cells |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 |
| 2952- | PL, | Piperlongumine suppresses bladder cancer invasion via inhibiting epithelial mesenchymal transition and F-actin reorganization |
| - | in-vitro, | Bladder, | T24 | - | in-vivo, | Bladder, | NA |
| 2946- | PL, | Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent |
| - | Review, | Var, | NA |
| 1236- | PTS, | Pterostilbene inhibits the metastasis of TNBC via suppression of β-catenin-mediated epithelial to mesenchymal transition and stemness |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MDA-MB-468 |
| 3368- | QC, | The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update |
| - | Review, | Var, | NA |
| - | in-vitro, | Pca, | CD44+ | - | in-vitro, | NA, | CD133+ | - | in-vitro, | NA, | PC3 | - | in-vitro, | NA, | LNCaP |
| - | in-vitro, | Pca, | pCSCs |
| 46- | QC, | Quercetin, but Not Its Glycosidated Conjugate Rutin, Inhibits Azoxymethane-Induced Colorectal Carcinogenesis in F344 Rats |
| - | in-vitro, | Colon, | F344 |
| 85- | QC, | Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3) |
| - | in-vitro, | Pca, | PC3 |
| 87- | QC, | Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 914- | QC, | Quercetin and Cancer Chemoprevention |
| - | Review, | NA, | NA |
| 923- | QC, | Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health |
| - | Review, | Var, | NA |
| 2441- | RES, | Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions |
| - | Review, | Var, | NA |
| 2981- | RES, | Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways |
| - | in-vitro, | Colon, | HT-29 | - | in-vitro, | Colon, | SW48 |
| 3098- | RES, | Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers |
| - | Review, | Var, | NA |
| 3085- | RES, | Resveratrol interrupts Wnt/β-catenin signalling in cervical cancer by activating ten-eleven translocation 5-methylcytosine dioxygenase 1 |
| - | in-vitro, | Cerv, | NA |
| 2687- | RES, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | NA, | NA | - | Review, | AD, | NA |
| 1017- | Sel, | Selenite induces apoptosis in colorectal cancer cells via AKT-mediated inhibition of β-catenin survival axis |
| - | vitro+vivo, | CRC, | NA |
| 1732- | SFN, | Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | SUM159 | - | in-vivo, | NA, | NA |
| 1731- | SFN, | Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts |
| - | Review, | Var, | NA |
| 1726- | SFN, | Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential |
| - | Review, | Var, | NA |
| 1508- | SFN, | Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment |
| - | Review, | Var, | NA |
| 1014- | SFN, | Sulforaphane Modulates Cell Migration and Expression of β-Catenin and Epithelial Mesenchymal Transition Markers in Breast Cancer Cells |
| - | in-vitro, | BC, | MDA-MB-231 |
| 3646- | SIL, | "Silymarin", a promising pharmacological agent for treatment of diseases |
| - | Review, | NA, | NA |
| 3288- | SIL, | Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations |
| - | Review, | Var, | NA |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | 4T1 | - | in-vitro, | Nor, | MCF12A | - | in-vivo, | NA, | NA |
| 1194- | SM, | Salvia miltiorrhiza protects against diabetic nephropathy through metabolome regulation and wnt/β-catenin and TGF-β signaling inhibition |
| - | in-vivo, | Diabetic, | NA |
| 1019- | TQ, | Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation |
| - | vitro+vivo, | CRC, | LoVo |
| 3427- | TQ, | Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets |
| 3397- | TQ, | Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer |
| - | Review, | CRC, | NA |
| 3411- | TQ, | Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone |
| - | Review, | Var, | NA |
| 1020- | UA, | Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway |
| - | in-vitro, | Melanoma, | RPMI-8226 |
| 1820- | VitK3, | Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells |
| - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | SW-620 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:1 prod#:% Target#:342 State#:0 Dir#:1
wNotes=0 sortOrder:rid,rpid