| Source: |
| Type: |
| Process through which new blood vessels. Angiogenesis, the process of new blood vessel formation from pre-existing vessels, plays a crucial role in cancer progression and metastasis. Tumors require a blood supply to grow beyond a certain size and to spread to other parts of the body. Vascular Endothelial Growth Factor (VEGF): VEGF is one of the most important pro-angiogenic factors. It stimulates endothelial cell proliferation and migration, leading to the formation of new blood vessels. Many tumors overexpress VEGF, which correlates with poor prognosis. Hypoxia-Inducible Factor (HIF): In response to low oxygen levels (hypoxia), tumors can activate HIF, which in turn promotes the expression of VEGF and other angiogenic factors. This mechanism allows tumors to adapt to their microenvironment and sustain growth. |
| 1340- | 3BP, | Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study |
| - | Review, | NA, | NA |
| 2667- | AL, | Allicin in Digestive System Cancer: From Biological Effects to Clinical Treatment |
| - | Review, | GC, | NA |
| 278- | ALA, | The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment |
| - | Review, | NA, | NA |
| 3455- | ALA, | Alpha-lipoic acid inhibits proliferation and migration of human vascular endothelial cells through downregulating HSPA12B/VEGF signaling axis |
| - | in-vitro, | Nor, | HUVECs |
| 1078- | And, | Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | HUVECs | - | in-vivo, | BC, | MCF-7 | - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | BT549 | - | in-vitro, | BC, | MDA-MB-361 |
| 1146- | AP, | Potential use of nanoformulated ascorbyl palmitate as a promising anticancer agent: First comparative assessment between nano and free forms |
| - | in-vivo, | Nor, | NA |
| 958- | Api, | Apigenin suppresses tumor angiogenesis and growth via inhibiting HIF-1α expression in non-small cell lung carcinoma |
| - | in-vitro, | Lung, | NCIH1299 |
| 2584- | Api, | Chemo, | The versatility of apigenin: Especially as a chemopreventive agent for cancer |
| - | Review, | Var, | NA |
| 2639- | Api, | Plant flavone apigenin: An emerging anticancer agent |
| - | Review, | Var, | NA |
| 2299- | Api, | Flavonoids Targeting HIF-1: Implications on Cancer Metabolism |
| - | Review, | Var, | NA |
| 1547- | Api, | Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading |
| - | Review, | NA, | NA |
| 3382- | ART/DHA, | Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge? |
| - | Review, | Var, | NA |
| 3383- | ART/DHA, | Dihydroartemisinin: A Potential Natural Anticancer Drug |
| - | Review, | Var, | NA |
| 3391- | ART/DHA, | Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug |
| - | Review, | Var, | NA |
| 3396- | ART/DHA, | Progress on the study of the anticancer effects of artesunate |
| - | Review, | Var, | NA |
| 1147- | ART/DHA, | Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1 |
| - | vitro+vivo, | Ovarian, | HO-8910 | - | vitro+vivo, | Nor, | HUVECs |
| 1334- | AS, | Astragalus membranaceus: A Review of Its Antitumor Effects on Non-Small Cell Lung Cancer |
| - | Review, | NA, | NA |
| 1358- | Ash, | Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms |
| - | Review, | Var, | NA |
| 1178- | Ash, | Withaferin A suppresses the expression of vascular endothelial growth factor in Ehrlich ascites tumor cells via Sp1 transcription factor |
| - | in-vitro, | Nor, | HUVECs | - | in-vivo, | NA, | NA |
| 3155- | Ash, | Overview of the anticancer activity of withaferin A, an active constituent of the Indian ginseng Withania somnifera |
| - | Review, | Var, | NA |
| 3174- | Ash, | Withaferin A Acts as a Novel Regulator of Liver X Receptor-α in HCC |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | Hep3B | - | in-vitro, | HCC, | HUH7 |
| 956- | BBR, | Berberine inhibits HIF-1alpha expression via enhanced proteolysis |
| - | in-vitro, | Nor, | HUVECs | - | in-vitro, | GC, | SCM1 |
| 2674- | BBR, | Berberine: A novel therapeutic strategy for cancer |
| - | Review, | Var, | NA | - | Review, | IBD, | NA |
| - | Trial, | BC, | NA |
| 2754- | BetA, | Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors |
| - | in-vitro, | Pca, | LNCaP |
| 2748- | BetA, | Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy |
| - | Review, | Var, | NA |
| 2729- | BetA, | Betulinic acid in the treatment of tumour diseases: Application and research progress |
| - | Review, | Var, | NA |
| 2738- | BetA, | Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vivo, | NA, | NA |
