Database Query Results : , , Akt

Akt, PKB-Protein kinase B: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
Akt1 is involved in cellular survival pathways, by inhibiting apoptotic processes; Akt2 is an important signaling molecule in the insulin signaling pathway. It is required to induce glucose transport.

Inhibitors:
-Curcumin: downregulate AKT phosphorylation and signaling.
-Resveratrol
-Quercetin: inhibit the PI3K/AKT pathway.
-Epigallocatechin Gallate (EGCG)
-Luteolin and Apigenin: inhibit AKT phosphorylation


Scientific Papers found: Click to Expand⟱
2660- AL,    Allicin: A review of its important pharmacological activities
- Review, AD, NA - Review, Var, NA - Review, Park, NA - Review, Stroke, NA
*Inflam↓, AntiCan↑, *antiOx↑, *cardioP↑, *hepatoP↑, *BBB↑, *Half-Life↝, *H2S↑, *BP↓, *neuroP↑, *cognitive↑, *neuroP↑, *ROS↓, *GutMicro↑, *LDH↓, *ROS↓, *lipid-P↓, *antiOx↑, *other↑, *PI3K↓, *Akt↓, *NF-kB↓, *NO↓, *iNOS↓, *PGE2↓, *COX2↓, *IL6↓, *TNF-α↓, *MPO↓, *eff↑, *NRF2↑, *Keap1↓, *TBARS↓, *creat↓, *LDH↓, *AST↓, *ALAT↓, *MDA↓, *SOD↑, *GSH↑, *GSTs↑, *memory↑, chemoP↑, IL8↓, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, Casp12↑, p38↑, Fas↑, P53↑, P21↑, CHK1↓, CycB↓, GSH↓, ROS↑, TumCCA↑, Hif1a↓, Bcl-2↓, VEGF↓, TumCMig↓, STAT3↓, VEGFR2↓, p‑FAK↓,
262- ALA,    Lipoic acid decreases breast cancer cell proliferation by inhibiting IGF-1R via furin downregulation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TumCP↓, Akt↓, ERK↓, IGF-1R↓, Furin↓, Ki-67↓, AMPK↑, mTOR↓,
261- ALA,    The natural antioxidant alpha-lipoic acid induces p27(Kip1)-dependent cell cycle arrest and apoptosis in MCF-7 human breast cancer cells
- in-vitro, BC, MCF-7
ROS↓, Akt↓, p27↑, Bax:Bcl2↑,
259- ALA,    Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells
- in-vitro, Liver, HepG2 - in-vitro, Liver, FaO
Cyc↓, P21↑, ROS↑, p‑P53↑, BAX↑, Cyt‑c↑, Casp↑, survivin↓, JNK↑, Akt↓,
258- ALA,    Effects of α-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells
- in-vitro, BC, MDA-MB-231
TumCG↓, p‑Akt↓, Akt↓, HER2/EBBR2↓, Bcl-2↓, BAX↑, Casp3↑,
295- ALA,    α-Lipoic acid suppresses migration and invasion via downregulation of cell surface β1-integrin expression in bladder cancer cells
- in-vitro, Bladder, T24
ITGB1↓, TumCMig↓, ERK↓, Akt↓,
3436- ALA,    Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights Author links open overlay panel
- in-vitro, BC, MCF-7
ChemoSen↑, PI3K↓, Akt↓, ATP↓, GlucoseCon↓, ROS↑, PKM2↓, Glycolysis↓, CSCs↓, IGF-1R↓, Furin↓, RadioS↑,
3443- ALA,    Molecular and Therapeutic Insights of Alpha-Lipoic Acid as a Potential Molecule for Disease Prevention
- Review, Var, NA - Review, AD, NA
*antiOx↑, *ROS↓, *IronCh↑, *cognitive↑, *cardioP↓, AntiCan↑, *neuroP↑, *Inflam↓, *BioAv↓, *AntiAge↑, *Half-Life↓, *BioAv↝, other↝, EGFR↓, Akt↓, ROS↓, TumCCA↑, p27↑, PDH↑, Glycolysis↓, ROS↑, *eff↑, *memory↑, *motorD↑, *GutMicro↑,
1158- And,  GEM,    Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer
TumCP↓, TumCCA↑, Apoptosis↑, STAT3↓, Akt↓, P21↑, BAX↑, cycD1↓, cycE↓, survivin↓, XIAP↓, Bcl-2↓, eff↑,
1150- Api,    Apigenin inhibits the TNFα-induced expression of eNOS and MMP-9 via modulating Akt signalling through oestrogen receptor engagement
- in-vitro, Lung, EAhy926
eNOS↓, MMP9↓, Akt↓, p38↓, JNK↓,
1008- Api,    Apigenin-induced lysosomal degradation of β-catenin in Wnt/β-catenin signaling
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW480
Wnt/(β-catenin)↓, β-catenin/ZEB1↓, TumAuto↑, Akt↓, mTOR↓, tumCV↓, TumCCA↑, TumAuto↑, p‑Akt↓, p‑p70S6↓, p‑4E-BP1↓,
583- Api,  Cisplatin,    Apigenin suppresses GLUT-1 and p-AKT expression to enhance the chemosensitivity to cisplatin of laryngeal carcinoma Hep-2 cells: an in vitro study
- in-vitro, Laryn, HEp2
PI3K/Akt↓, GLUT1↓, Akt↓,
240- Api,    The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-κB signaling
- in-vitro, Pca, PC3 - in-vitro, Pca, CD44+
P21↑, p27↑, Casp3↑, Casp8↑, Slug↓, Snail↓, NF-kB↓, PI3K↓, Akt↓,
238- Api,    Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3- and Src-dependent mechanism
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, C4-2B
VEGF↓, TGF-β↓, Src↓, FAK↓, Akt↓, SMAD2↓, SMAD3↓,
270- Api,    Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo via inactivation of Akt and activation of JNK
- in-vivo, AML, U937
Akt↓, JNK↑, Mcl-1↓, cl‑Bcl-2↓, Casp3↑, Casp7↑, Casp9↑, cl‑PARP↑, mTOR↓, GSK‐3β↓,
308- Api,    Apigenin Inhibits Cancer Stem Cell-Like Phenotypes in Human Glioblastoma Cells via Suppression of c-Met Signaling
- in-vitro, GBM, U87MG - in-vitro, GBM, U373MG
cMET↓, Akt↓, Nanog↓, SOX2↓,
2584- Api,  Chemo,    The versatility of apigenin: Especially as a chemopreventive agent for cancer
- Review, Var, NA
ChemoSen↑, RadioS↑, eff↝, DR5↑, selectivity↑, angioG↓, selectivity↑, chemoP↑, MAPK↓, PI3K↓, Akt↓, mTOR↓, Wnt↓, β-catenin/ZEB1↓, GLUT1↓, radioP↑, BioAv↓,
2593- Api,    Apigenin promotes apoptosis of 4T1 cells through PI3K/AKT/Nrf2 pathway and improves tumor immune microenvironment in vivo
- in-vivo, BC, 4T1
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, MMP↑, ROS↑, p‑PI3K↓, PI3K↓, Akt↓, NRF2↓, AntiTum↑, OS↑,
2640- Api,    Apigenin: A Promising Molecule for Cancer Prevention
- Review, Var, NA
chemoP↑, ITGB4↓, TumCI↓, TumMeta↓, Akt↓, ERK↓, p‑JNK↓, *Inflam↓, *PKCδ↓, *MAPK↓, EGFR↓, CK2↓, TumCCA↑, CDK1↓, P53↓, P21↑, Bax:Bcl2↑, Cyt‑c↑, APAF1↑, Casp↑, cl‑PARP↑, VEGF↓, Hif1a↓, IGF-1↓, IGFBP3↑, E-cadherin↑, β-catenin/ZEB1↓, HSPs↓, Telomerase↓, FASN↓, MMPs↓, HER2/EBBR2↓, CK2↓, eff↑, AntiAg↑, eff↑, FAK↓, ROS↑, Bcl-2↓, Cyt‑c↑, cl‑Casp3↑, cl‑Casp7↑, cl‑Casp8↑, cl‑Casp9↑, cl‑IAP2↑, AR↓, PSA↓, p‑pRB↓, p‑GSK‐3β↓, CDK4↓, ChemoSen↑, Ca+2↑, cal2↑,
2639- Api,    Plant flavone apigenin: An emerging anticancer agent
- Review, Var, NA
*antiOx↑, *Inflam↓, AntiCan↑, ChemoSen↑, BioEnh↑, chemoP↑, IL6↓, STAT3↓, NF-kB↓, IL8↓, eff↝, Akt↓, PI3K↓, HER2/EBBR2↓, cycD1↓, CycD3↓, p27↑, FOXO3↑, STAT3↓, MMP2↓, MMP9↓, VEGF↓, Twist↓, MMP↓, ROS↑, NADPH↑, NRF2↓, SOD↓, COX2↓, p38↑, Telomerase↓, HDAC↓, HDAC1↓, HDAC3↓, Hif1a↓, angioG↓, uPA↓, Ca+2↑, Bax:Bcl2↑, Cyt‑c↑, Casp9↑, Casp12↑, Casp3↑, cl‑PARP↑, E-cadherin↑, β-catenin/ZEB1↓, cMyc↓, CDK4↓, CDK2↓, CDK6↓, IGF-1↓, CK2↓, CSCs↓, FAK↓, Gli↓, GLUT1↓,
1537- Api,    Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer
- Review, PC, NA
TumCP↓, TumCCA↑, Apoptosis↑, MMPs↓, Akt↓, *BioAv↑, *BioAv↓, Half-Life∅, Hif1a↓, GLUT1↓, VEGF↓, ChemoSen↑, ROS↑, Bcl-2↓, Bcl-xL↓, BAX↑, BIM↑,
1545- Api,    The Potential Role of Apigenin in Cancer Prevention and Treatment
- Review, NA, NA
TNF-α↓, IL6↓, IL1α↓, P53↑, Bcl-xL↓, Bcl-2↓, BAX↑, Hif1a↓, VEGF↓, TumCCA↑, DNAdam↑, Apoptosis↑, CycB↓, cycA1↓, CDK1↓, PI3K↓, Akt↓, mTOR↓, IKKα↓, ERK↓, p‑Akt↓, p‑P70S6K↓, p‑S6↓, p‑ERK↓, p‑P90RSK↑, STAT3↓, MMP2↓, MMP9↓, TumCP↓, TumCMig↓, TumCI↓, Wnt/(β-catenin)↓,
1547- Api,    Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading
- Review, NA, NA
angioG↓, EMT↓, CSCs↓, TumCCA↑, Dose∅, ROS↑, MMP↓, Catalase↓, GSH↓, PI3K↓, Akt↓, NF-kB↓, OCT4↓, Nanog↓, SIRT3↓, SIRT6↓, eff↑, eff↑, Cyt‑c↑, Bax:Bcl2↑, p‑GSK‐3β↓, FOXO3↑, p‑STAT3↓, MMP2↓, MMP9↓, COX2↓, MMPs↓, NRF2↓, HDAC↓, Telomerase↓, eff↑, eff↑, eff↑, eff↑, eff↑, XIAP↓, survivin↓, CK2↓, HSP90↓, Hif1a↓, FAK↓, EMT↓,
1548- Api,    A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms
- Review, Colon, NA
*BioAv↓, *Half-Life∅, selectivity↑, *toxicity↓, Wnt/(β-catenin)↓, P53↑, P21↑, PI3K↓, Akt↓, mTOR↓, TumCCA↑, TumCI↓, TumCMig↓, STAT3↓, PKM2↓, EMT↓, cl‑PARP↑, Casp3↑, Bax:Bcl2↑, VEGF↓, Hif1a↓, Dose∅, GLUT1↓, GlucoseCon↓,
1565- Api,    Apigenin-7-glucoside induces apoptosis and ROS accumulation in lung cancer cells, and inhibits PI3K/Akt/mTOR pathway
- in-vitro, Lung, A549 - in-vitro, Nor, BEAS-2B - in-vitro, Lung, H1975
TumCP↓, Apoptosis↑, TumCMig↓, TumCI↓, Cyt‑c↑, MDA↑, GSH↓, ROS↑, PI3K↓, Akt↓, mTOR↓,
1560- Api,    Apigenin as an anticancer agent
- Review, NA, NA
Apoptosis↑, Casp3∅, Casp8∅, TNF-α∅, Cyt‑c↑, MMP2↓, MMP9↓, Snail↓, Slug↓, NF-kB↓, p50↓, PI3K↓, Akt↓, p‑Akt↓,
3383- ART/DHA,    Dihydroartemisinin: A Potential Natural Anticancer Drug
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, angioG↓, TumAuto↑, ER Stress↑, ROS↑, Ca+2↑, p38↑, HSP70/HSPA5↓, PPARγ↑, GLUT1↓, Glycolysis↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, lactateProd↓, GlucoseCon↓, EMT↓, Slug↓, Zeb1↓, ZEB2↓, Twist↓, Snail?, CAFs/TAFs↓, TGF-β↓, p‑STAT3↓, M2 MC↓, uPA↓, HH↓, AXL↓, VEGFR2↓, JNK↑, Beclin-1↑, GRP78/BiP↑, eff↑, eff↑, eff↑, eff↑, eff↑, eff↑, IL4↓, DR5↑, Cyt‑c↑, Fas↑, FADD↑, cl‑PARP↑, cycE↓, CDK2↓, CDK4↓, Mcl-1↓, Ki-67↓, Bcl-2↓, CDK6↓, VEGF↓, COX2↓, MMP9↓,
556- ART/DHA,    Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing
- Review, NA, NA
IL6↓, IL1↓, TNF-α↓, TGF-β↓, NF-kB↓, MIP2↓, PGE2↓, NO↓, Hif1a↓, KDR/FLK-1↓, VEGF↓, MMP2↓, TIMP2↑, ITGB1↑, NCAM↑, p‑ATM↑, p‑ATR↑, p‑CHK1↑, p‑Chk2↑, Wnt/(β-catenin)↓, PI3K↓, Akt↓, ERK↓, cMyc↓, mTOR↓, survivin↓, cMET↓, EGFR↓, cycD1↓, cycE1↓, CDK4/6↓, p16↑, p27↑, Apoptosis↑, TumAuto↑, Ferroptosis↑, oncosis↑, TumCCA↑, ROS↑, DNAdam↑, RAD51↓, HR↓,
2324- ART/DHA,    Research Progress of Warburg Effect in Hepatocellular Carcinoma
- Review, Var, NA
PKM2↓, GLUT1↓, Glycolysis↓, Akt↓, mTOR↓, Hif1a↓, HK2↓, LDH↓, NF-kB↓,
1338- AS,    The Modulatory Properties of Astragalus membranaceus Treatment on Triple-Negative Breast Cancer: An Integrated Pharmacological Method
- in-vitro, BC, NA
TumCI↓, Apoptosis↑, Symptoms↓, PIK3CA↓, Akt↓, Bcl-2↓,
1357- Ash,    Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways
- in-vitro, GBM, U87MG - in-vitro, GBM, U251 - in-vitro, GBM, GL26
TumCP↓, TumCCA↑, Akt↓, mTOR↓, p70S6↓, p85S6K↓, AMPKα↑, TSC2↑, HSP70/HSPA5↑, HO-1↑, HSF1↓, Apoptosis↑, ROS↑, eff↓,
3156- Ash,    Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug
- Review, Var, NA
MAPK↑, p38↑, BAX↑, BIM↑, CHOP↑, ROS↑, DR5↑, Apoptosis↑, Ferroptosis↑, GPx4↓, BioAv↝, HSP90↓, RET↓, E6↓, E7↓, Akt↓, cMET↓, Glycolysis↓, TCA↓, NOTCH1↓, STAT3↓, AP-1↓, PI3K↓, eIF2α↓, HO-1↑, TumCCA↑, CDK1↓, *hepatoP↑, *GSH↑, *NRF2↑, Wnt↓, EMT↓, uPA↓, CSCs↓, Nanog↓, SOX2↓, CD44↓, lactateProd↓, Iron↑, NF-kB↓,
3160- Ash,    Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal
- Review, Var, NA
TumCCA↑, H3↑, P21↑, cycA1↓, CycB↓, cycE↓, CDC2↓, CHK1↓, Chk2↓, p38↑, MAPK↑, E6↓, E7↓, P53↑, Akt↓, FOXO3↑, ROS↑, γH2AX↑, MMP↓, mitResp↓, eff↑, TumCD↑, Mcl-1↓, ER Stress↑, ATF4↑, ATF3↑, CHOP↑, NOTCH↓, NF-kB↓, Bcl-2↓, STAT3↓, CDK1↓, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, Cyt‑c↑, eff↑, CDK4↓, p‑RB1↓, PARP↑, cl‑Casp3↑, cl‑Casp9↑, NRF2↑, ER-α36↓, LDHA↓, lipid-P↑, AP-1↓, COX2↓, RenoP↑, PDGFR-BB↓, SIRT3↑, MMP2↓, MMP9↓, NADPH↑, NQO1↑, GSR↑, HO-1↑, *SOD2↑, *Prx↑, *Casp3?, eff↑, Snail↓, Slug↓, Vim↓, CSCs↓, HEY1↓, MMPs↓, VEGF↓, uPA↓, *toxicity↓, CDK2↓, CDK4↓, HSP90↓,
3162- Ash,    Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A
- Review, Var, NA
lipid-P↓, SOD↑, GPx↑, P53↑, Bcl-2↑, E6↓, E7↓, pRB↑, CycB↑, CDC2↑, P21↑, PCNA↓, ALDH1A1↓, Vim↓, Glycolysis↓, cMyc↓, BAX↑, NF-kB↓, Casp3↑, CHOP↑, DR5↑, ERK↓, Wnt↓, β-catenin/ZEB1↓, Akt↓, HSP90↓,
3166- Ash,    Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives
- Review, Var, NA
*p‑PPARγ↓, *cardioP↑, *AMPK↑, *BioAv↝, *Half-Life↝, *Half-Life↝, *Dose↑, *chemoP↑, IL6↓, STAT3↓, ROS↓, OXPHOS↓, PCNA↓, LDH↓, AMPK↑, TumCCA↑, NOTCH3↓, Akt↓, Bcl-2↓, Casp3↑, Apoptosis↑, eff↑, NF-kB↓, CSCs↓, HSP90↓, PI3K↓, FOXO3↑, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, FASN↓, ACLY↓, ROS↑, NRF2↑, HO-1↑, NQO1↑, JNK↑, mTOR↓, neuroP↑, *TNF-α↓, *IL1β↓, *IL6↓, *IL8↓, *IL18↓, RadioS↑, eff↑,
1532- Ba,    Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives
- Review, NA, NA
ROS↑, ER Stress↑, Ca+2↑, MMPs↓, Cyt‑c↑, Casp3↑, ROS↑, DR5↑, ROS↑, BAX↑, Bcl-2↓, MMP↓, Casp3↑, Casp9↑, P53↑, p16↑, P21↑, p27↑, HDAC10↑, MDM2↓, Apoptosis↑, PI3K↓, Akt↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, p‑IκB↓, IκB↑, BAX↑, Bcl-2↓, ROS⇅, BNIP3↑, p38↑, 12LOX↓, Mcl-1↓, Wnt?, GLI2↓, AR↓, eff↑,
2617- Ba,    Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review
- Review, Var, NA
Ca+2↑, MMP2↓, MMP9↓, Vim↓, Snail↓, E-cadherin↑, Wnt↓, β-catenin/ZEB1↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, i-ROS↑, Bcl-2↓, BAX↑, Cyt‑c↑, Casp3↑, Casp9↑, STAT3↓, IL6↓, MMP2↓, MMP9↓, NOTCH↓, PPARγ↓, p‑NRF2↓, HK2↓, LDHA↓, PDK1↓, Glycolysis↓, PTEN↑, Akt↓, Hif1a↓, MMP↓, VEGF↓, VEGFR2↓, TOP2↓, uPA↓, TIMP1↓, TIMP2↓, cMyc↓, TrxR↓, ASK1↑, Vim↓, ZO-1↑, E-cadherin↑, SOX2↓, OCT4↓, Shh↓, Smo↓, Gli1↓, N-cadherin↓, XIAP↓,
2295- Ba,  5-FU,    Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway
- in-vitro, GC, AGS
ChemoSen↑, HK2↓, LDHA↓, PDK1↓, Akt↓, PTEN↑, Hif1a↓, Glycolysis↓, ROS↑, CHOP↑,
2290- Ba,    Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal Cancer
- Review, GI, NA
p‑mTOR↓, p‑Akt↓, p‑IKKα↓, NF-kB↓, PI3K↓, Akt↓, ROCK1↓, GSK‐3β↓, CycB↓, cycD1↓, cycA1↑, CDK4↓, P53↑, P21↑, TumCCA↑, MMP2↓, MMP9↓, EMT↓, Hif1a↓, Shh↓, PD-L1↓, STAT3↓, IL1β↓, IL2↓, IL6↓, PKM2↓, HDAC10↓, P-gp↓, Bcl-xL↓, eff↓, BioAv↓, BioAv↑,
2292- Ba,  BA,    Baicalin and baicalein in modulating tumor microenvironment for cancer treatment: A comprehensive review with future perspectives
