| Source: |
| Type: |
| Slug is well known to promote tumor progression and metastasis through the epithelial-mesenchymal transition (EMT), causing loss of cell adhesion and polarity while conferring migratory and invasive properties. Slug/SNAI2: A transcription factor that belongs to the Snail family. It is best known for its role in regulating epithelial-to-mesenchymal transition (EMT). Expression: Upregulation of Slug in cancers is often associated with the induction of EMT. This causes cells to lose epithelial markers (like E-cadherin) and gain mesenchymal markers, leading to increased invasiveness. Metastatic Spread: By promoting EMT, high levels of Slug facilitate tumor cell dissemination and metastasis. Cancer Stem Cells: There is evidence suggesting that EMT, spurred by factors like Slug, can increase the proportion of cancer stem cells (CSCs). These CSCs are thought to be key players in tumor recurrence and maintenance. General Trend: High Slug expression in various cancers (including breast, colorectal, head and neck, and others) is frequently correlated with a more aggressive phenotype and poorer clinical outcomes. |
| 240- | Api, | The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-κB signaling |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | CD44+ |
| 1560- | Api, | Apigenin as an anticancer agent |
| - | Review, | NA, | NA |
| 3383- | ART/DHA, | Dihydroartemisinin: A Potential Natural Anticancer Drug |
| - | Review, | Var, | NA |
| 3160- | Ash, | Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal |
| - | Review, | Var, | NA |
| 2719- | BetA, | Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential |
| - | in-vitro, | CRC, | T24 | - | in-vitro, | Bladder, | UMUC3 | - | in-vitro, | Bladder, | 5637 |
| 1106- | CGA, | Chlorogenic Acid Inhibits Epithelial-Mesenchymal Transition and Invasion of Breast Cancer by Down-Regulating LRP6 |
| - | vitro+vivo, | BC, | MCF-7 |
| 2785- | CHr, | Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin |
| - | Review, | Var, | NA |
| - | in-vitro, | BC, | NA |
| 433- | CUR, | Curcumin Inhibits the Migration and Invasion of Non-Small-Cell Lung Cancer Cells Through Radiation-Induced Suppression of Epithelial-Mesenchymal Transition and Soluble E-Cadherin Expression |
| - | in-vitro, | Lung, | A549 |
| 478- | CUR, | Curcumin decreases epithelial‑mesenchymal transition by a Pirin‑dependent mechanism in cervical cancer cells |
| - | in-vitro, | Cerv, | SiHa |
| 685- | EGCG, | CUR, | SFN, | RES, | GEN | The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein |
| - | Analysis, | NA, | NA |
| 1155- | F, | The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations |
| - | Review, | NA, | NA |
| 1118- | Ge, | Grape Seed Proanthocyanidins Inhibit Migration and Invasion of Bladder Cancer Cells by Reversing EMT through Suppression of TGF- β Signaling Pathway |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | 5637 |
| 2882- | HNK, | Honokiol Suppresses Perineural Invasion of Pancreatic Cancer by Inhibiting SMAD2/3 Signaling |
| - | in-vitro, | PC, | PANC1 |
| 2880- | HNK, | Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | 4T1 | - | in-vivo, | NA, | NA |
| 4535- | MAG, | 5-FU, | Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways |
| - | in-vitro, | Cerv, | NA |
| 3478- | MF, | One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study |
| - | Trial, | BC, | NA | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | C2C12 |
| 1227- | OLST, | Anti-Obesity Drug Orlistat Alleviates Western-Diet-Driven Colitis-Associated Colon Cancer via Inhibition of STAT3 and NF-κB-Mediated Signaling |
| - | in-vivo, | CRC, | NA |
| 1131- | PI, | Piperlongumine‑loaded nanoparticles inhibit the growth, migration and invasion and epithelial‑to‑mesenchymal transition of triple‑negative breast cancer cells |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 |
| 2952- | PL, | Piperlongumine suppresses bladder cancer invasion via inhibiting epithelial mesenchymal transition and F-actin reorganization |
| - | in-vitro, | Bladder, | T24 | - | in-vivo, | Bladder, | NA |
| 2948- | PL, | The promising potential of piperlongumine as an emerging therapeutics for cancer |
| - | Review, | Var, | NA |
| 2973- | PL, | The Natural Alkaloid Piperlongumine Inhibits Metastatic Activity and Epithelial-to-Mesenchymal Transition of Triple-Negative Mammary Carcinoma Cells |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | 4T1 |
| 3374- | QC, | Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis |
| - | Review, | Oral, | NA | - | Review, | AD, | NA |
| - | in-vitro, | Pca, | CD44+ | - | in-vitro, | NA, | CD133+ | - | in-vitro, | NA, | PC3 | - | in-vitro, | NA, | LNCaP |
| 80- | QC, | Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway |
| - | in-vitro, | Pca, | PC3 |
| - | in-vitro, | Pca, | pCSCs |
| 95- | QC, | Quercetin, a natural dietary flavonoid, acts as a chemopreventive agent |
| - | in-vitro, | Pca, | PC3 |
| 923- | QC, | Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health |
| - | Review, | Var, | NA |
| 3092- | RES, | Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action |
| - | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MCF-7 |
| 2687- | RES, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | NA, | NA | - | Review, | AD, | NA |
| 1466- | SFN, | Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway |
| - | vitro+vivo, | Thyroid, | FTC-133 |
| 3323- | SIL, | Anticancer therapeutic potential of silibinin: current trends, scope and relevance |
| - | Review, | Var, | NA |
| 1138- | TQ, | Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/Smad2/3 signaling pathway |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 3427- | TQ, | Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:1 prod#:% Target#:413 State#:0 Dir#:1
wNotes=0 sortOrder:rid,rpid