| 2737- | BetA, | Multiple molecular targets in breast cancer therapy by betulinic acid |
| - | Review, | Var, | NA |
| 696- | Bor, | Nothing Boring About Boron |
| - | Review, | Var, | NA |
| 1416- | Bos, | Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent |
| - | Review, | NA, | NA |
| 2767- | Bos, | The potential role of boswellic acids in cancer prevention and treatment |
| - | Review, | Var, | NA |
| 2776- | Bos, | Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities |
| - | Review, | Var, | NA |
| 2768- | Bos, | Boswellic acids as promising agents for the management of brain diseases |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 1260- | CAP, | Capsaicin inhibits in vitro and in vivo angiogenesis |
| - | vitro+vivo, | NA, | NA |
| 2015- | CAP, | CUR, | urea, | Anti-cancer Activity of Sustained Release Capsaicin Formulations |
| - | Review, | Var, | NA |
| 2020- | CAP, | Capsaicinoids and Their Effects on Cancer: The “Double-Edged Sword” Postulate from the Molecular Scale |
| - | Review, | Var, | NA |
| 3869- | Carno, | Carnosine, Small but Mighty—Prospect of Use as Functional Ingredient for Functional Food Formulation |
| - | Review, | AD, | NA | - | Review, | Stroke, | NA |
| 954- | CGA, | Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1α/AKT pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HUVECs |
| 4477- | Chit, | Recent Advances in Chitosan and its Derivatives in Cancer Treatment |
| - | Review, | NA, | NA |
| 2797- | CHr, | A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells |
| - | in-vivo, | BC, | NA | - | in-vitro, | BC, | 4T1 |
| 2802- | CHr, | Chrysin inhibits expression of hypoxia-inducible factor-1alpha through reducing hypoxia-inducible factor-1alpha stability and inhibiting its protein synthesis |
| - | in-vitro, | Pca, | DU145 | - | in-vivo, | Pca, | NA |
| 2781- | CHr, | PBG, | Chrysin a promising anticancer agent: recent perspectives |
| - | Review, | Var, | NA |
| 2780- | CHr, | Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic Review |
| - | Review, | Var, | NA |
| 2785- | CHr, | Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin |
| - | Review, | Var, | NA |
| 2786- | CHr, | Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives |
| - | Review, | Var, | NA |
| 2787- | CHr, | Network pharmacology unveils the intricate molecular landscape of Chrysin in breast cancer therapeutics |
| - | Analysis, | Var, | MCF-7 |
| 2788- | CHr, | Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action |
| - | Review, | Var, | NA |
| 952- | Cin, | Cinnamon Extract Reduces VEGF Expression Via Suppressing HIF-1α Gene Expression and Inhibits Tumor Growth in Mice |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | GBM, | U251 | - | in-vivo, | Ovarian, | SKOV3 |
| - | Review, | AD, | NA | - | Review, | Var, | NA |
| 1576- | Citrate, | Targeting citrate as a novel therapeutic strategy in cancer treatment |
| - | Review, | Var, | NA |
| 1639- | Cu, | HCAs, | Green synthesis of copper oxide nanoparticles using sinapic acid: an underpinning step towards antiangiogenic therapy for breast cancer |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 465- | CUR, | Curcumin inhibits the growth of liver cancer by impairing myeloid-derived suppressor cells in murine tumor tissues |
| - | vitro+vivo, | Liver, | HepG2 | - | vitro+vivo, | Liver, | HUH7 | - | vitro+vivo, | Liver, | MHCC-97H |
| 1880- | DCA, | A Novel Form of Dichloroacetate Therapy for Patients With Advanced Cancer: A Report of 3 Cases |
| - | Case Report, | Var, | NA |
| 1442- | Deg, | Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention |
| - | Review, | Var, | NA |
| 1850- | dietFMD, | Fasting-mimicking diet remodels gut microbiota and suppresses colorectal cancer progression |
| - | in-vivo, | CRC, | NA |
| 1613- | EA, | Ellagitannins in Cancer Chemoprevention and Therapy |
| - | Review, | Var, | NA |
| 1618- | EA, | A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action |
| - | Review, | BC, | NA |
| 1605- | EA, | Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence |
| - | Review, | Var, | NA |
| 1620- | EA, | Rad, | Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: an in vitro study |
| - | in-vitro, | Liver, | HepG2 |
| 1516- | EGCG, | Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential |
| - | Review, | NA, | NA |
| 1503- | EGCG, | Epigenetic targets of bioactive dietary components for cancer prevention and therapy |