- Review, Var, NA
AntiCan↑, *toxicity↓, BioAv↝, BioAv↓, *ROS↓, *TLR2↓, *NF-kB↓, *NRF2↑, *antiOx↑, *Inflam↓, HDAC1↓, HDAC8↓, Wnt↓, β-catenin/ZEB1↓, PD-L1↓, Sepsis↓, NF-kB↓, LOX1↓, COX2↓, VEGF↑, PI3K↓, Akt↓, mTOR↓, MMP2↓, MMP9↓, SIRT1↑, AMPK↑,
2473- BA,    Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung Cancer
- in-vitro, Lung, A549 - in-vitro, Nor, BEAS-2B - in-vitro, Lung, H460
EMT↓, PDK1↓, Akt↓, TumCMig↓, E-cadherin↑, Vim↓,
2474- Ba,    Anticancer properties of baicalein: a review
- Review, Var, NA - in-vitro, Nor, BV2
ROS⇅, ROS↑, ER Stress↑, Ca+2↑, Apoptosis↑, eff↑, DR5↑, 12LOX↓, Cyt‑c↑, Casp7↑, Casp9↑, Casp3↑, cl‑PARP↑, TumCCA↑, cycE↑, CDK4↓, cycD1↓, VEGF↓, cMyc↓, Hif1a↓, NF-kB↓, BioEnh↑, BioEnh↑, P450↓, *Hif1a↓, *iNOS↓, *COX2↓, *VEGF↓, *ROS↓, *PI3K↓, *Akt↓,
1299- BBR,    Effects of Berberine and Its Derivatives on Cancer: A Systems Pharmacology Review
- Review, NA, NA
TumCCA↑, TP53↑, COX2↓, Bax:Bcl2↑, ROS↑, VEGFR2↓, Akt↓, ERK↓, MMP2↓, MMP9↓, IL8↑, P21↑, p27↑, E-cadherin↓, Fibronectin↓, cMyc↓,
2021- BBR,    Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways
- Review, NA, NA
*antiOx?, *Inflam↓, Apoptosis↑, TumCCA↑, BAX↑, eff↑, VEGF↓, PI3K↓, Akt↓, mTOR↓, Telomerase↓, β-catenin/ZEB1↓, Wnt↓, EGFR↓, AP-1↓, NF-kB↓, COX2↑, NRF2↓, RadioS↑, STAT3↓, ERK↓, AR↓, ROS↑, eff↑, selectivity↑, selectivity↑, BioAv↓, DNMT1↓, cMyc↓,
1387- BBR,    Antitumor Activity of Berberine by Activating Autophagy and Apoptosis in CAL-62 and BHT-101 Anaplastic Thyroid Carcinoma Cell Lines
- in-vitro, Thyroid, CAL-62
TumCG↓, Apoptosis↑, LC3B↑, ROS↑, PI3K↓, Akt↓, mTOR↓,
3684- BBR,    Neuroprotective effects of berberine in animal models of Alzheimer’s disease: a systematic review of pre-clinical studies
- Review, AD, NA
*Inflam↓, *antiOx↓, *AChE↓, *BChE↓, *MAOA↓, *MAOB↓, *lipid-P↓, *GSH↑, *ROS↓, *APP↓, *BACE↓, *p‑tau↓, *NF-kB↓, *TNF-α↓, *IL1β↓, *MAPK↓, *PI3K↓, *Akt↓, *neuroP↑, *memory↑,
2698- BBR,    A gene expression signature-based approach reveals the mechanisms of action of the Chinese herbal medicine berberine
- Analysis, BC, MDA-MB-231
HDAC↓, Akt↓, mTOR↓, ER Stress↑, TumAuto↑, AMPK↑, mTOR∅, HDAC∅, ac‑α-tubulin↑,
2707- BBR,    Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway
- in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7
GLUT1↓, Akt↓, mTOR↓, ATP↓, GlucoseCon↓, TumCP↓, Warburg↓, selectivity↑, TumCCA↑, Glycolysis↓,
2682- BBR,    Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions
- in-vitro, CRC, HT29 - in-vitro, CRC, SW480 - in-vitro, CRC, HCT116
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, necrosis↑, AQPs↓, PTEN↑, PI3K↓, Akt↓, p‑Akt↓, mTOR↓, p‑mTOR↓,
2686- BBR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Nor, NA
Inflam↓, IL6↓, MCP1↓, COX2↓, PGE2↓, MMP2↓, MMP9↓, DNAdam↑, eff↝, Telomerase↓, Bcl-2↓, AMPK↑, ROS↑, MMP↓, ATP↓, p‑mTORC1↓, p‑S6K↓, ERK↓, PI3K↓, PTEN↑, Akt↓, Raf↓, MEK↓, Dose↓, Dose↑, selectivity↑, TumCCA↑, eff↑, EGFR↓, Glycolysis↓, Dose?, p27↑, CDK2↓, CDK4↓, cycD1↓, cycE↓, Bax:Bcl2↑, Casp3↑, Casp9↑, VEGFR2↓, ChemoSen↑, eff↑, eff↑, PGE2↓, JAK2↓, STAT3↓, CXCR4↓, CCR7↓, uPA↓, CSCs↓, EMT↓, Diff↓, CD133↓, Nestin↓, n-MYC↓, NOTCH↓, SOX2↓, Hif1a↓, VEGF↓, RadioS↑,
2670- BBR,    Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases
- Review, Var, NA
*Inflam↓, *antiOx↑, *Ca+2↓, *BioAv↓, *BioAv↑, *BioAv↑, *angioG↑, *MAPK↓, *AMPK↓, *NF-kB↓, VEGF↓, PI3K↓, Akt↓, MMP2↓, Bcl-2↓, ERK↓,
750- Bor,    Calcium fructoborate regulate colon cancer (Caco-2) cytotoxicity through modulation of apoptosis
- in-vitro, CRC, Caco-2
Bcl-2↓, BAX↑, Akt↓, p70S6↓, PTEN↑, TSC2↑,
1416- Bos,    Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent
- Review, NA, NA
5LO↓, TumCCA↑, LC3B↓, PI3K↓, Akt↓, Glycolysis↓, AMPK↑, mTOR↓, Let-7↑, COX2↓, VEGF↓, CXCR4↓, MMP2↓, MMP9↓, HIF-1↓, angioG↓, TumCP↓, TumCMig↓, NF-kB↓,
2776- Bos,    Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities
- Review, Var, NA
*5LO↓, *TNF-α↓, *MMP3↓, *COX1↓, *COX2↓, *PGE2↓, *Th2↑, *Catalase↑, *SOD↑, *NO↑, *PGE2↑, *IL1β↓, *IL6↓, *Th1 response↓, *Th2↑, *iNOS↓, *NO↓, *p‑JNK↓, *p38↓, GutMicro↑, p‑Akt↓, GSK‐3β↓, cycD1↓, Akt↓, STAT3↓, CSCs↓, AR↓, P21↑, DR5↑, CHOP↑, Casp3↑, Casp8↑, cl‑PARP↑, DNAdam↑, p‑RB1↓, Foxm1↓, TOP2↓, CDC25↓, p‑CDK1↓, p‑ERK↓, MMP9↓, VEGF↓, angioG↓, ROS↑, Cyt‑c↑, AIF↑, Diablo↑, survivin↓, ICAD↓, ChemoSen↑, SOX9↓, ER Stress↑, GRP78/BiP↑, cal2↓, AMPK↓, mTOR↓, ROS↓,
2768- Bos,    Boswellic acids as promising agents for the management of brain diseases
- Review, Var, NA - Review, AD, NA - Review, Park, NA
*neuroP↑, *ROS↓, *cognitive↓, TumCP↓, TumCMig↓, TumMeta↓, angioG↓, Apoptosis↑, *Inflam↓, IL1↓, IL2↓, IL4↓, IL6↓, TNF-α↓, P53↑, Akt↓, NF-kB↓, DNAdam↑, Casp↑, COX2↓, MMP9↓, CXCR4↓, VEGF↓, *SOD↑, *Catalase↑, *GPx↑, *NRF2↑,
1101- CA,  Tras,    Cooperative antitumor activities of carnosic acid and Trastuzumab in ERBB2+ breast cancer cells
- in-vitro, BC, NA
ChemoSen↑, HER2/EBBR2↓, PI3K↓, Akt↓, mTOR↓, p62↑,
1260- CAP,    Capsaicin inhibits in vitro and in vivo angiogenesis
- vitro+vivo, NA, NA
VEGF↓, angioG↓, TumCCA↑, cycD1↓, Akt↓,
2016- CAP,    Capsaicin binds the N-terminus of Hsp90, induces lysosomal degradation of Hsp70, and enhances the anti-tumor effects of 17-AAG (Tanespimycin)
HSP90↓, ATPase↓, eff↑, HSP70/HSPA5↓, other↝, NF-kB↓, EGFR↓, CDK4↓, Src↓, VEGF↓, PI3K↓, Akt↓,
2018- CAP,  MF,    Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma
- Review, HCC, NA
TRPV1↑, eff↑, Akt↓, mTOR↓, p‑STAT3↑, MMP2↑, ER Stress↑, Ca+2↑, ROS↑, selectivity↑, MMP↓, eff↑,
2019- CAP,    Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer
- Review, Var, NA
chemoP↑, Ca+2↑, antiOx↑, *ROS↓, *MMP∅, *Cyt‑c∅, *Casp3∅, *eff↑, *Inflam↓, *NF-kB↓, *COX2↓, iNOS↓, TRPV1↑, i-Ca+2?, MMP↓, Cyt‑c↑, Bax:Bcl2↑, P53↑, JNK↑, PI3K↓, Akt↓, mTOR↓, LC3II↑, ATG5↑, p62↑, Fap1↓, Casp3↑, Apoptosis↑, ROS↑, MMP9↓, eff↑, eff↓, eff↑, selectivity↑, eff↑, ChemoSen↑,
1104- CAR,    Carvacrol Ameliorates Transforming Growth Factor-β1-Induced Extracellular Matrix Deposition and Reduces Epithelial-Mesenchymal Transition by Regulating The Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway In Hk-2 Cells
- in-vitro, Kidney, HK-2
tumCV↓, COL4↓, COL1↓, Fibronectin↓, E-cadherin↑, Snail↑, Vim↑, α-SMA↑, PI3K↓, Akt↓,
954- CGA,    Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1α/AKT pathway
- in-vitro, Lung, A549 - in-vitro, Nor, HUVECs
Hif1a↓, VEGF↓, angioG↓, Akt↓,
2801- CHr,    AMP-activated protein kinase (AMPK) activation is involved in chrysin-induced growth inhibition and apoptosis in cultured A549 lung cancer cells
- in-vitro, Lung, A549
AMPK↑, Akt↓, ChemoSen↑, ROS↑,
2781- CHr,  PBG,    Chrysin a promising anticancer agent: recent perspectives
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, MMP9↑, uPA↓, VEGF↓, AR↓, Casp↑, TumMeta↓, TumCCA↑, angioG↓, BioAv↓, *hepatoP↑, *neuroP↑, *SOD↑, *GPx↑, *ROS↓, *Inflam↓, *Catalase↑, *MDA↓, ROS↓, BBB↑, Half-Life↓, BioAv↑, ROS↑, eff↑, ROS↑, ROS↑, lipid-P↑, ER Stress↑, NOTCH1↑, NRF2↓, p‑FAK↓, Rho↓, PCNA↓, COX2↓, NF-kB↓, PDK1↓, PDK3↑, GLUT1↓, Glycolysis↓, mt-ATP↓, Ki-67↓, cMyc↓, ROCK1↓, TOP1↓, TNF-α↓, IL1β↓, CycB↓, CDK2↓, EMT↓, STAT3↓, PD-L1↓, IL2↑,
2792- CHr,    Chrysin induces death of prostate cancer cells by inducing ROS and ER stress
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
DNAdam↑, TumCCA↑, MMP↓, ROS↑, lipid-P↑, ER Stress↑, UPR↑, PERK↑, eIF2α↑, GRP78/BiP↑, PI3K↓, Akt↓, p70S6↓, MAPK↑,
2782- CHr,    Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives
- Review, Var, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, *Inflam↓, *hepatoP↑, *neuroP↑, *BioAv↓, *cardioP↑, *lipidLev↓, *RenoP↑, *TNF-α↓, *IL2↓, *PI3K↓, *Akt↓, *ROS↓, *cognitive↑, eff↑, cycD1↓, hTERT↓, VEGF↓, p‑STAT3↓, TumMeta↓, TumCP↓, eff↑, eff↑, IL1β↓, IL6↓, NF-kB↓, ROS↑, MMP↓, Cyt‑c↑, Apoptosis↑, ER Stress↑, Ca+2↑, TET1↑, Let-7↑, Twist↓, EMT↓, TumCCA↑, Casp3↑, Casp9↑, BAX↑, HK2↓, GlucoseCon↓, lactateProd↓, Glycolysis↓, SHP1↑, N-cadherin↓, E-cadherin↑, UPR↑, PERK↑, ATF4↑, eIF2α↑, RadioS↑, NOTCH1↑, NRF2↓, BioAv↑, eff↑,
2783- CHr,    Apoptotic Effects of Chrysin in Human Cancer Cell Lines
- Review, Var, NA
TumCP↓, Apoptosis↑, Casp↑, PCNA↓, p38↑, NF-kB↑, DNAdam↑, XIAP↓, Cyt‑c↑, Casp3↑, Akt↓, SCF↓, hTERT↓, COX2↓, *Inflam↓, *antiOx↑, *chemoP↑, AR-V7?, CYP19?,
2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, *COX2↓, *iNOS↓, angioG↓, TOP1↓, HDAC↓, TNF-α↓, IL1β↓, cardioP↑, RenoP↑, neuroP↑, LDL↓, BioAv↑, eff↑, cycD1↓, hTERT↓, MMP-10↓, Akt↓, STAT3↓, VEGF↓, EGFR↓, Snail↓, Slug↓, Vim↓, E-cadherin↑, eff↑, TET1↑, ROS↑, mTOR↓, PPARα↓, ER Stress↑, Ca+2↑, ERK↓, MMP↑, Cyt‑c↑, Casp3↑, HK2↓, NRF2↓, HO-1↓, MMP2↓, MMP9↓, Fibronectin↓, GRP78/BiP↑, XBP-1↓, p‑eIF2α↑, *AST↓, ALAT↓, ALP↓, LDH↓, COX2↑, Bcl-xL↓, IL6↓, PGE2↓, iNOS↓, DNAdam↑, UPR↑, Hif1a↓, EMT↓, Twist↓, lipid-P↑, CLDN1↓, PDK1↓, IL10↓, TLR4↓, NOTCH1↑, PARP↑, Mcl-1↓, XIAP↓,
2786- CHr,    Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives
- Review, Var, NA
Apoptosis↑, TumCCA↑, angioG↓, TumCI↓, TumMeta↑, *toxicity↓, selectivity↑, chemoP↑, *GSTs↑, *NADPH↑, *GSH↑, HDAC8↓, Hif1a↓, *ROS↓, *NF-kB↓, SCF↓, cl‑PARP↑, survivin↓, XIAP↓, Casp3↑, Casp9↑, GSH↓, ChemoSen↑, Fenton↑, P21↑, P53↑, cycD1↓, CDK2↓, STAT3↓, VEGF↓, Akt↓, NRF2↓,
2787- CHr,    Network pharmacology unveils the intricate molecular landscape of Chrysin in breast cancer therapeutics
- Analysis, Var, MCF-7
TumCP↓, angioG↓, TumCI↓, TumMeta↓, TP53↑, Akt↓, Casp3↑, tumCV↓, TNF-α↓, BioAv↑, BioAv↑, AKT1↓,
1145- CHr,    Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways
- in-vitro, Cerv, HeLa
tumCV↓, BAX↑, BID↑, BOK↑, APAF1↑, TNF-α↑, FasL↑, Fas↑, FADD↑, Casp3↑, Casp7↑, Casp8↑, Casp9↑, Mcl-1↓, NAIP↓, Bcl-2↓, CDK4↓, CycB↓, cycD1↓, cycE1↓, TRAIL↑, p‑Akt↓, Akt↓, mTOR↓, PDK1↓, BAD↓, GSK‐3β↑, AMPK↑, p27↑, P53↑,
1587- Citrate,    ATP citrate lyase: A central metabolic enzyme in cancer
- Review, NA, NA
ACLY↓, other↓, PFK1↓, ATP↓, PFK2↓, Mcl-1↓, Casp3↑, Casp2↑, Casp9↑, IGF-1R↓, PI3K↓, Akt↓, p‑Akt↓, p‑ERK↓, PTEN↑, Snail↓, E-cadherin↑, ChemoSen↑,
1578- Citrate,    Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update
- Review, Var, NA
TCA↑, FASN↑, Glycolysis↓, glucoNG↑, PFK1↓, PFK2↓, FBPase↑, TumCP↓, eff↑, ACLY↓, Dose↑, Casp3↑, Casp2↑, Casp8↑, Casp9↑, Bcl-xL↓, Mcl-1↓, IGF-1R↓, PI3K↓, Akt↓, mTOR↓, PTEN↑, ChemoSen↑, Dose?,
1580- Citrate,    Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway
- in-vitro, Pca, PC3 - in-vivo, PC, NA - in-vitro, Pca, LNCaP - in-vitro, Pca, WPMY-1
Apoptosis↑, Ca+2↓, Akt↓, mTOR↓, selectivity↑, TumCP↓, cl‑Casp3↑, cl‑PARP↑, LC3‑Ⅱ/LC3‑Ⅰ↑, p62↓, ATG5↑, ATG7↑, Beclin-1↑, TumAuto↑, CaMKII ↓,
1585- Citrate,    Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S - in-vitro, Nor, HEK293
Apoptosis↑, Ferroptosis↑, Ca+2↓, CaMKII ↓, Akt↓, mTOR↓, Hif1a↓, ROS↑, ChemoSen↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Cyt‑c↑, GlucoseCon↓, lactateProd↓, Pyruv↓, GLUT1↓, HK2↓, PFKP↓, Glycolysis↓, Hif1a↓, p‑Akt↓, p‑mTOR↓, Iron↑, lipid-P↑, MDA↑, ROS↑, H2O2↑, mtDam↑, GSH↓, GPx↓, GPx4↓, NADPH/NADP+↓, eff↓, FTH1↓, LC3‑Ⅱ/LC3‑Ⅰ↑, NCOA4↑, eff↓, TumCG↓,
2315- Citrate,    Why and how citrate may sensitize malignant tumors to immunotherapy
- Review, Var, NA
Bcl-2↓, Mcl-1↓, survivin↓, Casp3↑, Casp9↑, Ferroptosis↑, lipid-P↑, Ca+2↓, Akt↓, mTOR↓, Hif1a↓, MCU↓, ATP↓, ROS↑, eff↑,
1485- CUR,  Chemo,  Rad,    Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs
- Review, Var, NA
ChemoSen↑, NF-kB↓, *STAT3↓, *COX2↓, *Akt↓, *NRF2↑, *HO-1↑, *GPx↑, *NADPH↑, *GSH↑, *ROS↓, *p300↓, radioP↑, chemoP↑, RadioS↑,
12- CUR,    Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells
- in-vitro, MB, DAOY
HH↓, Shh↓, Gli1↓, PTCH1↓, cMyc↓, n-MYC↓, cycD1↓, Bcl-2↓, NF-kB↓, Akt↓, β-catenin/ZEB1↓, survivin↓,
168- CUR,    Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism
- in-vitro, Pca, PC3
Akt↓, mTOR↓, AMPK↑, TAp63α↑,
434- CUR,    Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad
- in-vitro, Lung, A549
14-3-3 proteins↓, p‑BAD↓, p‑Akt↓, Akt↓, cl‑Casp9↑, cl‑PARP↑,
435- CUR,    Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway
- in-vitro, Lung, A549
Apoptosis↑, TumAuto↑, LC3‑Ⅱ/LC3‑Ⅰ↑, Beclin-1↑, p62↓, PI3K↓, Akt↓, mTOR↓, p‑Akt↓, p‑mTOR↓, NA↓,
448- CUR,    Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation
- in-vitro, CRC, HT-29
Apoptosis↑, TumCCA↑, p‑Akt↓, Akt↓, Bcl-2↓, p‑BAD↓, BAD↑, cl‑PARP↑, ROS↑, HSP27↑, Beclin-1↑, p62↑, GPx1↓, GPx4↓,
2979- CUR,  GB,    Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death
- in-vitro, Lung, H157 - in-vitro, Lung, H1299
EGFR↓, Sp1/3/4↓, ERK↓, MEK↓, Akt↓, S6K↓,
2821- CUR,    Antioxidant curcumin induces oxidative stress to kill tumor cells (Review)
- Review, Var, NA
*antiOx↑, *NRF2↑, *ROS↓, *Inflam↓, ROS↑, p‑ERK↑, ER Stress↑, mtDam↑, Apoptosis↑, Akt↓, mTOR↓, HO-1↑, Fenton↑, GSH↓, Iron↑, p‑JNK↑, Cyt‑c↑, ATF6↑, CHOP↑,
2654- CUR,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, Catalase↓, SOD1↓, GLO-I↓, NADPH↓, TumCCA↑, Apoptosis↑, Akt↓, ER Stress↑, JNK↑, STAT3↓, BioAv↑,
3861- CUR,    Curcumin as a novel therapeutic candidate for cancer: can this natural compound revolutionize cancer treatment?