| - | Review, | NA, | NA |
| 3238- | EGCG, | Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications |
| - | Review, | Var, | NA |
| 1322- | EMD, | The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers |
| - | Review, | Var, | NA |
| 1155- | F, | The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations |
| - | Review, | NA, | NA |
| 948- | F, | Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia |
| - | vitro+vivo, | Bladder, | T24 | - | in-vitro, | Nor, | HUVECs |
| 1654- | FA, | Molecular mechanism of ferulic acid and its derivatives in tumor progression |
| - | Review, | Var, | NA |
| 2845- | FIS, | Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy |
| - | Review, | Var, | NA |
| 2847- | FIS, | Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells |
| - | in-vitro, | CCA, | NA |
| 2824- | FIS, | Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics |
| - | Review, | Var, | NA |
| 2827- | FIS, | The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment |
| - | Review, | Var, | NA |
| 2830- | FIS, | Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent |
| - | Review, | Var, | NA |
| 2843- | FIS, | Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential |
| - | Review, | Var, | NA |
| 2313- | Flav, | Flavonoids against the Warburg phenotype—concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism |
| - | Review, | Var, | NA |
| 947- | GA, | Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells |
| - | in-vitro, | Ovarian, | OVCAR-3 | - | in-vitro, | Melanoma, | A2780S | - | in-vitro, | Nor, | IOSE364 | - | Human, | NA, | NA |
| 1189- | Gb, | New insight into the mechanisms of Ginkgo biloba leaves in the treatment of cancer |
| - | Review, | NA, | NA |
| 1005- | GI, | Ginger Constituent 6-Shogaol Inhibits Inflammation- and Angiogenesis-Related Cell Functions in Primary Human Endothelial Cells |
| - | vitro+vivo, | Nor, | HUVECs |
| 2511- | H2, | Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell differentiation |
| - | in-vivo, | GBM, | U87MG |
| 1643- | HCAs, | Mechanisms involved in the anticancer effects of sinapic acid |
| - | Review, | Var, | NA |
| 2894- | HNK, | Pharmacological features, health benefits and clinical implications of honokiol |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 2885- | HNK, | Honokiol: a novel natural agent for cancer prevention and therapy |
| 2180- | itraC, | Repurposing Drugs in Oncology (ReDO)—itraconazole as an anti-cancer agent |
| - | Review, | Var, | NA |
| 2179- | itraC, | Repurposing itraconazole for the treatment of cancer |
| - | Review, | Var, | NA |
| 2914- | LT, | Therapeutic Potential of Luteolin on Cancer |
| - | Review, | Var, | NA |
| 2906- | LT, | Luteolin, a flavonoid with potentials for cancer prevention and therapy |
| - | Review, | Var, | NA |
| 2909- | LT, | Revisiting luteolin: An updated review on its anticancer potential |
| - | Review, | Var, | NA |
| 2912- | LT, | Luteolin: a flavonoid with a multifaceted anticancer potential |
| - | Review, | Var, | NA |
| 3267- | Lyco, | Lycopene inhibits angiogenesis both in vitro and in vivo by inhibiting MMP-2/uPA system through VEGFR2-mediated PI3K-Akt and ERK/p38 signaling pathways |
| - | in-vitro, | Nor, | HUVECs |
| 1708- | Lyco, | The Anti-Cancer Activity of Lycopene: A Systematic Review of Human and Animal Studies |
| - | Review, | Var, | NA |
| 4514- | MAG, | Magnolol and its semi-synthetic derivatives: a comprehensive review of anti-cancer mechanisms, pharmacokinetics, and future therapeutic potential |
| - | Review, | Var, | NA |
| 4528- | MAG, | Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update |
| - | Review, | Nor, | NA |
| 4515- | MAG, | Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight |
| - | Review, | Var, | NA |
| 972- | MAG, | Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells |
| - | vitro+vivo, | Bladder, | T24 |
| 1779- | MEL, | Therapeutic Potential of Melatonin Counteracting Chemotherapy-Induced Toxicity in Breast Cancer Patients: A Systematic Review |
| - | Review, | BC, | NA |
| 2487- | metroC, | Metronomic Chemotherapy: Possible Clinical Application in Advanced Hepatocellular Carcinoma |
| - | Review, | HCC, | NA |
| 2490- | metroC, | Durable complete response of hepatocellular carcinoma after metronomic capecitabine |
| - | Case Report, | HCC, | NA |
| 524- | MF, | Inhibition of Angiogenesis Mediated by Extremely Low-Frequency Magnetic Fields (ELF-MFs) |