- Review, Var, NA
*antiOx↑, *Inflam↓, PI3K↓, Akt↓, mTOR↓, Wnt↓, β-catenin/ZEB1↓, NF-kB↓, HH↓, NOTCH↓, JAK↓, STAT3↓, ADAM10↓,
1871- DAP,    Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth
- in-vitro, AML, U937 - in-vivo, AML, NA
TumCP↓, Apoptosis↑, TumCG↓, PDK1↓, cl‑PARP↑, Bcl-xL↓, Bcl-2↓, Beclin-1↓, ATG3↓, PI3K↓, Akt↓, eff↑,
1445- Deg,    Deguelin--an inhibitor to tumor lymphangiogenesis and lymphatic metastasis by downregulation of vascular endothelial cell growth factor-D in lung tumor model
- in-vivo, lymphoma, NA - in-vitro, lymphoma, NA
Akt↓, TumCP↓, TumCMig↓, VEGF↓, TumCG↓, OS↑,
1443- Deg,    Deguelin Action Involves c-Met and EGFR Signaling Pathways in Triple Negative Breast Cancer Cells
- vitro+vivo, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-435 - in-vitro, BC, BT549
EGFR↓, Akt↓, p‑ERK↓, NF-kB↓, p‑STAT3↓, survivin↓, Myc↓, TumCG↓, cMET↓,
1184- DHA,    Syndecan-1-Dependent Suppression of PDK1/Akt/Bad Signaling by Docosahexaenoic Acid Induces Apoptosis in Prostate Cancer
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
SDC1↑, p‑PCK1↓, Akt↓, BAD↓,
1854- dietFMD,    How Far Are We from Prescribing Fasting as Anticancer Medicine?
- Review, Var, NA
ChemoSideEff↓, ChemoSen↑, IGF-1↓, IGFBP1↑, adiP↑, glyC↓, E-cadherin↑, MMPs↓, Casp3↑, ROS↑, ATP↓, AMPK↑, mTOR↓, ROS↑, Glycolysis↓, NADPH↓, OXPHOS↝, eff↑, eff↑, *RAS↓, *MAPK↓, *PI3K↓, *Akt↓, eff↑, ROS↑, Akt↑, Casp3↑,
1844- dietFMD,    Unlocking the Potential: Caloric Restriction, Caloric Restriction Mimetics, and Their Impact on Cancer Prevention and Treatment
- Review, NA, NA
Risk↓, AMPK↑, Akt↓, mTOR↓, SIRT1↑, Hif1a↓, NRF2↓, SOD↑, ROS↑, IGF-1↓, p‑Akt↓, PI3K↑, GutMicro↑, OS↑, eff↝, ROS↑, TumCCA↑, *DNArepair↑, DNAdam↑,
2263- dietMet,    Methionine Restriction and Cancer Biology
- Review, Var, NA
AntiCan↑, TumCP↓, TumCG↓, selectivity↑, ChemoSen↓, RadioS↑, Insulin↓, *GlucoseCon↑, *ROS↓, *antiOx↑, *GSH↑, GSH↑, eff↑, polyA↓, TS↓, Raf↓, Akt↓, Casp9↑, Bak↑, P21↑, p27↑, Insulin↓, IGF-1↓,
1608- EA,    Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity
- in-vitro, Cerv, HeLa - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, HUVECs
eff↑, Dose∅, *BioAv↑, selectivity↑, TumCP↓, Casp↑, PTEN↑, TSC1↑, mTOR⇅, Akt↓, PDK1↓, E6↓, E7↓, DNAdam↑, ROS↑, *BioAv↓, *BioEnh↑, *Half-Life∅,
1621- EA,    The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumMeta↓, TumCI↓, TumAuto↑, VEGFR2↓, MAPK↓, PI3K↓, Akt↓, PD-1↓, NOTCH↓, PCNA↓, Ki-67↓, cycD1↓, CDK2↑, CDK6↓, Bcl-2↓, cl‑PARP↑, BAX↑, Casp3↑, DR4↑, DR5↑, Snail↓, MMP2↓, MMP9↓, TGF-β↑, PKCδ↓, β-catenin/ZEB1↓, SIRT1↓, HO-1↓, ROS↑, CHOP↑, Cyt‑c↑, MMP↓, OCR↓, AMPK↑, Hif1a↓, NF-kB↓, E-cadherin↑, Vim↓, EMT↓, LC3II↑, CIP2A↓, GLUT1↓, PDH↝, MAD↓, LDH↓, GSTs↑, NOTCH↓, survivin↓, XIAP↓, ER Stress↑, ChemoSideEff↓, ChemoSen↑,
1610- EA,    Anticancer Effect of Pomegranate Peel Polyphenols against Cervical Cancer
- Review, Cerv, NA
TumCCA↑, STAT3↓, P21↑, IGFBP7↑, Akt↓, mTOR↓, ROS↑, DNAdam↑, P53↑, P21↑, BAX↑,
1618- EA,    A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action
- Review, BC, NA
TumCCA↑, TumCMig↓, TumCI↓, TumMeta↓, Apoptosis↑, TGF-β↓, SMAD3↓, CDK6↓, PI3K↓, Akt↓, angioG↓, VEGFR2↓, MAPK↓, NEDD9↓, NF-kB↓, eff↑, eff↑, RadioS↑, ChemoSen↑, DNAdam↑, eff↑, *toxicity∅, *toxicity∅,
1607- EA,    Exploring the Potential of Ellagic Acid in Gastrointestinal Cancer Prevention: Recent Advances and Future Directions
- Review, GC, NA
STAT3↓, TumCP↓, Apoptosis↑, NF-kB↓, EMT↓, RadioS↑, antiOx↑, COX1↓, COX2↓, cMyc↓, Snail↓, Twist↓, MMP2↓, P90RSK↓, CDK8↓, PI3K↓, Akt↓, TumCCA↑, Casp8↑, PCNA↓, TGF-β↓, Shh↓, NOTCH↓, IL6↓, ALAT↓, ALP↓, AST↓, VEGF↓, P21↑, *toxicity∅,
1606- EA,    Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells
- in-vitro, Colon, HCT15
TumCP↓, cycD1↓, Apoptosis↑, PI3K↓, Akt↓, ROS↑, Casp3↑, Cyt‑c↑, Bcl-2↓, TumCCA↑, Dose∅, ALP↓, LDH↓, PCNA↓, P53↑, Bax:Bcl2↑,
27- EA,    Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice
- in-vivo, PC, NA
HH↓, Gli1↓, GLI2↓, cycD1↓, CDK1/2/5/9↓, p‑Akt↓, NOTCH1↓, Akt↓, Shh↓, Snail↓, MMP2↓, MMP9↓, BAX↑, E-cadherin↑, NOTCH3↓, HEY1↓,
1036- EGCG,    Green Tea Catechin Is an Alternative Immune Checkpoint Inhibitor that Inhibits PD-L1 Expression and Lung Tumor Growth
- in-vitro, Lung, A549 - in-vitro, Lung, LU99
PD-L1↓, EGF↓, Akt↓,
20- EGCG,    Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer
- in-vivo, Liver, NA - in-vivo, Tong, NA
HH↓, Gli1↓, Smo↓, TNF-α↓, COX2↓, *antiOx↑, Hif1a↓, NF-kB↓, VEGF↓, STAT3↓, Bcl-2↓, P53↑, Akt↓, p‑Akt↓, p‑mTOR↓, EGFR↓, AP-1↓, BAX↑, ROS↑, Casp3↑, Apoptosis↑, NRF2↑, *H2O2↓, *NO↓, *SOD↑, *Catalase↑, *GPx↑, *ROS↓,
692- EGCG,    EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement
- Review, NA, NA
ROS↑, Apoptosis↑, DNAdam↑, CTR1↑, JWA↑, β-catenin/ZEB1↓, P53↑, Vim↓, VEGF↓, p‑Akt↓, Hif1a↓, COX2↓, ERK↓, NF-kB↓, Akt↓, Bcl-xL↓, miR-210↓,
688- EGCG,  GEM,    Akt_Pathway_and_Epithelial-Mesenchymal_Transition_Enhanced_Efficacy_whe">Epigallocatechin-3-Gallate (EGCG) Suppresses Pancreatic Cancer Cell Growth, Invasion, and Migration partly through the Inhibition of Akt Pathway and Epithelial–Mesenchymal Transition: Enhanced Efficacy When Combined with Gemcitabine
- in-vitro, PC, NA
Zeb1↓, β-catenin/ZEB1↓, Vim↓, Akt↓, p‑IGFR↓, TumCG↓, TumCMig↓, TumCI↓,
684- EGCG,    Improving the anti-tumor effect of EGCG in colorectal cancer cells by blocking EGCG-induced YAP activation
- in-vitro, CRC, NA
eff↑, Akt↓, VEGFR2↓, STAT3↓, P53↓, Hippo↓, YAP/TEAD↑,
680- EGCG,    Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea
- Review, NA, NA
NF-kB↓, STAT3↓, PI3K↓, HGF/c-Met↓, Akt↓, ERK↓, MAPK↓, AR↓, Casp↑, Ki-67↓, PARP↑, Bcl-2↓, BAX↑, PCNA↓, p27↑, P21↑,
2459- EGCG,    Epigallocatechin gallate inhibits human tongue carcinoma cells via HK2‑mediated glycolysis
- in-vitro, Tong, Tca8113 - in-vitro, Tong, TSCCa
EGFR↓, Akt↓, ERK↓, HK2↓, GlucoseCon↓, lactateProd↓, Glycolysis↓,
1320- EMD,  SRF,    Emodin Sensitizes Hepatocellular Carcinoma Cells to the Anti-Cancer Effect of Sorafenib through Suppression of Cholesterol Metabolism
- vitro+vivo, HCC, HepG2 - in-vitro, HCC, Hep3B - in-vitro, HCC, HUH7 - vitro+vivo, Hepat, SK-HEP-1
SREBF2↓, Akt↓, TumCCA↑, TumCG↓, STAT3↓,
1322- EMD,    The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers
- Review, Var, NA
Apoptosis↑, TumCP↓, ROS↑, TumAuto↑, EMT↓, TGF-β↓, DNAdam↑, ER Stress↑, TumCCA↑, ATP↓, NF-kB↓, CYP1A1↑, STAC2↓, JAK↓, PI3K↓, Akt↓, MAPK↓, FASN↓, HER2/EBBR2↓, ChemoSen↑, eff↑, ChemoSen↑, angioG↓, VEGF↓, MMP2↓, eNOS↓, FOXD3↑, MMP9↓, TIMP1↑,
1324- EMD,    Is Emodin with Anticancer Effects Completely Innocent? Two Sides of the Coin
- Review, Var, NA
*toxicity↑, *BioAv↓, Akt↓, ERK↓, ROS↑, MMP↓, Bcl-2↓, BAX↑, TumCCA↑,
1327- EMD,    Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway
- in-vitro, Lung, A549
Cyt‑c↑, Casp2↑, Casp3↑, Casp9↑, ERK↓, Akt↓, ROS↑, MMP↓, Bcl-2↓, BAX↑,
988- EMD,    Emodin Induced Necroptosis and Inhibited Glycolysis in the Renal Cancer Cells by Enhancing ROS
- in-vitro, RCC, NA
Necroptosis↑, p‑RIP1↑, MLKL↑, ROS↑, Glycolysis↓, GLUT1↓, PI3K↓, Akt↓,
1155- F,    The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations
- Review, NA, NA
*toxicity↓, Casp3↑, Casp7↑, Casp8↑, Casp9↑, VEGF↓, angioG↓, PI3K↓, Akt↓, PARP↑, Bak↑, BID↑, Fas↑, Mcl-1↓, survivin↓, XIAP↓, ERK↓, EMT↓, EM↑, IM↓, Snail↓, Slug↓, Twist↓,
1656- FA,    Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling
- Review, Var, NA
tyrosinase↓, CK2↓, TumCP↓, TumCMig↓, FGF↓, FGFR1↓, PI3K↓, Akt↓, VEGF↓, FGFR1↓, FGFR2↓, PDGF↓, ALAT↓, AST↓, TumCCA↑, CDK2↓, CDK4↓, CDK6↓, BAX↓, Bcl-2↓, MMP2↓, MMP9↓, P53↑, PARP↑, PUMA↑, NOXA↑, Casp3↑, Casp9↑, TIMP1↑, lipid-P↑, mtDam↑, EMT↓, Vim↓, E-cadherin↓, p‑STAT3↓, COX2↓, CDC25↓, RadioS↑, ROS↑, DNAdam↑, γH2AX↑, PTEN↑, LC3II↓, Beclin-1↓, SOD↓, Catalase↓, GPx↓, Fas↑, *BioAv↓, cMyc↓, Beclin-1↑, LC3‑Ⅱ/LC3‑Ⅰ↓,
1654- FA,    Molecular mechanism of ferulic acid and its derivatives in tumor progression
- Review, Var, NA
AntiCan↑, Inflam↓, RadioS↑, ROS↑, Apoptosis↑, TumCCA↑, TumCMig↑, TumCI↓, angioG↓, ChemoSen↑, ChemoSideEff↓, P53↑, cycD1↓, CDK4↓, CDK6↓, TumW↓, miR-34a↑, Bcl-2↓, Casp3↑, BAX↑, β-catenin/ZEB1↓, cMyc↓, Bax:Bcl2↑, SOD↓, GSH↓, LDH↓, ERK↑, eff↑, JAK2↓, STAT6↓, NF-kB↓, PYCR1↓, PI3K↓, Akt↓, mTOR↓, Ki-67↓, VEGF↓, FGFR1↓, EMT↓, CAIX↓, LC3II↑, p62↑, PKM2↓, Glycolysis↓, *BioAv↓,
949- FIS,  ATAGJ,  Cisplatin,    Ai-Tong-An-Gao-Ji and Fisetin Inhibit Tumor Cell Growth in Rat CIBP Models by Inhibiting the AKT/HIF-1α Signaling Pathway
- in-vivo, BC, Walker256 - in-vitro, BC, Walker256
Akt↓, Hif1a↓, p‑Akt↓,
2844- FIS,    Akt_signalling_pathways_in_human_osteosarcoma_U-2_OS_cells">Fisetin, a dietary flavonoid induces apoptosis via modulating the MAPK and PI3K/Akt signalling pathways in human osteosarcoma (U-2 OS) cells
- in-vitro, OS, U2OS
tumCV↓, Apoptosis↑, Casp3↑, Casp8↑, Casp9↑, BAX↑, BAD↑, Bcl-2↓, Bcl-xL↓, PI3K↓, Akt↓, ERK↓, p‑JNK↑, p‑cJun↑, p‑p38↑, ROS↑, MMP↓, mTORC1↓, PTEN↑, p‑GSK‐3β↓, GSK‐3β↑, NF-kB↓, IKKα↑, Cyt‑c↑,
2845- FIS,    Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, p38↓, *antiOx↑, *neuroP↑, Casp3↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, AMPK↑, ACC↑, DNAdam↑, MMP↓, eff↑, ROS↑, cl‑PARP↑, Cyt‑c↑, Diablo↑, P53↑, p65↓, Myc↓, HSP70/HSPA5↓, HSP27↓, COX2↓, Wnt↓, EGFR↓, NF-kB↓, TumCCA↑, CDK2↓, CDK4↓, cycD1↓, cycA1↓, P21↑, MMP2↓, MMP9↓, TumMeta↓, MMP1↓, MMP3↓, MMP7↓, MET↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↑, uPA↓, ChemoSen↑, EMT↓, Twist↓, Zeb1↓, cFos↓, cJun↓, EGF↓, angioG↓, VEGF↓, eNOS↓, *NRF2↑, HO-1↑, NRF2↓, GSTs↓, ATF4↓,
2847- FIS,    Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells
- in-vitro, CCA, NA
tumCV↓, ChemoSen↑, TumCMig↓, ROS↑, TumCI↓, angioG↓, CDK2↓, PI3K↓, Akt↓, mTOR↓, EGFR↓, Casp↑, mTORC1↓, mTORC2↑, cycD1↓, cycE↓, MMP2↓, MMP9↓, ER Stress↑, Ca+2↑, eff↓,
2857- FIS,    A review on the chemotherapeutic potential of fisetin: In vitro evidences
- Review, Var, NA
COX2↓, PGE2↓, EGFR↓, Wnt↓, β-catenin/ZEB1↓, TCF↑, Apoptosis↑, Casp3↑, cl‑PARP↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, Akt↓, mTOR↓, ACC↑, Cyt‑c↑, Diablo↑, cl‑Casp8↑, Fas↑, DR5↑, TRAIL↑, Securin↓, CDC2↓, CDC25↓, HSP70/HSPA5↓, CDK2↓, CDK4↓, cycD1↓, MMP2↓, uPA↓, NF-kB↓, cFos↓, cJun↓, MEK↓, p‑ERK↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↓, NF-kB↑, ROS↑, DNAdam↑, MMP↓, CHOP↑, eff↑, ChemoSen↑,
2824- FIS,    Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics
- Review, Var, NA
*antiOx↑, *Inflam↓, angioG↓, BioAv↓, BioAv↑, TumCP↓, TumCI↓, TumCMig↓, *neuroP↑, EMT↓, ROS↑, selectivity↑, EGFR↓, NF-kB↓, VEGF↓, MMP9↓, MMP↓, cl‑PARP↑, Casp7↑, Casp8↑, Casp9↑, *ROS↓, uPA↓, MMP1↓, Wnt↓, Akt↓, PI3K↓, ERK↓, Half-Life↝,
2825- FIS,    Exploring the molecular targets of dietary flavonoid fisetin in cancer
- Review, Var, NA
*Inflam↓, *antiOx↓, *ERK↑, *p‑cMyc↑, *NRF2↑, *GSH↑, *HO-1↑, mTOR↓, PI3K↓, Akt↓, TumCCA↑, cycD1↓, cycE↓, CDK2↓, CDK4↓, CDK6↓, P21↑, p27↑, JNK↑, MMP2↓, MMP9↓, uPA↓, NF-kB↓, cFos↓, cJun↓, E-cadherin↑, Vim↓, N-cadherin↓, EMT↓, MMP↓, Cyt‑c↑, Diablo↑, Casp↑, cl‑PARP↑, P53↑, COX2↓, PGE2↓, HSP70/HSPA5↓, HSP27↓, DNAdam↑, Casp3↑, Casp9↑, ROS↑, AMPK↑, NO↑, Ca+2↑, mTORC1↓, p70S6↓, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, eff↑, eff↑, eff↑, RadioS↑, ChemoSen↑, Half-Life↝,
2828- FIS,    Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review
- Review, Var, NA
*neuroP↑, *antiOx↑, *Inflam↓, RenoP↑, COX2↓, Wnt↓, EGFR↓, NF-kB↓, Casp3↑, Ca+2↑, Casp8↑, TumCCA↑, CDK1↓, PI3K↓, Akt↓, mTOR↓, MAPK↓, *P53↓, *P21↓, *p16↓, mTORC1↓, mTORC2↓, P53↑, P21↑, cycD1↓, cycA1↓, CDK2↓, CDK4↓, BAX↑, Bcl-2↓, PCNA↓, HER2/EBBR2↓, Cyt‑c↑, MMP↓, cl‑Casp9↑, MMP2↓, MMP9↓, cl‑PARP↑, uPA↓, DR4↑, DR5↑, ROS↓, AIF↑, CDC25↓, Dose↑, CHOP↑, ROS↑, cMyc↓, cardioP↑,
2829- FIS,    Fisetin: An anticancer perspective
- Review, Var, NA
TumCP↓, TumCI↓, TumCCA↑, TumCG↓, Apoptosis↑, cl‑PARP↑, PKCδ↓, ROS↓, ERK↓, NF-kB↓, survivin↓, ROS↑, PI3K↓, Akt↓, mTOR↓, MAPK↓, p38↓, HER2/EBBR2↓, EMT↓, PTEN↑, HO-1↑, NRF2↑, MMP2↓, MMP9↓, MMP↓, Casp8↑, Casp9↑, TRAILR↑, Cyt‑c↑, XIAP↓, P53↑, CDK2↓, CDK4↓, CDC25↓, CDC2↓, VEGF↓, DNAdam↑, TET1↓, CHOP↑, CD44↓, CD133↓, uPA↓,
2830- FIS,    Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent
- Review, Var, NA
TumCG↓, angioG↓, *ROS↓, TumCMig↓, VEGF↓, MAPK↑, NF-kB↓, PI3K↓, Akt↓, mTOR↓, NRF2↑, HO-1↑, ROS↓, Inflam↓, ER Stress↑, ROS↑, TumCP↓, ChemoSen↑, PTEN↑, P53↑, Casp3↑, Casp8↑, Casp9↑, COX2↓, Wnt↓, EGFR↓, Mcl-1↓, survivin↓, IAP1↓, IAP2↓, PGE2↓, β-catenin/ZEB1↓, DR5↑, MMP2↓, MMP9↓, FAK↓, uPA↓, EMT↓, ERK↓, JNK↑, p38↑, PKCδ↓, BioAv↓, BioAv↑, BioAv↑,
2832- FIS,    Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies
- Review, Var, NA
MMP↓, mtDam↑, Cyt‑c↑, Diablo↑, Casp↑, cl‑PARP↑, Bak↑, BIM↑, Bcl-xL↓, Bcl-2↓, P53↑, ROS↑, AMPK↑, Casp9↑, Casp3↑, BID↑, AIF↑, Akt↓, mTOR↓, MAPK↓, Wnt↓, β-catenin/ZEB1↓, TumCCA↑, P21↑, p27↑, cycD1↓, cycE↓, CDK2↓, CDK4↓, CDK6↓, TumMeta↓, uPA↓, E-cadherin↑, Vim↓, EMT↓, Twist↓, DNAdam↑, ROS↓, COX2↓, PGE2↓, HSF1↓, cFos↓, cJun↓, AP-1↓, Mcl-1↓, NF-kB↓, IRE1↑, ER Stress↑, ATF4↑, GRP78/BiP↑, MMP2↓, MMP9↓, TCF-4↓, MMP7↓, RadioS↑, TOP1↓, TOP2↓,
2839- FIS,    Dietary flavonoid fisetin for cancer prevention and treatment
- Review, Var, NA
DNAdam↑, ROS↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp9↑, cl‑Casp3↑, Cyt‑c↑, lipid-P↓, TumCG↓, TumCA↓, TumCMig↓, TumCI↓, uPA↓, ERK↓, MMP9↓, NF-kB↓, cFos↓, cJun↓, AP-1↓, TumCCA↑, AR↓, mTORC1↓, mTORC2↓, TSC2↑, EGF↓, TGF-β↓, EMT↓, P-gp↓, PI3K↓, Akt↓, mTOR↓, eff↑, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, ChemoSen↑, CDK2↓, CDK4↓, cycE↓, cycD1↓, P21↑, COX2↓, Wnt↓, EGFR↓, β-catenin/ZEB1↓, TCF-4↓, MMP7↓, RadioS↑, eff↑,
2843- FIS,    Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential
- Review, Var, NA
NRF2↑, Keap1↓, ChemoSen↑, BioAv↓, Cyt‑c↑, Casp3↑, Casp9↑, BAX↑, tumCV↓, Mcl-1↓, cl‑PARP↑, IGF-1↓, Akt↓, CDK6↓, TumCCA↑, P53?, cycD1↓, cycE↓, CDK2↓, CDK4↓, CDK6↓, MMP2↓, MMP9↓, MMP1↓, MMP7↓, MMP3↓, VEGF↓, PI3K↓, mTOR↓, COX2↓, Wnt↓, EGFR↓, NF-kB↓, ERK↓, ROS↑, angioG↓, TNF-α↓, PGE2↓, iNOS↓, NO↓, IL6↓, HSP70/HSPA5↝, HSP27↝,
2313- Flav,    Flavonoids against the Warburg phenotype—concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism
- Review, Var, NA
Warburg↓, antiOx↑, angioG↓, Glycolysis↓, PKM2↓, PKM2:PKM1↓, β-catenin/ZEB1↓, cMyc↓, HK2↓, Akt↓, mTOR↓, GLUT1↓, Hif1a↓,
1969- GamB,    Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells
- in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
AntiTum↑, TumCI↓, Apoptosis↑, ROS↑, Cyt‑c↑, Akt↓, mTOR↓, TumCG↓, TumMeta↓,
802- GAR,    Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway
- in-vitro, GC, HGC27
TumCP↓, TumCI↓, Apoptosis↑, PI3K/Akt↓, Akt↓, p‑mTOR↓, cycD1↓, MMP2↓, MMP9↓, BAX↑, Bcl-2↓,
2998- GEN,    Cellular and Molecular Mechanisms Modulated by Genistein in Cancer
- Review, Var, NA
Hif1a↓, VEGF↓, PDGF↓, uPA↓, MMP2↓, MMP9↓, chemoP↑, TumCI↓, TumMeta↓, NF-kB↓, AP-1↓, IKKα↓, PI3K↓, Akt↓, EMT↓, CSCs↓,
845- Gra,    A Review on Annona muricata and Its Anticancer Activity
- Review, NA, NA
GlucoseCon↓, ATP↓, HIF-1↓, GLUT1↓, GLUT4↓, HK2↓, LDHA↓, ERK↓, Akt↓, Apoptosis↑, NF-kB↓, ROS↑, Bax:Bcl2↑, MMP↓, Casp3↑, Casp9↑, p‑JNK↓,
3770- H2,    Role of Molecular Hydrogen in Ageing and Ageing-Related Diseases
- Review, AD, NA - Review, Park, NA
*antiOx↑, *NRF2↑, *HO-1↑, *Inflam↓, *neuroP↑, *cardioP↑, *other↓, *ROS↓, *NADPH↓, *Catalase↑, *GPx1↑, *NO↓, *mt-ROS↓, *SIRT3↑, *SIRT1↑, *TLR4↓, *mTOR↓, *cognitive↑, *Sepsis↓, *PTEN↓, *Akt↓, *NLRP3↓, *AntiAg↑, *IL6↓, *TNF-α↓, *IL1β↓, *MDA↓, *memory↑, *FOXO3↑, TumCG↓, *LDL↓,
1153- HNK,    Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
tumCV↓, Apoptosis↑, TumCMig↓, TumCI↓, Bcl-2↓, EGFR↓, CD133↓, Nestin↓, Akt↓, ERK↓, Casp3↑, p‑STAT3↓, TumCG↓,
2894- HNK,    Pharmacological features, health benefits and clinical implications of honokiol
- Review, Var, NA - Review, AD, NA
*BioAv↓, *neuroP↑, *BBB↑, *ROS↓, *Keap1↑, *NRF2↑, *Casp3↓, *SIRT3↑, *Rho↓, *ERK↓, *NF-kB↓, angioG↓, RAS↓, PI3K↓, Akt↓, mTOR↓, *memory↑, *Aβ↓, *PPARγ↑, *PGC-1α↑, NF-kB↓, Hif1a↓, VEGF↓, HO-1↓, Foxm1↓, p27↑, P21↑, CDK2↓, CDK4↓, CDK6↓, cycD1↓, Twist↓, MMP2↓, Rho↑, ROCK1↑, TumCMig↓, cFLIP↓, BMPs↑, OCR↑, ECAR↓, *AntiAg↑, *cardioP↑, *antiOx↑, *ROS↓, P-gp↓,
2883- HNK,    Honokiol targets mitochondria to halt cancer progression and metastasis
- Review, Var, NA
ChemoSen↑, BBB↓, Ca+2↑, Cyt‑c↑, Casp3↑, chemoP↑, OCR↓, mitResp↓, Apoptosis↑, RadioS↑, NF-kB↓, Akt↓, TNF-α↓, PGE2↓, VEGF↓, NO↝, COX2↓, RAS↓, EMT↓, Snail↓, N-cadherin↓, β-catenin/ZEB1↓, E-cadherin↑, ER Stress↑, p‑STAT3↓, EGFR↓, mTOR↓, mt-ROS↑, PI3K↓, Wnt↓,
2885- HNK,    Honokiol: a novel natural agent for cancer prevention and therapy
NF-kB↓, STAT3↓, EGFR↓, mTOR↓, BioAv↝, Inflam↓, TumCP↓, angioG↓, TumCI↓, TumMeta↓, cSrc↓, JAK1↓, JAK2↓, ERK↓, Akt↓, PTEN↑, ChemoSen↑, chemoP↑, COX2↓, PGE2↓, TNF-α↓, IL1β↓, IL6↓, Casp3↑, Casp8↑, Casp9↑, cl‑PARP↑, DNAdam↑, Cyt‑c↑, RadioS↑, RAS↓, BBB↑, BioAv↓, Half-Life↝, Half-Life↝, toxicity↓,
2886- HNK,    Liposomal honokiol inhibits non-small cell lung cancer progression and enhances PD-1 blockade via suppressing M2 macrophages polarization
- in-vitro, Lung, A549 - in-vitro, Lung, H460 - in-vivo, NA, NA
eff↑, BioAv↑, eff↑, PI3K↓, Akt↓,
2897- HNK,    Honokiol Inhibits Proliferation, Invasion and Induces Apoptosis Through Targeting Lyn Kinase in Human Lung Adenocarcinoma Cells
- in-vitro, Lung, PC9 - in-vitro, Lung, A549
TumCP↓, Apoptosis↑, EGFR↓, PI3K↓, Akt↓, STAT3↓, TumCI↓, TNF-α↑, NF-kB↓, VEGF↓, MMP9↓, COX2↓,
2898- HNK,    Honokiol Suppression of Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Gastric Cancer Cell Biological Activity and Its Mechanism
- in-vitro, GC, AGS - in-vitro, GC, NCI-N87 - in-vitro, BC, MGC803 - in-vitro, GC, SGC-7901
TumCP↓, Apoptosis↑, TumCI↓, TumCMig↓, HER2/EBBR2↓, TumCCA↑, PI3K↓, Akt↓, MMP9↓, P21↑,
2868- HNK,    Honokiol: A review of its pharmacological potential and therapeutic insights
- Review, Var, NA - Review, Sepsis, NA
*P-gp↓, *ROS↓, *TNF-α↓, *IL10↓, *IL6↓, eIF2α↑, CHOP↑, GRP78/BiP↑, BAX↑, cl‑Casp9↑, p‑PERK↑, ER Stress↑, Apoptosis↑, MMPs↓, cFLIP↓, CXCR4↓, Twist↓, HDAC↓, BMPs↑, p‑STAT3↓, mTOR↓, EGFR↓, NF-kB↓, Shh↓, VEGF↓, tumCV↓, TumCMig↓, TumCI↓, ERK↓, Akt↓, Bcl-2↓, Nestin↓, CD133↓, p‑cMET↑, RAS↑, chemoP↑, *NRF2↑, *NADPH↓, *p‑Rac1↓, *ROS↓, *IKKα↑, *NF-kB↓, *COX2↓, *PGE2↓, *Casp3↓, *hepatoP↑, *antiOx↑, *GSH↑, *Catalase↑, *RenoP↑, *ALP↓, *AST↓, *ALAT↓, *neuroP↑, *cardioP↑, *HO-1↑, *Inflam↓,
2180- itraC,    Repurposing Drugs in Oncology (ReDO)—itraconazole as an anti-cancer agent
- Review, Var, NA
Dose↝, toxicity↝, BioAv↑, Half-Life↝, BioAv↑, Dose↝, HH↓, TumAuto↑, Akt↓, mTOR↓, angioG↓, MDR1↓, TumCP↓, eff↑,
1924- JG,    Juglone triggers apoptosis of non-small cell lung cancer through the reactive oxygen species -mediated PI3K/Akt pathway
- in-vitro, Lung, A549
TumCMig↓, TumCI↓, TumCCA↑, Apoptosis↑, cl‑Casp3↑, BAX↑, Cyt‑c↑, ROS↑, MDA↑, GPx4↓, SOD↓, PI3K↓, Akt↓, eff↓,
862- Lae,    Molecular mechanism of amygdalin action in vitro: review of the latest research
- Review, NA, NA
BAX↑, Casp3↑, Bcl-2↓, Akt↓, mTOR↓, p19↑, TumCCA↑, other↓,
2453- LE,    The Promoting Role of HK II in Tumor Development and the Research Progress of Its Inhibitors
- Review, Var, NA
HK2↓, PI3K↓, Akt↓, TumCP↓, Glycolysis↓,
2916- LT,    Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies
- Review, Var, NA - Review, AD, NA - Review, Park, NA
proCasp9↓, CDC2↓, CycB↓, Casp9↑, Casp3↑, Cyt‑c↑, cycA1↑, CDK2↓, APAF1↑, TumCCA↑, P53↑, BAX↑, VEGF↓, Bcl-2↓, Apoptosis↑, p‑Akt↓, p‑EGFR↓, p‑ERK↓, p‑STAT3↓, cardioP↑, Catalase↓, SOD↓, *BioAv↓, *antiOx↑, *ROS↓, *NO↓, *GSTs↑, *GSR↑, *SOD↑, *Catalase↑, *lipid-P↓, PI3K↓, Akt↓, CDK2↓, BNIP3↑, hTERT↓, DR5↑, Beclin-1↑, TNF-α↓, NF-kB↓, IL1↓, IL6↓, EMT↓, FAK↓, E-cadherin↑, MDM2↓, NOTCH↓, MAPK↑, Vim↓, N-cadherin↓, Snail↓, MMP2↓, Twist↓, MMP9↓, ROS↑, MMP↓, *AChE↓, *MMP↑, *Aβ↓, *neuroP↑, Trx1↑, ROS↓, *NRF2↑, NRF2↓, *BBB↑, ChemoSen↑, GutMicro↑,
2914- LT,    Therapeutic Potential of Luteolin on Cancer
- Review, Var, NA
*antiOx↑, *IronCh↑, *toxicity↓, *BioAv↓, *BioAv↑, DNAdam↑, TumCP↓, DR5↑, P53↑, JNK↑, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↑, survivin↓, cycD1↓, CycB↓, CDC2↓, P21↑, angioG↓, MMP2↓, AEG1↓, VEGF↓, VEGFR2↓, MMP9↓, CXCR4↓, PI3K↓, Akt↓, ERK↓, TumAuto↑, LC3B-II↑, EMT↓, E-cadherin↑, N-cadherin↓, Wnt↓, ROS↑, NICD↓, p‑GSK‐3β↓, iNOS↓, COX2↓, NRF2↑, Ca+2↑, ChemoSen↑, ChemoSen↓, IFN-γ↓, RadioS↑, MDM2↓, NOTCH1↓, AR↓, TIMP1↑, TIMP2↑, ER Stress↑, CDK2↓, Telomerase↓, p‑NF-kB↑, p‑cMyc↑, hTERT↓, RAS↓, YAP/TEAD↓, TAZ↓, NF-kB↓, NRF2↓, HO-1↓, MDR1↓,
2906- LT,    Luteolin, a flavonoid with potentials for cancer prevention and therapy
- Review, Var, NA
*Inflam↓, AntiCan↑, antiOx⇅, Apoptosis↑, TumCP↓, TumMeta↓, angioG↓, PI3K↓, Akt↓, NF-kB↓, XIAP↓, P53↑, *ROS↓, *GSTA1↑, *GSR↑, *SOD↑, *Catalase↑, *other↓, ROS↑, Dose↝, chemoP↑, NF-kB↓, JNK↑, p27↑, P21↑, DR5↑, Casp↑, Fas↑, BAX↑, MAPK↓, CDK2↓, IGF-1↓, PDGF↓, EGFR↓, PKCδ↓, TOP1↓, TOP2↓, Bcl-xL↓, FASN↓, VEGF↓, VEGFR2↓, MMP9↓, Hif1a↓, FAK↓, MMP1↓, Twist↓, ERK↓, P450↓, CYP1A1↓, CYP1A2↓, TumCCA↑,
3275- Lyco,    Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for Cancer
- Review, Var, NA
TumCCA↑, cycD1↓, cycE↓, CDK2↓, CDK4↓, P21↑, P53↑, GSK‐3β↓, p27↓, Akt↓, mTOR↓, ROS↓, MMPs↓, TumCI↓, TumCMig↓, NF-kB↓, *iNOS↓, *COX2↓, lipid-P↓, GSH↑, NRF2↑,
3274- Lyco,    Lycopene enhances the sensitivity of castration-resistant prostate cancer to enzalutamide through the AKT/EZH2/ androgen receptor signaling pathway
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, C4-2B
Akt↓, EZH2↓,
3267- Lyco,    Lycopene inhibits angiogenesis both in vitro and in vivo by inhibiting MMP-2/uPA system through VEGFR2-mediated PI3K-Akt and ERK/p38 signaling pathways
- in-vitro, Nor, HUVECs
*VEGF↓, *MMP2↓, *uPA↓, *Rac1↑, *TIMP2↑, *p38↓, *Akt↓, *angioG↓,
3528- Lyco,    The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene
- Review, Nor, NA - Review, AD, NA - Review, Park, NA
*antiOx↑, *ROS↓, *BioAv↝, *Half-Life↑, *BioAv↓, *BioAv↑, *cardioP↑, *neuroP↑, *H2O2↓, *VitC↑, *VitE↑, *GPx↑, *GSH↑, *MPO↓, *GSTs↓, *SOD↑, *NF-kB↓, *IL1β↓, *IL6↓, *IL10↑, *MAPK↓, *Akt↓, *COX2↓, *TNF-α↓, *TGF-β1↑, *NO↓, *GSR↑, *NRF2↑, *HO-1↑, *TAC↑, *Inflam↓, *BBB↑, *neuroP↑, *memory↑,
1126- Lyco,    Lycopene Inhibits Epithelial–Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal Pathway
- vitro+vivo, Oral, NA
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, EMT↓, PI3K↓, Akt↓, mTOR↓, E-cadherin↓, BAX↑, N-cadherin↓, p‑PI3K↓, p‑Akt↓, p‑mTOR↓, Bcl-2↓,
4514- MAG,    Magnolol and its semi-synthetic derivatives: a comprehensive review of anti-cancer mechanisms, pharmacokinetics, and future therapeutic potential
- Review, Var, NA
AntiCan↑, TumCP↓, TumCCA↑, TumMeta↓, angioG↓, NF-kB↓, MAPK↓, PI3K↓, Akt↓, mTOR↓, BioAv↓, *antiOx↑, *Inflam↓, *AntiAg↑, ChemoSen↑, cycD1↓, CycB↓, cycE↓, CDK2↓, CDK4↓, p27↑, P21↑, P53↑, PTEN↓, XIAP↓, Mcl-1↓, Casp3↑, Casp9↑, MMP9↑,
4533- MAG,    Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways
- in-vitro, GC, SGC-7901
AntiCan↑, DNAdam↑, Apoptosis↑, TumCCA↑, Bax:Bcl2↑, MMP↓, Casp3↑, PI3K↓, Akt↓,
4528- MAG,    Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update
- Review, Nor, NA
*Inflam↑, *cardioP↑, *angioG↓, *antiOx↑, *neuroP↑, *Bacteria↓, AntiTum↑, TumCG↓, TumCMig↓, TumCI↓, Apoptosis↑, E-cadherin↑, NF-kB↓, TumCCA↑, cycD1↓, PCNA↓, Ki-67↓, MMP2↓, MMP7↓, MMP9↓, TumCG↓, Casp3↑, NF-kB↓, Akt↓, mTOR↓, LDH↓, Ca+2↑, eff↑, *toxicity↓, *BioAv↝, *PGE2↓, *TLR2↓, *TLR4↓, *MAPK↓, *PPARγ↓,