| - | vitro+vivo, | PC, | MS-1 | - | vitro+vivo, | PC, | HUVECs |
| - | Review, | NA, | NA |
| 3478- | MF, | One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study |
| - | Trial, | BC, | NA | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | C2C12 |
| 3464- | MF, | Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology |
| - | Review, | Var, | NA |
| 3465- | MF, | Magnetic fields and angiogenesis |
| - | Review, | Var, | NA |
| 3466- | MF, | The effect of magnetic fields on tumor occurrence and progression: Recent advances |
| - | Review, | Var, | NA |
| 4092- | MF, | Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology |
| - | Review, | Var, | NA |
| 1799- | NarG, | Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics |
| - | Review, | NA, | NA |
| 1798- | NarG, | Naringenin: A potential flavonoid phytochemical for cancer therapy |
| - | Review, | NA, | NA |
| 1229- | OA, | Review of the Clinical Effect of Orlistat |
| - | Review, | NA, | NA |
| 2028- | PB, | Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms |
| - | Review, | Var, | NA |
| 2381- | PBG, | Chinese Poplar Propolis Inhibits MDA-MB-231 Cell Proliferation in an Inflammatory Microenvironment by Targeting Enzymes of the Glycolytic Pathway |
| - | in-vitro, | BC, | MDA-MB-231 |
| 1664- | PBG, | Anticancer Activity of Propolis and Its Compounds |
| - | Review, | Var, | NA |
| 1663- | PBG, | Propolis and Their Active Constituents for Chronic Diseases |
| - | Review, | Var, | NA |
| 1660- | PBG, | Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents |
| - | Review, | Var, | NA |
| 1676- | PBG, | Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical Studies |
| - | Review, | Var, | NA |
| 3259- | PBG, | Propolis and its therapeutic effects on renal diseases: A review |
| - | Review, | Nor, | NA |
| 1256- | PI, | Hypoxia potentiates the cytotoxic effect of piperlongumine in pheochromocytoma models |
| - | in-vitro, | adrenal, | PHEO | - | in-vivo, | NA, | NA |
| 2948- | PL, | The promising potential of piperlongumine as an emerging therapeutics for cancer |
| - | Review, | Var, | NA |
| 2946- | PL, | Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent |
| - | Review, | Var, | NA |
| 2999- | PL, | Piperlongumine alleviates corneal allograft rejection via suppressing angiogenesis and inflammation |
| - | in-vivo, | Nor, | HUVECs |
| 3343- | QC, | Quercetin, a Flavonoid with Great Pharmacological Capacity |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Arthritis, | NA |
| 3369- | QC, | Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects |
| - | Review, | Pca, | NA |
| 50- | QC, | Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer |
| - | vitro+vivo, | Ovarian, | A2780S |
| 923- | QC, | Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health |
| - | Review, | Var, | NA |
| 882- | RES, | Resveratrol: A Double-Edged Sword in Health Benefits |
| - | Review, | NA, | NA |
| 883- | RES, | Targeting Histone Deacetylases with Natural and Synthetic Agents: An Emerging Anticancer Strategy |
| 3080- | RES, | Resveratrol: A miraculous natural compound for diseases treatment |
| - | Review, | Var, | NA |
| 3076- | RES, | Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells |
| - | Review, | Var, | NA |
| 3079- | RES, | Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of action |
| - | Review, | Var, | NA |
| 3090- | RES, | The Effects of Resveratrol Targeting MicroRNA-4325P/PDGF-B to Regulate Tumor Angiogenesis in Osteosarcoma Microenvironment |
| - | in-vitro, | OS, | MG63 |
| 3089- | RES, | The Role of Resveratrol in Cancer Therapy |
| - | Review, | Var, | NA |
| 3618- | RosA, | Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review |
| - | Review, | AD, | NA |
| 3006- | RosA, | Rosmarinic acid attenuates glioblastoma cells and spheroids’ growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosis |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | LN229 |
| 3007- | RosA, | Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action |
| - | Review, | NA, | NA |
| 3639- | Sage, | Pharmacological properties of Salvia officinalis and its components |
| - | Review, | AD, | NA | - | Review, | Var, | NA |
| 1688- | Se, | Potential Role of Selenium in the Treatment of Cancer and Viral Infections |
| - | Review, | Var, | NA |
| 4469- | Se, | Selenium Nanoparticles in Cancer Therapy: Unveiling Cytotoxic Mechanisms and Therapeutic Potential |
| - | Review, | Var, | NA |