4519- MAG,    Magnolol: A Neolignan from the Magnolia Family for the Prevention and Treatment of Cancer
- Review, Var, NA
*antiOx↑, *Inflam↓, *Bacteria↓, *AntiAg↑, *BBB↑, *BioAv↓, BAD↑, Casp3↑, Casp6↑, Casp9↑, JNK↑, Bcl-xL↓, PTEN↑, Akt↓, NF-kB↓, MMP7↓, MMP9↓, uPA↓, Hif1a↓, VEGF↓, FOXO3↓, Ca+2↑, TumCCA↑, ROS↑, Cyt‑c↑,
4515- MAG,    Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight
- Review, Var, NA
AntiCan↑, TumCP↓, TumCCA↑, Apoptosis↑, TumCMig↑, angioG↓, PI3K↓, Akt↓, mTOR↓, MAPK↓, NF-kB↓,
972- MAG,    Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells
- vitro+vivo, Bladder, T24
angioG↓, VEGF↓, H2O2↓, Hif1a↓, VEGFR2↓, Akt↓, mTOR↓, P70S6K↓, 4E-BP1↓, TumCG↓, CD31↓, CA↓,
1782- MEL,    Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumCG↑, TumMeta↑, ChemoSideEff↓, radioP↑, ChemoSen↑, *ROS↓, *SOD↑, *GSH↑, *GPx↑, *Catalase↑, Dose∅, VEGF↓, eff↑, Hif1a↓, GLUT1↑, GLUT3↑, CAIX↑, P21↑, p27↑, PTEN↑, Warburg↓, PI3K↓, Akt↓, NF-kB↓, cycD1↓, CDK4↓, CycB↓, CDK4↓, MAPK↑, IGF-1R↓, STAT3↓, MMP9↓, MMP2↓, MMP13↓, E-cadherin↑, Vim↓, RANKL↓, JNK↑, Bcl-2↓, P53↑, Casp3↑, Casp9↑, BAX↑, DNArepair↑, COX2↓, IL6↓, IL8↓, NO↓, T-Cell↑, NK cell↑, Treg lymp↓, FOXP3↓, CD4+↑, TNF-α↑, Th1 response↑, BioAv↝, RadioS↑, OS↑,
1777- MEL,    Melatonin as an antioxidant: under promises but over delivers
- Review, NA, NA
*ROS↓, *Fenton↓, *antiOx↑, *toxicity∅, *GPx↑, *GSR↑, *GSH↑, *NO↓, *Iron↓, *Copper↓, *IL1β↓, *iNOS↓, *Casp3↓, *BBB↑, *RenoP↑, chemoP↑, *Ca+2↝, eff↑, *PKCδ?, ChemoSen↑, eff↑, Akt↓, DR5↑, selectivity↑, ROS↑, eff↑,
2375- MET,    Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling
- in-vitro, GC, SGC-7901
tumCV↓, TumCI↓, TumCMig↓, Apoptosis↑, PARP↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, COX2↓,
496- MF,    Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, ZR-75-1 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
ROS↑, PI3K↓, Akt↓, GSK‐3β↑, Apoptosis↑, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, CycB↓, TumCCA↑, p‑Akt↓, p‑Akt↓,
3480- MF,    Cellular and Molecular Effects of Magnetic Fields
- Review, NA, NA
ROS↑, *Ca+2↑, *Inflam↓, *Akt↓, *mTOR↓, selectivity↑, *memory↑, *MMPs↑, *VEGF↑, *FGF↑, *PDGF↑, *TNF-α↑, *HGF/c-Met↑, *IL1↑,
3464- MF,    Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology
- Review, Var, NA
AntiTum↑, TumCG↓, TumCCA↑, Apoptosis↑, TumAuto↑, Diff↑, angioG↓, TumMeta↓, EPR↑, ChemoSen↑, ROS↑, DNAdam↑, P53↑, Akt↓, MAPK↑, Casp9↑, VEGFR2↓, P-gp↓,
3488- MFrot,  MF,    Rotating magnetic field improves cognitive and memory impairments in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway
- in-vivo, AD, NA
*cognitive↑, *memory↑, *neuroP↑, *Aβ↓, *PI3K↓, *Akt↓, *mTOR↓,
1128- Myr,    Myricetin suppresses TGF-β-induced epithelial-to-mesenchymal transition in ovarian cancer
- vitro+vivo, Ovarian, NA
MAPK↓, ERK↓, PI3K↓, Akt↓, p‑PARP↑, cl‑Casp3↑, Bax:Bcl2↑, TumCMig↓, SMAD3↓,
1311- NarG,  Rad,    Naringenin sensitizes lung cancer NCI-H23 cells to radiation by downregulation of akt expression and metastasis while promoting apoptosis
- in-vitro, Lung, H23
tumCV↓, ROS↑, Casp3↑, p‑Akt↓, Akt↓, MMP2↓, P21↓,
1803- NarG,    Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review
- Review, Var, NA
JAK↓, STAT↓, PI3K↓, Akt↓, mTOR↓, NF-kB↓, COX2↓, NOTCH↓, TumCCA↑,
1801- NarG,    A Narrative Review on Naringin and Naringenin as a Possible Bioenhancer in Various Drug-Delivery Formulations
- Review, Var, NA
AntiCan↓, CYP19↓, PI3K↓, Akt↓, TumAuto↑, eff↑, BioEnh↑, NA↓,
1799- NarG,    Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics
- Review, NA, NA
TumCCA↑, BioAv↑, Half-Life∅, TNF-α↓, Casp8↑, BAX↑, Bak↑, EGF↓, mTOR↓, PI3K↓, ERK↓, Akt↓, NF-kB↓, VEGF↓, angioG↓, antiOx↑, EMT↓, OS↑, MAPK↓, ChemoSen↑, MMP9↓, MMP2↓, ROS↑, ROS↑, GSH↓, Casp3↑, ROS↑,
1993- Part,    Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer
- in-vitro, Cerv, HeLa
tumCV↓, TumAuto↑, Casp3↑, BAX↑, Beclin-1↑, ATG3↑, ATG5↑, Bcl-2↓, mTOR↓, PI3K↓, Akt↓, PTEN↑, ROS↑, MMP↓,
1664- PBG,    Anticancer Activity of Propolis and Its Compounds
- Review, Var, NA
Apoptosis↑, TumCMig↓, TumCCA↑, TumCP↓, angioG↓, P21↑, p27↑, CDK1↓, p‑CDK1↓, cycA1↓, CycB↓, P70S6K↓, CLDN2↓, HK2↓, PFK↓, PKM2↓, LDHA↓, TLR4↓, H3↓, α-tubulin↓, ROS↑, Akt↓, GSK‐3β↓, FOXO3↓, NF-kB↓, cycD1↓, MMP↓, ROS↑, i-Ca+2↑, lipid-P↑, ER Stress↑, UPR↑, PERK↑, eIF2α↑, GRP78/BiP↑, BAX↑, PUMA↑, ROS↑, MMP↓, Cyt‑c↑, cl‑Casp8↑, cl‑Casp8↑, cl‑Casp3↑, cl‑PARP↑, eff↑, eff↑, RadioS↑, ChemoSen↑, eff↑,
1661- PBG,    Propolis: a natural compound with potential as an adjuvant in cancer therapy - a review of signaling pathways
- Review, Var, NA
JNK↓, ERK↓, Akt↓, NF-kB↓, FAK↓, MAPK↓, PI3K↓, Akt↓, P21↑, p27↑, TRAIL↑, BAX↑, P53↑, ERK↓, ChemoSen↑, RadioS↑, Glycolysis↓, HK2↓, PKM2↓, LDHA↓, PFK↓,
1660- PBG,    Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents
- Review, Var, NA
MMPs↓, angioG↓, TumMeta↓, TumCCA↑, Apoptosis↑, ChemoSideEff↓, eff∅, HDAC↓, PTEN↑, p‑PTEN↓, p‑Akt↓, Casp3↑, p‑ERK↑, p‑FAK↑, Dose?, Akt↓, GSK‐3β↓, FOXO3↓, eff↑, IL2↑, IL10↑, NF-kB↓, VEGF↓, mtDam↑, ER Stress↑, AST↓, ALAT↓, ALP↓, COX2↓, eff↑, Bax:Bcl2↑,
1682- PBG,    Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits
- Review, Var, NA
i-LDH↓, Akt↓, MAPK↓, NF-kB↓, IL1β↓, IL6↓, TNF-α↓, iNOS↓, COX2↓, ROS↓, Bcl-2↓, PARP↓, P53↑, BAX↑, Casp3↑, TumCCA↑, Cyt‑c↑, MMP↓, eff↑,
1678- PBG,  5-FU,  sericin,    In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway
- in-vitro, CRC, Caco-2 - in-vivo, NA, NA
PI3K↓, Akt↓, mTOR↓, TumCP↓, Bcl-2↓, BAX↑, Casp3↑, Casp9↑, ROS↓, FOXO1↑, *toxicity∅, eff↑,
3257- PBG,    The Potential Use of Propolis as a Primary or an Adjunctive Therapy in Respiratory Tract-Related Diseases and Disorders: A Systematic Scoping Review
- Review, Var, NA
CDK4↓, CDK6↓, pRB↓, ROS↓, TumCCA↑, P21↑, PI3K↓, Akt↓, EMT↓, E-cadherin↑, Vim↓, *COX2↓, *MPO↓, *MDA↓, *TNF-α↓, *IL6↓, *Catalase↑, *SOD↑, *AST↓, *ALAT↓, *IL1β↓, *IL10↓, *GPx↓, *TLR4↓, *Sepsis↓, *IFN-γ↑, *GSH↑, *NRF2↑, *α-SMA↓, *TGF-β↓, *IL5↓, *IL6↓, *IL8↓, *PGE2↓, *NF-kB↓, *MMP9↓,
1938- PL,    Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation
- Study, PSA, NA - in-vivo, NA, NA
ROS↑, Apoptosis↑, MMP↓, TumCCA↑, DNAdam↑, STAT3↓, Akt↓, PCNA↓, Ki-67↓, cycD1↓, Bcl-2↓, K17↓, HDAC↓, ROS↑, *IL1β↓, *IL6↓, *TNF-α↓, *IL17↓, *IL22↓,
1946- PL,  PI,    Piperlonguminine and Piperine Analogues as TrxR Inhibitors that Promote ROS and Autophagy and Regulate p38 and Akt/mTOR Signaling
- in-vitro, Liver, NA
eff↑, toxicity↓, TrxR↓, ROS↑, MMP↓, p38↑, Akt↓, mTOR↓,
2948- PL,    The promising potential of piperlongumine as an emerging therapeutics for cancer
- Review, Var, NA
tumCV↓, TumCP↓, TumCI↓, angioG↓, EMT↓, TumMeta↓, *hepatoP↑, *lipid-P↓, *GSH↑, cardioP↑, CycB↓, cycD1↓, CDK2↓, CDK1↓, CDK4↓, CDK6↓, PCNA↓, Akt↓, mTOR↓, Glycolysis↓, NF-kB↓, IKKα↓, JAK1↓, JAK2↓, STAT3↓, ERK↓, cFos↓, Slug↓, E-cadherin↑, TOP2↓, P53↑, P21↑, Bcl-2↓, BAX↑, Casp3↑, Casp7↑, Casp8↑, p‑HER2/EBBR2↓, HO-1↑, NRF2↑, BIM↑, p‑FOXO3↓, NA↓, Sp1/3/4↓, cMyc↓, EGFR↓, survivin↓, cMET↓, NQO1↑, SOD2↑, TrxR↓, MDM2↓, p‑eIF2α↑, ATF4↑, CHOP↑, MDA↑, Ki-67↓, MMP9↓, Twist↓, SOX2↓, Nanog↓, OCT4↓, N-cadherin↓, Vim↓, Snail↓, TumW↓, TumCG↓, HK2↓, RB1↓, IL6↓, IL8↓, SOD1↑, RadioS↑, ChemoSen↑, toxicity↓, Sp1/3/4↓, GSH↓, SOD↑,
2944- PL,    Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells
- in-vitro, Thyroid, IHH4 - in-vitro, Thyroid, 8505C - in-vivo, NA, NA
ROS↑, selectivity↑, tumCV↓, TumCCA↑, Apoptosis↑, ERK↑, Akt↓, mTOR↓, neuroP↑, Bcl-2↓, Casp3↑, PARP↑, JNK↑, *toxicity↓, eff↓, TumW↓,
2970- PL,    Piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways
- in-vitro, AML, NA
AntiAg↑, TumCG↓, Apoptosis↑, PI3K↓, Akt↓, mTOR↓, p38↑, Casp3↑,
2651- Plum,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, TrxR↓, GSR↓, ER Stress↓, TumCCA↑, MMP↓, NF-kB↓, PI3K↓, Akt↓, mTOR↓, MKP1↓, MKP2↓, ChemoSen↑,
3930- PTS,    A Review of Pterostilbene Antioxidant Activity and Disease Modification
- Review, Var, NA - Review, adrenal, NA - Review, Stroke, NA
*BioAv↑, *antiOx↑, *neuroP↑, *Inflam↓, *ROS↓, *H2O2↓, *GSH↑, *GPx↑, *GSR↑, *SOD↑, TumCG↓, PTEN↑, HGF/c-Met↓, PI3K↓, Akt↓, NF-kB↓, TumMeta↓, MMP2↓, MMP9↓, Ki-67↓, Casp3↑, MMP↓, H2O2↑, ROS↑, ChemoSen↑, *cardioP↑, *CDK2↓, *CDK4↓, *cycE↓, *cycD1↓, *RB1↓, *PCNA↓, *CREB↑, *GABA↑, *memory↑, *IGF-1↑, *ERK↑, TIMP1↑, BAX↑, Cyt‑c↑, Diablo↑, SOD2↑,
2342- QC,    Quercetin Inhibits the Proliferation of Glycolysis-Addicted HCC Cells by Reducing Hexokinase 2 and Akt-mTOR Pathway
- in-vitro, HCC, Bel-7402 - in-vitro, HCC, SMMC-7721 cell - in-vivo, NA, NA
TumCP↓, HK2↓, Akt↓, mTOR↓, GlucoseCon↓, lactateProd↓, Glycolysis↓,
2341- QC,    Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
MMP2↓, MMP9↓, VEGF↓, Glycolysis↓, lactateProd↓, PKM2↓, GLUT1↓, LDHA↓, TumAuto↑, Akt↓, mTOR↓, TumMeta↓, MMP3↓, eff↓, GlucoseCon↓, lactateProd↓, TumAuto↑, LC3B-II↑,
3354- QC,    Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine
- Review, Var, NA
*ROS↓, *IronCh↓, *lipid-P↓, *GSH↑, *NRF2↑, TumCCA↑, ER Stress↑, P53↑, CDK2↓, cycA1↓, CycB↓, cycE↓, cycD1↓, PCNA↓, P21↑, p27↑, PI3K↓, Akt↓, mTOR↓, STAT3↓, cFLIP↓, cMyc↓, survivin↓, DR5↓, *Inflam↓, *IL6↓, *IL8↓, COX2↓, 5LO↓, *cardioP↑, *FASN↓, *AntiAg↑, *MDA↓,
3341- QC,    Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application
- Review, Var, NA - Review, Stroke, NA
*antiOx↑, *BioAv↑, *GSH↑, *AChE↓, *BChE↓, *H2O2↓, *lipid-P↓, *SOD↑, *SOD2↑, *Catalase↑, *GPx↑, *neuroP↑, *HO-1↑, *cardioP↑, *MDA↓, *NF-kB↓, *IKKα↓, *ROS↓, *PI3K↑, *Akt↑, *hepatoP↑, P53↑, BAX↑, IGF-1R↓, Akt↓, AR↓, TumCP↓, GSH↑, SOD↑, Catalase↑, lipid-P↓, *TNF-α↓, *Ca+2↓,
3378- QC,    CK2 and PI3K are direct molecular targets of quercetin in chronic lymphocytic leukaemia
- in-vitro, AML, NA
CK2↓, PI3K↓, TumCD↑, Akt↓, Mcl-1↓, PTEN↑,
3369- QC,    Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects
- Review, Pca, NA
FAK↓, TumCCA↑, p‑pRB↓, CDK2↑, CycB↓, CDK1↓, EMT↓, PI3K↓, MAPK↓, Wnt↓, ROS↑, miR-21↑, Akt↓, NF-kB↓, FasL↑, Bak↑, BAX↑, Bcl-2↓, Casp3↓, Casp9↑, P53↑, p38↑, MAPK↑, Cyt‑c↑, PARP↓, CHOP↑, ROS↓, LDH↑, GRP78/BiP↑, ERK↑, MDA↓, SOD↑, GSH↑, NRF2↑, VEGF↓, PDGF↓, EGF↓, FGF↓, TNF-α↓, TGF-β↓, VEGFR2↓, EGFR↓, FGFR1↓, mTOR↓, cMyc↓, MMPs↓, LC3B-II↑, Beclin-1↑, IL1β↓, CRP↓, IL10↓, COX2↓, IL6↓, TLR4↓, Shh↓, HER2/EBBR2↓, NOTCH↓, DR5↑, HSP70/HSPA5↓, CSCs↓, angioG↓, MMP2↓, MMP9↓, IGFBP3↑, uPA↓, uPAR↓, RAS↓, Raf↓, TSP-1↑,
3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, *antiOx↑, *AntiCan↑, Casp3↓, p‑Akt↓, p‑mTOR↓, p‑ERK↓, β-catenin/ZEB1↓, Hif1a↓, AntiAg↓, VEGFR2↓, EMT↓, EGFR↓, MMP2↓, MMP↓, TumMeta↓, MMPs↓, Akt↓, Snail↓, N-cadherin↓, Vim↓, E-cadherin↑, STAT3↓, TGF-β↓, ROS↓, P53↑, BAX↑, PKCδ↓, PI3K↓, COX2↓, cFLIP↓, cycD1↓, cMyc↓, IL6↓, IL10↓, Cyt‑c↑, TumCCA↑, DNMTs↓, HDAC↓, ac‑H3↑, ac‑H4↑, Diablo↑, Casp3↑, Casp9↑, PARP1↑, eff↑, PTEN↑, VEGF↓, NO↓, iNOS↓, ChemoSen↑, eff↑, eff↑, eff↑, uPA↓, CXCR4↓, CXCL12↓, CLDN2↓, CDK6↓, MMP9↓, TSP-1↑, Ki-67↓, PCNA↓, ROS↑, ER Stress↑,
3603- QC,    Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitus
- Review, AD, NA - Review, Diabetic, NA
*MAPK↓, *neuroP↑, *ROS↓, *Akt↓, *PI3K↓, *IL6↓, *TNF-α↓, *VEGF↓, *EGFR↓, *Casp3↓, *Bcl-2↓, *IL1β↓,
81- QC,  EGCG,    Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea
- in-vivo, Pca, NA
COMT↓, MRP1↓, Ki-67↓, Bax:Bcl2↑, AR↓, Akt↓, p‑ERK↓, COMT↓, eff↑,
63- QC,    Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells
- in-vitro, Pca, NA
RAGE↓, PI3K↓, mTOR↓, Akt↓, Apoptosis↑, TumAuto↑,
39- QC,    A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells
- Analysis, NA, NA
ROS↑, GSH↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, MAPK↑, ERK↑, SOD↑, ATP↓, Casp↑, PI3K/Akt↓, mTOR↓, NOTCH1↓, Bcl-2↓, BAX↑, IFN-γ↓, TumCP↓, TumCCA↑, Akt↓, P70S6K↓, *Keap1↓, *GPx↑, *Catalase↑, *HO-1↑, *NRF2↑, NRF2↑, eff↑, HIF-1↓,
92- QC,    Quercetin Inhibits Angiogenesis Mediated Human Prostate Tumor Growth by Targeting VEGFR- 2 Regulated AKT/mTOR/P70S6K Signaling Pathways
- vitro+vivo, Pca, HUVECs - vitro+vivo, Pca, PC3
VEGF↓, HemoG↓, Akt↓, mTOR↓, P70S6K↓,
916- QC,    Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells
- Review, Ovarian, NA
COX2↓, CRP↓, ER Stress↑, Apoptosis↑, GRP78/BiP↑, CHOP↑, p‑STAT3↓, PI3K↓, Akt↓, mTOR↓, cMyc↓, cycD1↓, cFLIP↓, IL6↓, IL10↓,
923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, GSH↓, Ca+2↝, MMP↓, Casp3↑, Casp8↑, Casp9↑, other↓, *ROS↓, *NRF2↑, HO-1↑, TumCCA↑, Inflam↓, STAT3↓, DR5↑, P450↓, MMPs↓, IFN-γ↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, cl‑PARP↑, Apoptosis↑, P53↑, Sp1/3/4↓, survivin↓, TRAILR↑, Casp10↑, DFF45↑, TNFR 1↑, Fas↑, NF-kB↓, IKKα↓, cycD1↓, Bcl-2↓, BAX↑, PI3K↓, Akt↓, E-cadherin↓, Vim↓, β-catenin/ZEB1↓, cMyc↓, EMT↓, MMP2↓, NOTCH1↓, MMP7↓, angioG↓, TSP-1↑, CSCs↓, XIAP↓, Snail↓, Slug↓, LEF1↓, P-gp↓, EGFR↓, GSK‐3β↓, mTOR↓, RAGE↓, HSP27↓, VEGF↓, TGF-β↓, COL1↓, COL3A1↓,
1490- RES,    Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues
- Review, Var, NA
TumCCA↑, ROS↑, Ca+2↑, MMP↓, ATP↓, TOP1?, P53↑, p53 Wildtype∅, Akt↓, mTOR↓, EMT↓, *BioAv↓,
2334- RES,    Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy
- Review, Var, NA
GLUT1↓, GlucoseCon↓, lactateProd↓, Akt↓, mTOR↓, Dose↝, SIRT6↑, PKM2↓, HK2↓, PFK1↓, ChemoSen↑,
2443- RES,    Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review
- Review, Var, NA
*antiOx↑, *ROS↓, *PTEN↑, *Akt↓, *Catalase↑, *SOD↑, *ERK↓, *GSH↑, *AMPK↑, *FOXO1↝, *RNS↓, *Catalase↑, *cardioP↑, *PI3K↑, *eNOS↑, hepatoP↑,
2441- RES,    Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions
- Review, Var, NA
*toxicity↓, *BioAv↝, *Dose↝, *hepatoP↑, *neuroP↑, *AntiAg↑, *COX2↓, *antiOx↑, *ROS↓, *ROS↑, PI3K↓, Akt↓, NF-kB↓, Wnt↓, β-catenin/ZEB1↓, NRF2↑, GPx↑, HO-1↑, BioEnh?, PTEN↑, ChemoSen↑, eff↑, mt-ROS↑, Warburg↓, Glycolysis↓, GlucoseCon↓, GLUT1↓, lactateProd↓, HK2↓, EGFR↓, cMyc↓, ROS↝, MMPs↓, MMP7↓, survivin↓, TumCP↓, TumCMig↓, TumCI↓,
2440- RES,    Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway
- in-vitro, Lung, H460 - in-vivo, Lung, NA - in-vitro, Lung, H1650 - in-vitro, Lung, HCC827
AntiTum↑, Glycolysis↓, HK2↓, EGFR↓, Akt↓, ERK↓, GlucoseCon↓, lactateProd↓, TumCG↓, Ki-67↓,
3066- RES,    Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells
GSK‐3β↑, Akt↓, CHOP↑, ER Stress↑, PERK↑, ATF6↑, UPR↑, GlucoseCon↓,
2981- RES,    Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways
- in-vitro, Colon, HT-29 - in-vitro, Colon, SW48
TumCCA↑, p27↑, cycD1↓, TumCP↓, IGF-1R↓, Akt↓, Wnt↓, P53↑, Apoptosis↑, Sp1/3/4↓, cl‑PARP↑, β-catenin/ZEB1↓, MDM2↓,
3096- RES,    Identification of potential target genes of non-small cell lung cancer in response to resveratrol treatment by bioinformatics analysis
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
TumCP↓, Apoptosis↑, Akt↓, mTOR↓, p38↑, MAPK↑, STAT3↓, ROS↑, SIRT1↑, SOX2↓,
3095- RES,    Resveratrol suppresses migration, invasion and stemness of human breast cancer cells by interfering with tumor-stromal cross-talk
- in-vitro, BC, NA
TumCP↓, TumCMig↓, TumCI↓, cycD1↓, cMyc↓, MMP2↓, MMP9↓, SOX2↓, Akt↓, STAT3↓, α-SMA↓,
3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, tumCV↓, TumCI↓, TumMeta↓, *antiOx↑, *cardioP↑, *Inflam↓, *neuroP↑, *Keap1↓, *NRF2↑, *ROS↓, p62↓, IL1β↓, CRP↓, VEGF↓, Bcl-2↓, MMP2↓, MMP9↓, FOXO4↓, POLD1↓, CK2↓, MMP↓, ROS↑, Apoptosis↑, TumCCA↑, Beclin-1↓, Ki-67↓, ATP↓, GlutMet↓, PFK↓, TGF-β↓, SMAD2↓, SMAD3↓, Vim?, Snail↓, Slug↓, E-cadherin↑, EMT↓, Zeb1↓, Fibronectin↓, IGF-1↓, PI3K↓, Akt↓, HO-1↑, eff↑, PD-1↓, CD8+↑, Th1 response↑, CSCs↓, RadioS↑, SIRT1↑, Hif1a↓, mTOR↓,
3089- RES,    The Role of Resveratrol in Cancer Therapy
- Review, Var, NA
angioG↓, VEGF↓, EGFR↓, FGF↑, TumCMig↓, TumCI↓, TIMP1↑, MMP2↓, MMP9↓, NF-kB↓, Hif1a↓, PI3K↓, Akt↓, MAPK↓, EMT↓, AR↓,
2687- RES,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, NA, NA - Review, AD, NA
NF-kB↓, P450↓, COX2↓, Hif1a↓, VEGF↓, *SIRT1↑, SIRT1↓, SIRT2↓, ChemoSen⇅, cardioP↑, *memory↑, *angioG↑, *neuroP↑, STAT3↓, CSCs↓, RadioS↑, Nestin↓, Nanog↓, TP53↑, P21↑, CXCR4↓, *BioAv↓, EMT↓, Vim↓, Slug↓, E-cadherin↑, AMPK↑, MDR1↓, DNAdam↑, TOP2↓, PTEN↑, Akt↓, Wnt↓, β-catenin/ZEB1↓, cMyc↓, MMP7↓, MALAT1↓, TCF↓, ALDH↓, CD44↓, Shh↓, IL6↓, VEGF↓, eff↑, HK2↓, ROS↑, MMP↓,
1745- RosA,    Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications
- Review, Var, NA - Review, AD, NA
ChemoSideEff↓, ChemoSen↑, antiOx↑, MMP2↓, MMP9↓, p‑AMPK↑, DNMTs↓, tumCV↓, COX2↓, E-cadherin↑, Vim↓, N-cadherin↓, EMT↓, Casp3↑, Casp9↓, ROS↓, GSH↑, ERK↓, Akt↓, ROS↓, NF-kB↓, p‑IκB↓, p50↓, p65↓, neuroP↑, Dose↝,
3027- RosA,    Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway
- in-vitro, HCC, SMMC-7721 cell
TumCP↓, TumCCA↑, Apoptosis↑, EMT↓, TumCI↓, PI3K↓, Akt↓, mTOR↓, TumCMig↓, MMPs↓, Vim↓,
3016- RosA,    Rosmarinic Acid Inhibits Cell Growth and Migration in Head and Neck Squamous Cell Carcinoma Cell Lines by Attenuating Epidermal Growth Factor Receptor Signaling
- in-vitro, HNSCC, UM-SCC-6 - in-vitro, HNSCC, UM-SCC-10B
chemoP↓, EGF↓, tumCV↓, TumCMig↓, ROS↓, PI3K↓, Akt↓, ERK↓, antiOx↑, p‑EGFR↓,
3010- RosA,    Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation
- in-vitro, Lung, A549 - in-vivo, NA, NA
TumCG↓, Ki-67↓, FABP4↑, PPARα↑, ROS↑, Apoptosis↑, MMP9↓, IGFBP3↓, MMP2↓, EMT↓, TumCI↓, PI3K↓, Akt↓, mTOR↓, Gli1↓, PPARγ↑, Cyt‑c↑,
3003- RosA,    Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases
- Review, Var, NA - Review, AD, NA - Review, Park, NA
*Inflam↓, *antiOx↑, *neuroP↑, *IL6↓, *IL1β↓, *NF-kB↓, *PGE2↓, *COX2↓, *MMP↑, *memory↑, *ROS↓, *Aβ↓, *HMGB1↓, TumCG↓, MARK4↓, Zeb1↓, MDM2↓, BNIP3↑, ASC↑, NLRP3↓, PI3K↓, Akt↓, Casp1↓, E-cadherin↑, STAT3↓, TLR4↓, MMP↓, ICAM-1↓, AMPK↓, IL6↑, MMP2↓, Warburg↓, Bcl-xL↓, Bcl-2↓, TumCCA↑, EMT↓, TumMeta↓, mTOR↓, HSP27↓, Casp3↑, GlucoseCon↓, lactateProd↓, VEGF↓, p‑p65↓, GIT1↓, Foxm1↓, cycD1↓, CDK4↓, MMP9↓, HDAC2↓,
3006- RosA,    Rosmarinic acid attenuates glioblastoma cells and spheroids’ growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosis
- in-vitro, GBM, U87MG - in-vitro, GBM, LN229
TumCG↓, EMT↓, SIRT1↓, FOXO1↓, NF-kB↓, angioG↓, ROS↓, PTEN↓, PI3K↓, Akt↓, *Inflam↓, *cardioP↑, *hepatoP↑, *neuroP↑, Warburg↓,
1209- SANG,    Sanguinarine is a novel VEGF inhibitor involved in the suppression of angiogenesis and cell migration
- in-vitro, Lung, A549
VEGF↓, TumCMig↓, Akt↓, p38↓,
1134- SANG,    Sanguinarine inhibits epithelial–mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma
- in-vitro, HCC, HepG2 - in-vitro, HCC, Hep3B - in-vitro, HCC, HUH7
Hif1a↓, EMT↓, Snail↓, PI3K↓, Akt↓, SMAD2↓, SMAD3↓,
1017- Sel,    Selenite induces apoptosis in colorectal cancer cells via AKT-mediated inhibition of β-catenin survival axis
- vitro+vivo, CRC, NA
Akt↓, β-catenin/ZEB1↓, cycD1↓, survivin↓, Apoptosis↑, ROS↑,
1726- SFN,    Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential
- Review, Var, NA
Dose↝, eff↝, IL1β↓, IL6↓, IL12↓, TNF-α↓, COX2↓, CXCR4↓, MPO↓, HSP70/HSPA5↓, HSP90↓, VCAM-1↓, IKKα↓, NF-kB↓, HO-1↑, Casp3↑, Casp7↑, Casp8↑, Casp9↑, cl‑PARP↑, Cyt‑c↑, Diablo↑, CHOP↑, survivin↓, XIAP↓, p38↑, Fas↑, PUMA↑, VEGF↓, Hif1a↓, Twist↓, Zeb1↓, Vim↓, MMP2↓, MMP9↓, E-cadherin↑, N-cadherin↓, Snail↓, CD44↓, cycD1↓, cycA1↓, CycB↓, cycE↓, CDK4↓, CDK6↓, p50↓, P53↑, P21↑, GSH↑, SOD↑, GSTs↑, mTOR↓, Akt↓, PI3K↓, β-catenin/ZEB1↓, IGF-1↓, cMyc↓,
1459- SFN,  Aur,    Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway
- in-vitro, Liver, Hep3B - in-vitro, Liver, HepG2
eff↑, TumCCA↑, Apoptosis↑, MMP↓, BAX↑, cl‑PARP↑, Casp3↑, Casp8↑, Casp9↑, ROS↑, eff↓, PI3K↓, Akt↓, TrxR↓, BAX↑, Bcl-2∅,
1469- SFN,    Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vivo, Pca, NA
eff↑, ROS↑, MMP↓, Casp3↑, Casp9↑, DR4↑, DR5↑, BAX↑, Bak↑, BIM↑, NOXA↑, Bcl-2↓, Bcl-xL↓, Mcl-1↓, eff↓, TumCG↓, TumCP↓, eff↑, NF-kB↓, PI3K↓, Akt↓, MEK↓, ERK↓, angioG↓, FOXO3↑,
1475- SFN,  Form,    Combination of Formononetin and Sulforaphane Natural Drug Repress the Proliferation of Cervical Cancer Cells via Impeding PI3K/AKT/mTOR Pathway
- in-vitro, Cerv, HeLa
TumCP↓, PI3K↓, Akt↓, mTOR↓, eff↑, ROS↑,
1513- SFN,  acetaz,    Next-generation multimodality of nutrigenomic cancer therapy: sulforaphane in combination with acetazolamide actively target bronchial carcinoid cancer in disabling the PI3K/Akt/mTOR survival pathway and inducing apoptosis
- in-vitro, BrCC, H720 - in-vivo, BrCC, NA - in-vitro, BrCC, H727
eff↑, tumCV↓, Apoptosis↑, P21↑, PI3K↓, Akt↓, mTOR↓, 5HT↓, NRF2↑,
2445- SFN,    Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, SkBr3
TumCCA↑, P21↑, p27↑, NO↑, Akt↓, ATP↓, AMPK↑, TumAuto↑, DNMT1↓, HK2↓, PKM2↓, HDAC3↓, HDAC4↓, HDAC8↓,
3646- SIL,    "Silymarin", a promising pharmacological agent for treatment of diseases
- Review, NA, NA
*P-gp↓, *Inflam↓, *hepatoP↑, *antiOx↑, *GSH↑, *BioAv↑, *SOD↑, *IFN-γ↓, *IL4↓, *IL10↓, *Half-Life↓, *TNF-α↓, *ALAT↓, *AST↓, Akt↓, chemoP↑, β-catenin/ZEB1↓, TumCP↓, MMP↓, Cyt‑c↑, *RenoP↑, *BBB↑,
3288- SIL,    Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations
- Review, Var, NA
Inflam↓, lipid-P↓, TumMeta↓, angioG↓, chemoP↑, EMT↓, HDAC↓, HATs↑, MMPs↓, uPA↓, PI3K↓, Akt↓, VEGF↓, CD31↓, Hif1a↓, VEGFR2↓, Raf↓, MEK↓, ERK↓, BIM↓, BAX↑, Bcl-2↓, Bcl-xL↓, Casp↑, MAPK↓, P53↑, LC3II↑, mTOR↓, YAP/TEAD↓, *BioAv↓, MMP↓, Cyt‑c↑, PCNA↓, cMyc↓, cycD1↓, β-catenin/ZEB1↓, survivin↓, APAF1↑, Casp3↑, MDSCs↓, IL10↓, IL2↑, IFN-γ↑, hepatoP↑, cardioP↑, GSH↑, neuroP↑,
978- SIL,    A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment
- Review, NA, NA
PI3K↓, Akt↓, NF-kB↓, Wnt/(β-catenin)↓, MAPK↓, TumCP↓, TumCCA↑, Apoptosis↑, p‑EGFR↓, JAK2↓, STAT5↓, cycD1↓, hTERT↓, AP-1↓, MMP9↓, miR-21↓, miR-155↓, Casp9↑, BID↑, ERK↓, Akt2↓, DNMT1↓, P53↑, survivin↓, Casp3↑, ROS↑,
2360- SK,    Shikonin inhibits growth, invasion and glycolysis of nasopharyngeal carcinoma cells through inactivating the phosphatidylinositol 3 kinase/AKT signal pathway
- in-vitro, NPC, HONE1 - in-vitro, NPC, SUNE-1
TumCP↓, Apoptosis↑, TumCMig↓, TumCI↓, GlucoseCon↓, lactateProd↓, ATP↓, PKM2↓, PI3K↓, Akt↓, MMP3↓, MMP9↓, TIMP1↑,
2355- SK,    Pharmacological properties and derivatives of shikonin-A review in recent years
- Review, Var, NA
AntiCan↑, TumCP↓, TumCMig↓, Apoptosis↑, TumAuto↑, Necroptosis↑, ROS↑, TrxR1↓, PKM2↓, RIP1↓, RIP3↓, Src↓, FAK↓, PI3K↓, Akt↓, mTOR↓, GRP58↓, MMPs↓, ATF2↓, cl‑PARP↑, Casp3↑, p‑p38↑, p‑JNK↑, p‑ERK↓,
2226- SK,    Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: A potential new treatment for hepatocellular carcinoma
- in-vitro, HCC, HUH7 - in-vitro, HCC, Bel-7402
selectivity↑, ROS↑, eff↓, Akt↓, RIP1↓, NF-kB↓,
2224- SK,    Shikonin induces apoptosis and autophagy via downregulation of pyrroline-5-carboxylate reductase1 in hepatocellular carcinoma cells
- in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2
PYCR1↓, PI3K↓, Akt↓, mTOR↓, eff↑,
2415- SK,    Shikonin induces programmed death of fibroblast synovial cells in rheumatoid arthritis by inhibiting energy pathways
- in-vivo, Arthritis, NA
Apoptosis?, TumAuto↑, ROS↑, ATP↓, Glycolysis↓, PI3K↓, Akt↓, mTOR↓, *Apoptosis↓, *Inflam↓, *TNF-α↓, *IL6↓, *IL8↓, *IL10↓, *IL17↓, *hepatoP↑, *RenoP↑, PKM2↓, GLUT1↓, HK2↓,
2469- SK,    Shikonin induces the apoptosis and pyroptosis of EGFR-T790M-mutant drug-resistant non-small cell lung cancer cells via the degradation of cyclooxygenase-2
- in-vitro, Lung, H1975
Apoptosis↑, Pyro↑, Casp↑, cl‑PARP↑, GSDME↑, ROS↑, COX2↓, PDK1↓, Akt↓, ERK↓, eff↓, eff↓, eff↑,
3043- SK,    Shikonin Induces Apoptosis by Inhibiting Phosphorylation of IGF-1 Receptor in Myeloma Cells.