| 1732- | SFN, | Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | SUM159 | - | in-vivo, | NA, | NA |
| 1729- | SFN, | Discovery and development of sulforaphane as a cancer chemopreventive phytochemical |
| - | Review, | Nor, | NA |
| 1484- | SFN, | Sulforaphane’s Multifaceted Potential: From Neuroprotection to Anticancer Action |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 1458- | SFN, | Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma |
| - | Review, | Bladder, | NA |
| 1469- | SFN, | Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP | - | in-vivo, | Pca, | NA |
| 1508- | SFN, | Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment |
| - | Review, | Var, | NA |
| 2556- | SFN, | The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review |
| - | Review, | Var, | NA |
| 3182- | SFN, | Sulforaphane Modulates AQP8-Linked Redox Signalling in Leukemia Cells |
| - | in-vitro, | AML, | NA |
| 963- | SFN, | Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | GC, | AGS |
| 3301- | SIL, | Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid |
| - | Review, | Var, | NA |
| 3282- | SIL, | Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions |
| - | Review, | NA, | NA |
| 3306- | SIL, | Rad, | Radioprotective and radiosensitizing properties of silymarin/silibinin in response to ionizing radiation |
| - | Review, | Var, | NA |
| 3288- | SIL, | Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations |
| - | Review, | Var, | NA |
| 3289- | SIL, | Silymarin: a promising modulator of apoptosis and survival signaling in cancer |
| - | Review, | Var, | NA |
| 3326- | SIL, | Silymarin suppresses proliferation of human hepatocellular carcinoma cells under hypoxia through downregulation of the HIF-1α/VEGF pathway |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | Hep3B |
| 3323- | SIL, | Anticancer therapeutic potential of silibinin: current trends, scope and relevance |
| - | Review, | Var, | NA |
| 3314- | SIL, | Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases—A comprehensive narrative review |
| - | Review, | NA, | NA |
| 964- | SIL, | Silibinin inhibits hypoxia-induced HIF-1α-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics |
| - | vitro+vivo, | Pca, | LNCaP | - | in-vitro, | Pca, | 22Rv1 |
| 2188- | SK, | Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment |
| - | Review, | Var, | NA |
| 4414- | SNP, | Silver nanoparticles: Forging a new frontline in lung cancer therapy |
| - | Review, | Lung, | NA |
| 4549- | SNP, | Silver nanoparticles: Synthesis, medical applications and biosafety |
| - | Review, | Var, | NA | - | Review, | Diabetic, | NA |
| 1202- | Tb, | The influence of theobromine on angiogenic activity and proangiogenic cytokines production of human ovarian cancer cells |
| - | in-vitro, | Ovarian, | NA |
| 1935- | TQ, | Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis |
| - | Review, | OS, | NA |
| 1933- | TQ, | Thymoquinone: potential cure for inflammatory disorders and cancer |
| - | Review, | Var, | NA |
| 2102- | TQ, | A review on therapeutic potential of Nigella sativa: A miracle herb |
| - | Review, | Var, | NA |
| 2094- | TQ, | Cytotoxicity of Nigella sativa Extracts Against Cancer Cells: A Review of In Vitro and In Vivo Studies |
| - | Review, | Var, | NA |
| 3571- | TQ, | The Role of Thymoquinone in Inflammatory Response in Chronic Diseases |
| - | Review, | Var, | NA | - | Review, | Stroke, | NA |
| 3559- | TQ, | Molecular signaling pathway targeted therapeutic potential of thymoquinone in Alzheimer’s disease |
| - | Review, | AD, | NA | - | Review, | Var, | NA |
| 3430- | TQ, | Targeting microRNAs with thymoquinone: a new approach for cancer therapy |
| - | Review, | Var, | NA |
| 3425- | TQ, | Advances in research on the relationship between thymoquinone and pancreatic cancer |
| 3424- | TQ, | Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex |
| - | Review, | Var, | NA |
| 3423- | TQ, | Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics |
| - | Review, | Var, | NA |
| 3408- | TQ, | Thymoquinone: A small molecule from nature with high therapeutic potential |
| - | Review, | AD, | NA | - | Review, | Park, | NA |
| 3151- | VitC, | Role of Vitamin C in the Function of the Vascular Endothelium |
| - | Review, | Nor, | NA |
| 4350- | VitD3, | Vitamin D: Evidence-Based Health Benefits and Recommendations for Population Guidelines |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:1 prod#:% Target#:447 State#:0 Dir#:1
wNotes=0 sortOrder:rid,rpid