- in-vitro, Melanoma, RPMI-8226
IGF-1↓, Apoptosis↑, TumCCA↑, MMP↓, Casp3↑, P53↑, BAX↑, Mcl-1↓, EGFR↓, Src↑, KDR/FLK-1↓, p‑IGF-1↓, PI3K↓, Akt↓,
2188- SK,    Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment
- Review, Var, NA
ROS↑, EGFR↓, PI3K↓, Akt↓, angioG↓, Apoptosis↑, Necroptosis↑, GSH↓, Ca+2↓, MMP↓, ERK↓, p38↑, proCasp3↑, eff↓, VEGF↓, FOXO3↑, EGR1↑, SIRT1↑, RIP1↑, RIP3↑, BioAv↓, NF-kB↓, Half-Life↓,
309- SNP,    Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells
- in-vitro, NA, A431
ROS↑, Akt↓, p‑ERK↓,
334- SNP,    Silver-Based Nanoparticles Induce Apoptosis in Human Colon Cancer Cells Mediated Through P53
- in-vitro, Colon, HCT116
Bax:Bcl2↑, P53↑, P21↑, Casp3↑, Casp8↑, Casp9↑, Akt↓, NF-kB↓, DNAdam↑,
324- SNP,  CPT,    Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells
- in-vitro, Cerv, HeLa
ROS↑, Casp3↑, Casp9↑, Casp6↑, GSH↓, SOD↓, GPx↓, MMP↓, P53↑, P21↑, Cyt‑c↑, BID↑, BAX↑, Bcl-2↓, Bcl-xL↓, Akt↓, Raf↓, ERK↓, MAP2K1/MEK1↓, JNK↑, p38↑,
377- SNP,    Anticancer Action of Silver Nanoparticles in SKBR3 Breast Cancer Cells through Promotion of Oxidative Stress and Apoptosis
- in-vitro, BC, SkBr3
ROS↑, Apoptosis↑, Bax:Bcl2↑, VEGF↑, Akt↓, PI3K↓, TAC↓, TOS↑, OSI↑, MDA↑, Casp3↑, Casp7↑,
2288- SNP,    Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model
- Review, Var, NA
*ROS↑, Akt↓, ERK↓, DNAdam↑, Ca+2↑, ROS↑, MMP↓, Cyt‑c↑, TumCCA↑, DNAdam↑, Apoptosis↑, P53↑, p‑ERK↑, ER Stress↑, cl‑ATF6↑, GRP78/BiP↑, CHOP↑, UPR↑,
4549- SNP,    Silver nanoparticles: Synthesis, medical applications and biosafety
- Review, Var, NA - Review, Diabetic, NA
ROS↑, eff↑, other↝, DNAdam↑, EPR↑, eff↑, eff↑, TumMeta↓, angioG↓, *Bacteria↓, *eff↑, *AntiViral↑, *AntiFungal↑, eff↑, eff↑, TumCP↓, tumCV↓, P53↝, HIF-1↓, TumCCA↑, lipid-P↑, ATP↓, Cyt‑c↑, MMPs↓, PI3K↓, Akt↓, *Wound Healing↑, *Inflam↓, *Bone Healing↑, *glucose↓, *AntiDiabetic↑, *BBB↑,
4426- SNP,    Antiangiogenic properties of silver nanoparticles
- Study, NA, NA
angioG↑, TumCG↓, TumCI↓, TumMeta↓, VEGF↓, PI3K↓, Akt↓,
1935- TQ,    Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis
- Review, OS, NA
Apoptosis↑, TumCCA↑, angioG↓, TumMeta↓, ROS↑, P53↑, Twist↓, E-cadherin↑, N-cadherin↓, NF-kB↓, IL8↓, XIAP↓, Bcl-2↓, STAT3↓, MAPK↓, PI3K↓, Akt↓, ERK↓, MMP2↓, MMP9↓, *ROS↓, HO-1↑, selectivity↑, TumCG↓,
2127- TQ,    Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways
- Review, GBM, NA
chemoP↑, ChemoSen↑, BioAv↑, PTEN↑, PI3K↓, Akt↓, TumCCA↓, NF-kB↓, p‑Akt↓, p65↓, XIAP↓, Bcl-2↓, COX2↓, VEGF↓, mTOR↓, RAS↓, Raf↓, MEK↓, ERK↓, MMP2↓, MMP9↓, TumCMig↓, TumCI↓, Casp↑, cl‑PARP↑, ROS⇅, ROS↑, MMP↓, eff↑, Telomerase↓, DNAdam↑, Apoptosis↑, STAT3↓, RadioS↑,
2123- TQ,    Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma
- in-vitro, lymphoma, PEL
Akt↓, ROS↑, BAX↓, MMP↓, Cyt‑c↑, eff↑, Casp9↑, Casp3↑, cl‑PARP↑, DR5↑,
2084- TQ,    Thymoquinone, as an anticancer molecule: from basic research to clinical investigation
- Review, Var, NA
*ROS↓, *chemoP↑, ROS↑, ROS⇅, MUC4↓, selectivity↑, AR↓, cycD1↓, Bcl-2↓, Bcl-xL↓, survivin↓, Mcl-1↓, VEGF↓, cl‑PARP↑, ROS↑, HSP70/HSPA5↑, P53↑, miR-34a↑, Rac1↓, TumCCA↑, NOTCH↓, NF-kB↓, IκB↓, p‑p65↓, IAP1↓, IAP2↑, XIAP↓, TNF-α↓, COX2↓, Inflam↓, α-tubulin↓, Twist↓, EMT↓, mTOR↓, PI3K↓, Akt↓, BioAv↓, ChemoSen↑, BioAv↑, PTEN↑, chemoP↑, RadioS↑, *Half-Life↝, *BioAv↝,
3573- TQ,    Chronic diseases, inflammation, and spices: how are they linked?
- Review, Var, NA
NF-kB↓, XIAP↓, PI3K↓, Akt↓, STAT3↓, JAK2↓, cSrc↓, PCNA↓, MMP2↓, ERK↓, Ki-67↓, Bcl-2↓, VEGF↓, p65↓, COX2↓, MMP9↓,
3431- TQ,    PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
Glycolysis↓, Warburg↓, HK2↓, ATP↓, NADPH↓, PI3K↓, Akt↓, TumCP↓, E-cadherin↑, N-cadherin↓, Hif1a↓, PKM2↓, GlucoseCon↓, lactateProd↓, EMT↓,
3427- TQ,    Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets
ROS⇅, Fas↑, DR5↑, TRAIL↑, Casp3↑, Casp8↑, Casp9↑, P53↑, mTOR↓, Bcl-2↓, BID↓, CXCR4↓, JNK↑, p38↑, MAPK↑, LC3II↑, ATG7↑, Beclin-1↑, AMPK↑, PPARγ↑, eIF2α↓, P70S6K↓, VEGF↓, ERK↓, NF-kB↓, XIAP↓, survivin↓, p65↓, DLC1↑, FOXO↑, TET2↑, CYP1B1↑, UHRF1↓, DNMT1↓, HDAC1↓, IL2↑, IL1↓, IL6↓, IL10↓, IL12↓, TNF-α↓, iNOS↓, COX2↓, 5LO↓, AP-1↓, PI3K↓, Akt↓, cMET↓, VEGFR2↓, CXCL1↓, ITGA5↓, Wnt↓, β-catenin/ZEB1↓, GSK‐3β↓, Myc↓, cycD1↓, N-cadherin↓, Snail↓, Slug↓, Vim↓, Twist↓, Zeb1↓, MMP2↓, MMP7↓, MMP9↓, JAK2↓, STAT3↓, NOTCH↓, cycA1↓, CDK2↓, CDK4↓, CDK6↓, CDC2↓, CDC25↓, Mcl-1↓, E2Fs↓, p16↑, p27↑, P21↑, ChemoSen↑,
3397- TQ,    Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
ChemoSen↑, *Half-Life↝, *BioAv↝, *antiOx↑, *Inflam↓, *hepatoP↑, TumCP↓, TumCCA↑, Apoptosis↑, angioG↑, selectivity↑, JNK↑, p38↑, p‑NF-kB↑, ERK↓, PI3K↓, PTEN↑, Akt↓, mTOR↓, EMT↓, Twist↓, E-cadherin↓, ROS⇅, *Catalase↑, *SOD↑, *GSTA1↑, *GPx↑, *PGE2↓, *IL1β↓, *COX2↓, *MMP13↓, MMPs↓, TumMeta↓, VEGF↓, STAT3↓, BAX↑, Bcl-2↑, Casp9↑, Casp7↑, Casp3↑, cl‑PARP↑, survivin↓, cMyc↓, cycD1↓, p27↑, P21↑, GSK‐3β↓, β-catenin/ZEB1↓, chemoP↑,
3425- TQ,    Advances in research on the relationship between thymoquinone and pancreatic cancer
Apoptosis↑, TumCP↓, TumCI↓, TumMeta↓, ChemoSen↑, angioG↓, Inflam↓, NF-kB↓, PI3K↓, Akt↓, TGF-β↓, Jun↓, p38↑, MAPK↑, MMP9↓, PKM2↓, ROS↑, JNK↑, MUC4↓, TGF-β↑, Dose↝, FAK↓, NOTCH↓, PTEN↑, mTOR↓, Warburg↓, XIAP↓, COX2↓, Casp9↑, Ki-67↓, CD34↓, VEGF↓, MCP1↓, survivin↓, Cyt‑c↑, Casp3↑, H4↑, HDAC↓,
3423- TQ,    Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics
- Review, Var, NA
AntiCan↑, Inflam↓, hepatoP↑, RenoP↑, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, ROS↑, P53↑, PTEN↑, P21↑, p27↑, BRCA1↑, PI3K↓, Akt↓, MAPK↓, ERK↓, p‑ERK↓, MMPs↓, FAK↓, Twist↓, Zeb1↓, EMT↓, TumMeta↓, angioG↓, VEGF↓, HDAC↓, Maspin↑, SIRT1↑, DNMT1↓, DNMT3A↓, HDAC1↓, HDAC4↓,
3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, P53↑, PTEN↑, NF-kB↓, PPARγ↓, cMyc↓, Casp↑, *BioAv↓, BioAv↝, eff↑, survivin↓, Bcl-xL↓, Bcl-2↓, Akt↓, BAX↑, cl‑PARP↑, CXCR4↓, MMP9↓, VEGFR2↓, Ki-67↓, COX2↓, JAK2↓, cSrc↓, Apoptosis↑, p‑STAT3↓, cycD1↓, Casp3↑, Casp7↑, Casp9↑, N-cadherin↓, Vim↓, Twist↓, E-cadherin↑, ChemoSen↑, eff↑, EMT↓, ROS↑, DNMT1↓, eff↑, EZH2↓, hepatoP↑, Zeb1↓, RadioS↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, *NAD↑, *SIRT1↑, SIRT1↓, *Inflam↓, *CRP↓, *TNF-α↓, *IL6↓, *IL1β↓, *eff↑, *MDA↓, *NO↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, PI3K↓, mTOR↓,
4565- TQ,    Thymoquinone in the clinical treatment of cancer: Fact or fiction?
- Review, BC, NA
Dose↝, TumCCA↑, P21↑, cycD1↓, TumCI↑, TumMeta↓, Bcl-2↓, Bcl-xL↓, survivin↓, PTEN↑, Akt↓, P53↑, NF-kB↓, cardioP↑, Dose↝,
2350- UA,    Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Akt↓, Glycolysis↓, HK2↓, PKM2↓, ATP↓, lactateProd↓, AMPK↑, TumAuto↑, Apoptosis↑, ERK↓, MMP↓, NO↑, ROS↑, DNAdam↑,
3135- VitC,    The interplay between vitamin C and thyroid
- Review, Thyroid, NA
AntiCan↑, ChemoSen↑, radioP↑, MAPK↓, ERK↓, PI3K↓, Akt↓, QoL↑, OS↑,
2365- VitD3,    Vitamin D Affects the Warburg Effect and Stemness Maintenance of Non- Small-Cell Lung Cancer Cells by Regulating the PI3K/AKT/mTOR Signaling Pathway
- in-vitro, Lung, A549 - in-vitro, Lung, H1975 - in-vivo, NA, NA
Glycolysis↓, Warburg↓, GLUT1↓, LDHA↓, HK2↓, PKM2↓, OCT4↓, SOX2↓, Nanog↓, PI3K↓, Akt↓, mTOR↓,
1213- VitK2,    Vitamin K2 Inhibits Hepatocellular Carcinoma Cell Proliferation by Binding to 17β-Hydroxysteroid Dehydrogenase 4
- in-vitro, HCC, HepG2
HSD17B4↓, Akt↓, MEK↓, ERK↓, STAT3↓, TumCP↓,
2301- Wog,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
HK2↓, PDK1↓, LDHA↓, Hif1a↓, PI3K↓, Akt↓, Glycolysis↓, P53↑, GLUT1↓,
2425- γ-Toc,    Anticancer Effects of γ-Tocotrienol Are Associated with a Suppression in Aerobic Glycolysis
- in-vitro, NA, MCF-7 - in-vivo, NA, NA
TumCG↓, GlucoseCon↓, ATP↓, lactateProd↓, Glycolysis↓, HK2↓, PFK↓, PKM2↓, LDHA↓, Akt↓, p‑mTOR↓, cMyc↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 263

Results for Effect on Cancer/Diseased Cells:
12LOX↓,2,   14-3-3 proteins↓,1,   4E-BP1↓,1,   p‑4E-BP1↓,1,   5HT↓,1,   5LO↓,3,   ACC↑,2,   ACLY↓,3,   ADAM10↓,1,   adiP↑,1,   AEG1↓,1,   AIF↑,3,   Akt↓,251,   Akt↑,1,   p‑Akt↓,28,   AKT1↓,1,   Akt2↓,1,   ALAT↓,4,   ALDH↓,1,   ALDH1A1↓,1,   ALP↓,4,   AMPK↓,2,   AMPK↑,19,   p‑AMPK↑,1,   AMPKα↑,1,   angioG↓,47,   angioG↑,2,   AntiAg↓,1,   AntiAg↑,2,   AntiCan↓,1,   AntiCan↑,15,   antiOx↑,6,   antiOx⇅,1,   AntiTum↑,5,   AP-1↓,9,   APAF1↑,4,   Apoptosis?,1,   Apoptosis↑,90,   AQPs↓,1,   AR↓,12,   AR-V7?,1,   ASC↑,1,   ASK1↑,1,   AST↓,3,   ATF2↓,1,   ATF3↑,1,   ATF4↓,1,   ATF4↑,6,   ATF6↑,2,   cl‑ATF6↑,1,   ATG3↓,1,   ATG3↑,1,   ATG5↑,3,   ATG7↑,2,   p‑ATM↑,1,   ATP↓,18,   mt-ATP↓,1,   ATPase↓,1,   p‑ATR↑,1,   AXL↓,1,   BAD↓,2,   BAD↑,5,   p‑BAD↓,2,   Bak↑,7,   BAX↓,2,   BAX↑,61,   Bax:Bcl2↑,17,   BBB↓,1,   BBB↑,2,   Bcl-2↓,66,   Bcl-2↑,2,   Bcl-2∅,1,   cl‑Bcl-2↓,1,   Bcl-xL↓,19,   Beclin-1↓,3,   Beclin-1↑,9,   BID↓,1,   BID↑,5,   BIM↓,1,   BIM↑,7,   BioAv↓,12,   BioAv↑,16,   BioAv↝,5,   BioEnh?,1,   BioEnh↑,4,   BMPs↑,2,   BNIP3↑,3,   BOK↑,1,   BRCA1↑,1,   CA↓,1,   Ca+2↓,4,   Ca+2↑,19,   Ca+2↝,1,   i-Ca+2?,1,   i-Ca+2↑,1,   CAFs/TAFs↓,1,   CAIX↓,1,   CAIX↑,1,   cal2↓,1,   cal2↑,1,   CaMKII ↓,2,   cardioP↑,7,   Casp↑,16,   Casp1↓,1,   Casp10↑,1,   Casp12↑,2,   Casp2↑,3,   Casp3↓,2,   Casp3↑,82,   Casp3∅,1,   cl‑Casp3↑,9,   proCasp3↑,1,   Casp6↑,2,   Casp7↑,10,   cl‑Casp7↑,1,   Casp8↑,20,   Casp8∅,1,   cl‑Casp8↑,5,   Casp9↓,1,   Casp9↑,47,   cl‑Casp9↑,7,   proCasp9↓,1,   Catalase↓,4,   Catalase↑,1,   CCR7↓,1,   CD133↓,4,   CD31↓,2,   CD34↓,1,   CD4+↑,1,   CD44↓,4,   CD8+↑,1,   CDC2↓,6,   CDC2↑,1,   CDC25↓,6,   CDK1↓,8,   p‑CDK1↓,2,   CDK1/2/5/9↓,1,   CDK2↓,26,   CDK2↑,2,   CDK4↓,30,   CDK4/6↓,1,   CDK6↓,16,   CDK8↓,1,   cFLIP↓,5,   cFos↓,6,   chemoP↓,1,   chemoP↑,18,   ChemoSen↓,2,   ChemoSen↑,54,   ChemoSen⇅,1,   ChemoSideEff↓,6,   CHK1↓,2,   p‑CHK1↑,1,   Chk2↓,1,   p‑Chk2↑,1,   CHOP↑,17,   CIP2A↓,1,   cJun↓,5,   p‑cJun↑,1,   CK2↓,7,   CLDN1↓,1,   CLDN2↓,2,   cMET↓,6,   p‑cMET↑,1,   cMyc↓,28,   p‑cMyc↑,1,   COL1↓,2,   COL3A1↓,1,   COL4↓,1,   COMT↓,2,   COX1↓,1,   COX2↓,48,   COX2↑,2,   CRP↓,3,   CSCs↓,13,   cSrc↓,3,   CTR1↑,1,   CXCL1↓,1,   CXCL12↓,1,   CXCR4↓,10,   Cyc↓,1,   cycA1↓,8,   cycA1↑,2,   CycB↓,16,   CycB↑,1,   cycD1↓,51,   CycD3↓,1,   cycE↓,13,   cycE↑,1,   cycE1↓,2,   CYP19?,1,   CYP19↓,1,   CYP1A1↓,1,   CYP1A1↑,1,   CYP1A2↓,1,   CYP1B1↑,1,   Cyt‑c↑,52,   DFF45↑,1,   Diablo↑,8,   Diff↓,1,   Diff↑,1,   DLC1↑,1,   DNAdam↑,33,   DNArepair↑,1,   DNMT1↓,6,   DNMT3A↓,1,   DNMTs↓,2,   Dose?,3,   Dose↓,1,   Dose↑,3,   Dose↝,9,   Dose∅,5,   DR4↑,3,   DR5↓,1,   DR5↑,20,   E-cadherin↓,6,   E-cadherin↑,31,   E2Fs↓,1,   E6↓,4,   E7↓,4,   ECAR↓,1,   eff↓,15,   eff↑,105,   eff↝,5,   eff∅,1,   EGF↓,6,   EGFR↓,34,   p‑EGFR↓,3,   EGR1↑,1,   eIF2α↓,2,   eIF2α↑,4,   p‑eIF2α↑,2,   EM↑,1,   EMT↓,53,   eNOS↓,3,   EPR↑,2,   ER Stress↓,1,   ER Stress↑,30,   ER-α36↓,1,   ERK↓,54,   ERK↑,4,   p‑ERK↓,11,   p‑ERK↑,3,   EZH2↓,2,   FABP4↑,1,   FADD↑,2,   FAK↓,12,   p‑FAK↓,2,   p‑FAK↑,1,   Fap1↓,1,   Fas↑,10,   FasL↑,2,   FASN↓,4,   FASN↑,1,   FBPase↑,1,   Fenton↑,2,   Ferroptosis↑,4,   FGF↓,2,   FGF↑,1,   FGFR1↓,4,   FGFR2↓,1,   Fibronectin↓,6,   FOXD3↑,1,   Foxm1↓,3,   FOXO↑,1,   FOXO1↓,1,   FOXO1↑,1,   FOXO3↓,3,   FOXO3↑,6,   p‑FOXO3↓,1,   FOXO4↓,1,   FOXP3↓,1,   FTH1↓,1,   Furin↓,2,   GIT1↓,1,   Gli↓,1,   Gli1↓,5,   GLI2↓,2,   GLO-I↓,1,   glucoNG↑,1,   GlucoseCon↓,18,   GLUT1↓,20,   GLUT1↑,1,   GLUT3↑,1,   GLUT4↓,1,   GlutMet↓,1,   glyC↓,1,   Glycolysis↓,33,   GPx↓,3,   GPx↑,2,   GPx1↓,1,   GPx4↓,4,   GRP58↓,1,   GRP78/BiP↑,12,   GSDME↑,1,   GSH↓,13,   GSH↑,7,   GSK‐3β↓,9,   GSK‐3β↑,4,   p‑GSK‐3β↓,4,   GSR↓,1,   GSR↑,1,   GSTs↓,1,   GSTs↑,2,   GutMicro↑,3,   H2O2↓,1,   H2O2↑,2,   H3↓,1,   H3↑,1,   ac‑H3↑,1,   H4↑,1,   ac‑H4↑,1,   Half-Life↓,2,   Half-Life↝,5,   Half-Life∅,2,   HATs↑,1,   HDAC↓,12,   HDAC∅,1,   HDAC1↓,5,   HDAC10↓,1,   HDAC10↑,1,   HDAC2↓,2,   HDAC3↓,3,   HDAC4↓,2,   HDAC8↓,3,   HemoG↓,1,   hepatoP↑,4,   HER2/EBBR2↓,9,   p‑HER2/EBBR2↓,1,   HEY1↓,2,   HGF/c-Met↓,2,   HH↓,6,   HIF-1↓,4,   Hif1a↓,43,   Hippo↓,1,   HK2↓,25,   HO-1↓,4,   HO-1↑,14,   HR↓,1,   HSD17B4↓,1,   HSF1↓,2,   HSP27↓,4,   HSP27↑,1,   HSP27↝,1,   HSP70/HSPA5↓,7,   HSP70/HSPA5↑,2,   HSP70/HSPA5↝,1,   HSP90↓,7,   HSPs↓,1,   hTERT↓,6,   IAP1↓,2,   IAP2↓,1,   IAP2↑,1,   cl‑IAP2↑,1,   ICAD↓,1,   ICAM-1↓,1,   IFN-γ↓,3,   IFN-γ↑,1,   IGF-1↓,10,   p‑IGF-1↓,1,   IGF-1R↓,7,   IGFBP1↑,1,   IGFBP3↓,1,   IGFBP3↑,2,   IGFBP7↑,1,   p‑IGFR↓,1,   IKKα↓,5,   IKKα↑,1,   p‑IKKα↓,1,   IL1↓,4,   IL10↓,6,   IL10↑,1,   IL12↓,2,   IL1α↓,1,   IL1β↓,9,   IL2↓,2,   IL2↑,4,   IL4↓,2,   IL6↓,25,   IL6↑,1,   IL8↓,7,   IL8↑,1,   IM↓,1,   Inflam↓,9,   iNOS↓,9,   Insulin↓,2,   IRE1↑,3,   Iron↑,3,   ITGA5↓,1,   ITGB1↓,1,   ITGB1↑,1,   ITGB4↓,1,   IκB↓,1,   IκB↑,1,   p‑IκB↓,2,   JAK↓,3,   JAK1↓,2,   JAK2↓,8,   JNK↓,2,   JNK↑,17,   p‑JNK↓,2,   p‑JNK↑,3,   Jun↓,1,   JWA↑,1,   K17↓,1,   KDR/FLK-1↓,2,   Keap1↓,1,   Ki-67↓,18,   lactateProd↓,16,   LC3‑Ⅱ/LC3‑Ⅰ↓,1,   LC3‑Ⅱ/LC3‑Ⅰ↑,3,   LC3B↓,1,   LC3B↑,1,   LC3B-II↑,3,   LC3II↓,1,   LC3II↑,5,   LDH↓,7,   LDH↑,1,   i-LDH↓,1,   LDHA↓,10,   LDL↓,1,   LEF1↓,1,   Let-7↑,2,   lipid-P↓,5,   lipid-P↑,9,   LOX1↓,1,   M2 MC↓,1,   MAD↓,1,   MALAT1↓,1,   MAP2K1/MEK1↓,1,   MAPK↓,22,   MAPK↑,12,   MARK4↓,1,   Maspin↑,1,   Mcl-1↓,21,   MCP1↓,2,   MCU↓,1,   MDA↓,1,   MDA↑,5,   MDM2↓,6,   MDR1↓,3,   MDSCs↓,1,   MEK↓,7,   MET↓,1,   MIP2↓,1,   miR-155↓,1,   miR-21↓,1,   miR-21↑,1,   miR-210↓,1,   miR-34a↑,2,   mitResp↓,2,   MKP1↓,1,   MKP2↓,1,   MLKL↑,1,   MMP↓,49,   MMP↑,2,   MMP-10↓,1,   MMP1↓,4,   MMP13↓,1,   MMP2↓,54,   MMP2↑,1,   MMP3↓,4,   MMP7↓,10,   MMP9↓,63,   MMP9↑,2,   MMPs↓,19,   MPO↓,1,   MRP1↓,1,   mtDam↑,5,   mTOR↓,100,   mTOR⇅,1,   mTOR∅,1,   p‑mTOR↓,11,   mTORC1↓,5,   p‑mTORC1↓,1,   mTORC2↓,2,   mTORC2↑,1,   MUC4↓,2,   Myc↓,3,   N-cadherin↓,19,   n-MYC↓,2,   NA↓,3,   NADPH↓,3,   NADPH↑,2,   NADPH/NADP+↓,1,   NAIP↓,1,   Nanog↓,6,   NCAM↑,1,   NCOA4↑,1,   Necroptosis↑,3,   necrosis↑,1,   NEDD9↓,1,   Nestin↓,4,   neuroP↑,5,   NF-kB↓,92,   NF-kB↑,2,   p‑NF-kB↑,2,   NICD↓,1,   NK cell↑,1,   NLRP3↓,1,   NO↓,4,   NO↑,3,   NO↝,1,   NOTCH↓,13,   NOTCH1↓,5,   NOTCH1↑,3,   NOTCH3↓,2,   NOXA↑,2,   NQO1↑,3,   NRF2↓,12,   NRF2↑,13,   p‑NRF2↓,1,   OCR↓,2,   OCR↑,1,   OCT4↓,4,   oncosis↑,1,   OS↑,6,   OSI↑,1,   other↓,3,   other↝,3,   OXPHOS↓,1,   OXPHOS↝,1,   P-gp↓,5,   p16↑,3,   p19↑,1,   P21↓,1,   P21↑,45,   p27↓,1,   p27↑,25,   p38↓,4,   p38↑,18,   p‑p38↑,2,   P450↓,4,   p50↓,3,   P53?,1,   P53↓,2,   P53↑,54,   P53↝,1,   p‑P53↑,1,   p53 Wildtype∅,1,   p62↓,3,   p62↑,4,   p65↓,5,   p‑p65↓,2,   p70S6↓,4,   p‑p70S6↓,1,   P70S6K↓,5,   p‑P70S6K↓,1,   p85S6K↓,1,   P90RSK↓,1,   p‑P90RSK↑,1,   PARP↓,3,   PARP↑,6,   p‑PARP↑,1,   cl‑PARP↑,36,   PARP1↑,1,   p‑PCK1↓,1,   PCNA↓,16,   PD-1↓,2,   PD-L1↓,4,   PDGF↓,4,   PDGFR-BB↓,1,   PDH↑,1,   PDH↝,1,   PDK1↓,10,   PDK3↑,1,   PERK↑,4,   p‑PERK↑,1,   PFK↓,4,   PFK1↓,3,   PFK2↓,2,   PFKP↓,1,   PGE2↓,11,   PI3K↓,128,   PI3K↑,1,   p‑PI3K↓,2,   PI3K/Akt↓,3,   PIK3CA↓,1,   PKCδ↓,5,   PKM2↓,21,   PKM2:PKM1↓,1,   POLD1↓,1,   polyA↓,1,   PPARα↓,1,   PPARα↑,1,   PPARγ↓,2,   PPARγ↑,3,   pRB↓,1,   pRB↑,1,   p‑pRB↓,2,   PSA↓,1,   PTCH1↓,1,   PTEN↓,2,   PTEN↑,29,   p‑PTEN↓,1,   PUMA↑,3,   PYCR1↓,2,   Pyro↑,1,   Pyruv↓,1,   QoL↑,1,   Rac1↓,1,   RAD51↓,1,   radioP↑,4,   RadioS↑,27,   Raf↓,6,   RAGE↓,2,   RANKL↓,1,   RAS↓,6,   RAS↑,1,   RB1↓,1,   p‑RB1↓,2,   RenoP↑,4,   RET↓,1,   Rho↓,1,   Rho↑,1,   RIP1↓,2,   RIP1↑,1,   p‑RIP1↑,1,   RIP3↓,1,   RIP3↑,1,   Risk↓,1,   ROCK1↓,2,   ROCK1↑,1,   ROS↓,22,   ROS↑,128,   ROS⇅,6,   ROS↝,1,   i-ROS↑,1,   mt-ROS↑,2,   p‑S6↓,1,   S6K↓,1,   p‑S6K↓,1,   SCF↓,2,   SDC1↑,1,   Securin↓,1,   selectivity↑,22,   Sepsis↓,1,   Shh↓,8,   SHP1↑,1,   SIRT1↓,4,   SIRT1↑,6,   SIRT2↓,1,   SIRT3↓,1,   SIRT3↑,1,   SIRT6↓,1,   SIRT6↑,1,   Slug↓,11,   SMAD2↓,3,   SMAD3↓,5,   Smo↓,2,   Snail?,1,   Snail↓,21,   Snail↑,1,   SOD↓,6,   SOD↑,7,   SOD1↓,1,   SOD1↑,1,   SOD2↑,2,   SOX2↓,8,   SOX9↓,1,   Sp1/3/4↓,5,   Src↓,3,   Src↑,1,   SREBF2↓,1,   STAC2↓,1,   STAT↓,1,   STAT3↓,43,   p‑STAT3↓,11,   p‑STAT3↑,1,   STAT5↓,1,   STAT6↓,1,   survivin↓,28,   Symptoms↓,1,   T-Cell↑,1,   TAC↓,1,   TAp63α↑,1,   TAZ↓,1,   TCA↓,1,   TCA↑,1,   TCF↓,1,   TCF↑,1,   TCF-4↓,2,   Telomerase↓,7,   TET1↓,1,   TET1↑,2,   TET2↑,1,   TGF-β↓,12,   TGF-β↑,2,   Th1 response↑,2,   TIMP1↓,1,   TIMP1↑,6,   TIMP2↓,1,   TIMP2↑,2,   TLR4↓,4,   TNF-α↓,19,   TNF-α↑,3,   TNF-α∅,1,   TNFR 1↑,1,   TOP1?,1,   TOP1↓,4,   TOP2↓,6,   TOS↑,1,   toxicity↓,3,   toxicity↝,1,   TP53↑,3,   TRAIL↑,4,   TRAILR↑,2,   Treg lymp↓,1,   TRPV1↑,2,   Trx1↑,1,   TrxR↓,5,   TrxR1↓,1,   TS↓,1,   TSC1↑,1,   TSC2↑,3,   TSP-1↑,3,   TumAuto↑,21,   TumCA↓,1,   TumCCA↓,1,   TumCCA↑,87,   TumCD↑,2,   TumCG↓,30,   TumCG↑,1,   TumCI↓,41,   TumCI↑,1,   TumCMig↓,38,   TumCMig↑,2,   TumCP↓,64,   tumCV↓,19,   TumMeta↓,31,   TumMeta↑,2,   TumW↓,3,   Twist↓,20,   tyrosinase↓,1,   UHRF1↓,1,   uPA↓,21,   uPAR↓,1,   UPR↑,6,   VCAM-1↓,1,   VEGF↓,73,   VEGF↑,2,   VEGFR2↓,17,   Vim?,1,   Vim↓,26,   Vim↑,1,   Warburg↓,9,   Wnt?,1,   Wnt↓,22,   Wnt/(β-catenin)↓,5,   XBP-1↓,1,   XIAP↓,19,   YAP/TEAD↓,2,   YAP/TEAD↑,1,   Zeb1↓,9,   ZEB2↓,1,   ZO-1↑,1,   α-SMA↓,1,   α-SMA↑,1,   α-tubulin↓,2,   ac‑α-tubulin↑,1,   β-catenin/ZEB1↓,33,   γH2AX↑,2,  
Total Targets: 762

Results for Effect on Normal Cells:
5LO↓,1,   AChE↓,3,   Akt↓,13,   Akt↑,1,   ALAT↓,4,   ALP↓,1,   AMPK↓,1,   AMPK↑,2,   angioG↓,2,   angioG↑,2,   AntiAg↑,6,   AntiAge↑,1,   AntiCan↑,1,   AntiDiabetic↑,1,   AntiFungal↑,1,   antiOx?,1,   antiOx↓,2,   antiOx↑,34,   AntiViral↑,1,   Apoptosis↓,1,   APP↓,1,   AST↓,5,   Aβ↓,4,   BACE↓,1,   Bacteria↓,3,   BBB↑,8,   BChE↓,2,   Bcl-2↓,1,   BioAv↓,18,   BioAv↑,9,   BioAv↝,7,   BioEnh↑,1,   Bone Healing↑,1,   BP↓,1,   Ca+2↓,2,   Ca+2↑,1,   Ca+2↝,1,   cardioP↓,1,   cardioP↑,14,   Casp3?,1,   Casp3↓,4,   Casp3∅,1,   Catalase↑,16,   CDK2↓,1,   CDK4↓,1,   chemoP↑,3,   p‑cMyc↑,1,   cognitive↓,1,   cognitive↑,5,   Copper↓,1,   COX1↓,1,   COX2↓,13,   creat↓,1,   CREB↑,1,   CRP↓,1,   cycD1↓,1,   cycE↓,1,   Cyt‑c∅,1,   DNArepair↑,1,   Dose↑,1,   Dose↝,1,   eff↑,5,   EGFR↓,1,   eNOS↑,1,   ERK↓,2,   ERK↑,2,   FASN↓,1,   Fenton↓,1,   FGF↑,1,   FOXO1↝,1,   FOXO3↑,1,   GABA↑,1,   glucose↓,1,   GlucoseCon↑,1,   GPx↓,1,   GPx↑,12,   GPx1↑,1,   GSH↑,19,   GSR↑,5,   GSTA1↑,2,   GSTs↓,1,   GSTs↑,3,   GutMicro↑,2,   H2O2↓,4,   H2S↑,1,   Half-Life↓,2,   Half-Life↑,1,   Half-Life↝,5,   Half-Life∅,2,   hepatoP↑,12,   HGF/c-Met↑,1,   Hif1a↓,1,   HMGB1↓,1,   HO-1↑,7,   IFN-γ↓,1,   IFN-γ↑,1,   IGF-1↑,1,   IKKα↓,1,   IKKα↑,1,   IL1↑,1,   IL10↓,4,   IL10↑,1,   IL17↓,2,   IL18↓,1,   IL1β↓,12,   IL2↓,1,   IL22↓,1,   IL4↓,1,   IL5↓,1,   IL6↓,14,   IL8↓,4,   Inflam↓,36,   Inflam↑,1,   iNOS↓,6,   Iron↓,1,   IronCh↓,1,   IronCh↑,2,   p‑JNK↓,1,   Keap1↓,3,   Keap1↑,1,   LDH↓,2,   LDL↓,1,   lipid-P↓,6,   lipidLev↓,1,   MAOA↓,1,   MAOB↓,1,   MAPK↓,7,   MDA↓,7,   memory↑,11,   MMP↑,2,   MMP∅,1,   MMP13↓,1,   MMP2↓,1,   MMP3↓,1,   MMP9↓,1,   MMPs↑,1,   motorD↑,1,   MPO↓,3,   mTOR↓,3,   NAD↑,1,   NADPH↓,2,   NADPH↑,2,   neuroP↑,26,   NF-kB↓,13,   NLRP3↓,1,   NO↓,8,   NO↑,1,   NRF2↑,18,   other↓,2,   other↑,1,   P-gp↓,2,   p16↓,1,   P21↓,1,   p300↓,1,   p38↓,2,   P53↓,1,   PCNA↓,1,   PDGF↑,1,   PGC-1α↑,1,   PGE2↓,7,   PGE2↑,1,   PI3K↓,7,   PI3K↑,2,   PKCδ?,1,   PKCδ↓,1,   PPARγ↓,1,   PPARγ↑,1,   p‑PPARγ↓,1,   Prx↑,1,   PTEN↓,1,   PTEN↑,1,   Rac1↑,1,   p‑Rac1↓,1,   RAS↓,1,   RB1↓,1,   RenoP↑,5,   Rho↓,1,   RNS↓,1,   ROS↓,38,   ROS↑,2,   mt-ROS↓,1,   Sepsis↓,2,   SIRT1↑,3,   SIRT3↑,2,   SOD↑,16,   SOD2↑,2,   STAT3↓,1,   TAC↑,1,   p‑tau↓,1,   TBARS↓,1,   TGF-β↓,1,   TGF-β1↑,1,   Th1 response↓,1,   Th2↑,2,   TIMP2↑,1,   TLR2↓,2,   TLR4↓,3,   TNF-α↓,15,   TNF-α↑,1,   toxicity↓,9,   toxicity↑,1,   toxicity∅,5,   uPA↓,1,   VEGF↓,3,   VEGF↑,1,   VitC↑,1,   VitE↑,1,   Wound Healing↑,1,   α-SMA↓,1,  
Total Targets: 209

Scientific Paper Hit Count for: Akt, PKB-Protein kinase B
17 Apigenin (mainly Parsley)
14 Quercetin
13 Fisetin
12 Resveratrol
12 Thymoquinone
10 Curcumin
9 Berberine
9 Chrysin
8 EGCG (Epigallocatechin Gallate)
8 Honokiol
8 Shikonin
7 Alpha-Lipoic-Acid
7 Propolis -bee glue
7 Ellagic acid
7 Silver-NanoParticles
6 Baicalein
6 Magnolol
6 Rosmarinic acid
6 Sulforaphane (mainly Broccoli)
5 Ashwagandha
5 Magnetic Fields
5 Citric Acid
5 Emodin
5 Lycopene
5 Piperlongumine
4 Capsaicin
4 Naringin
3 Artemisinin
3 Boswellia (frankincense)
3 Luteolin
3 Silymarin (Milk Thistle) silibinin
2 Gemcitabine (Gemzar)
2 Cisplatin
2 Chemotherapy
2 5-fluorouracil
2 Baicalin
2 Radiotherapy/Radiation
2 Deguelin
2 diet FMD Fasting Mimicking Diet
2 Ferulic acid
2 Melatonin
2 Sanguinarine
1 Allicin (mainly Garlic)
1 Andrographis
1 Astragalus
1 Boron
1 Carnosic acid
1 Trastuzumab
1 Carvacrol
1 Chlorogenic acid
1 gefitinib, erlotinib
1 Dichloroacetophenone(2,2-)
1 Docosahexaenoic Acid
1 diet Methionine-Restricted Diet
1 Sorafenib (brand name Nexavar)
1 Fucoidan
1 Ai-Tong-An-Gao-Ji
1 flavonoids
1 Gambogic Acid
1 Garcinol
1 Genistein
1 Graviola
1 Hydrogen Gas
1 itraconazole
1 Juglone
1 Laetrile B17 Amygdalin
1 Licorice
1 Metformin
1 Magnetic Field Rotating
1 Myricetin
1 Parthenolide
1 sericin
1 Piperine
1 Plumbagin
1 Pterostilbene
1 Selenite
1 Auranofin
1 Formononetin
1 acetazolamide
1 Camptothecin
1 Ursolic acid
1 Vitamin C (Ascorbic Acid)
1 Vitamin D3
1 Vitamin K2
1 Wogonin
1 γ-Tocotrienol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:1  prod#:%  Target#:4  State#:0  Dir#:1
wNotes=0 sortOrder:rid,rpid

 

Home Page