| Source: |
| Type: |
| Tumor Cell Death |
| 2325- | 2DG, | Research Progress of Warburg Effect in Hepatocellular Carcinoma |
| - | Review, | Var, | NA |
| 2638- | Api, | Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell death |
| - | in-vitro, | lymphoma, | PEL |
| 2635- | Api, | CUR, | Synergistic Effect of Apigenin and Curcumin on Apoptosis, Paraptosis and Autophagy-related Cell Death in HeLa Cells |
| - | in-vitro, | Cerv, | HeLa |
| 2003- | Ash, | Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Nor, | TIG-1 | - | in-vitro, | PC, | LNCaP |
| 3160- | Ash, | Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal |
| - | Review, | Var, | NA |
| 1523- | Ba, | Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | Nor, | hFOB1.19 |
| 2023- | BBR, | Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor |
| - | in-vitro, | Colon, | NA | - | in-vitro, | Nor, | YAMC |
| 2680- | BBR, | PDT, | Photodynamic therapy-triggered nuclear translocation of berberine from mitochondria leads to liver cancer cell death |
| - | in-vitro, | Liver, | HUH7 |
| 2716- | BetA, | Cellular and molecular mechanisms underlying the potential of betulinic acid in cancer prevention and treatment |
| - | Review, | Var, | NA |
| 2719- | BetA, | Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential |
| - | in-vitro, | CRC, | T24 | - | in-vitro, | Bladder, | UMUC3 | - | in-vitro, | Bladder, | 5637 |
| 745- | Bor, | Investigation of cytotoxic antiproliferative and antiapoptotic effects of nanosized boron phosphate filled sodium alginate composite on glioblastoma cancer cells |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | Nor, | L929 | - | in-vitro, | GBM, | T98G |
| - | in-vitro, | Cerv, | SiHa |
| 2791- | CHr, | Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction |
| - | in-vitro, | Ovarian, | OV90 |
| 1596- | Cu, | CDT, | Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review |
| - | Review, | NA, | NA |
| 474- | CUR, | Modification of radiosensitivity by Curcumin in human pancreatic cancer cell lines |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | MIA PaCa-2 |
| 4456- | DFE, | Induction of apoptosis and cell cycle arrest by ethyl acetate fraction of Phoenix dactylifera L. (Ajwa dates) in prostate cancer cells |
| - | in-vitro, | Pca, | PC3 |
| 1847- | dietFMD, | VitC, | Synergistic effect of fasting-mimicking diet and vitamin C against KRAS mutated cancers |
| - | in-vitro, | PC, | PANC1 |
| 1863- | dietFMD, | Chemo, | Effect of fasting on cancer: A narrative review of scientific evidence |
| - | Review, | Var, | NA |
| 2497- | Fenb, | In vitro anti-tubulin effects of mebendazole and fenbendazole on canine glioma cells |
| - | in-vitro, | GBM, | NA |
| 2849- | FIS, | Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells |
| - | in-vitro, | Melanoma, | U266 |
| 2518- | H2, | Hydrogen Therapy Reverses Cancer-Associated Fibroblasts Phenotypes and Remodels Stromal Microenvironment to Stimulate Systematic Anti-Tumor Immunity |
| - | in-vitro, | BC, | 4T1 | - | in-vitro, | Nor, | 3T3 |
| 2073- | HNK, | Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo |
| - | in-vitro, | OS, | U2OS | - | in-vivo, | NA, | NA |
| 869- | Lae, | Recent updates and future perspectives about amygdalin as a potential anticancer agent: A review |
| 2923- | LT, | Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells |
| - | in-vitro, | NA, | NA |
| 2546- | M-Blu, | SDT, | The sonodynamic antitumor effect of methylene blue on sarcoma180 cells in vitro |
| - | in-vitro, | sarcoma, | S180 |
| 1785- | MEL, | Antitumoral melatonin-loaded nanostructured lipid carriers |
| - | in-vitro, | Var, | NA |
| 995- | MEL, | Melatonin Treatment Triggers Metabolic and Intracellular pH Imbalance in Glioblastoma |
| - | vitro+vivo, | GBM, | NA |
| 2235- | MF, | Increase of intracellular Ca2+ concentration in Listeria monocytogenes under pulsed magnetic field |
| - | in-vitro, | Inf, | NA |
| - | in-vitro, | AML, | THP1 | - | in-vitro, | NA, | PC12 | - | in-vivo, | Cerv, | HeLa |
| 533- | MF, | Effects of extremely low-frequency magnetic fields on human MDA-MB-231 breast cancer cells: proteomic characterization |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | MCF10 |
| 3492- | MFrot, | Chemo, | MF, | Synergistic Effect of Chemotherapy and Magnetomechanical Actuation of Fe-Cr-Nb-B Magnetic Particles on Cancer Cells |
| 3493- | MFrot, | MF, | Mechanical nanosurgery of chemoresistant glioblastoma using magnetically controlled carbon nanotubes |
| - | in-vivo, | GBM, | NA |
| 3494- | MFrot, | MF, | Magnetically switchable mechano-chemotherapy for enhancing the death of tumour cells by overcoming drug-resistance |
| - | in-vitro, | Var, | NA |
| 184- | MFrot, | MF, | Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells |
| - | in-vitro, | GBM, | GBM |
| 186- | MFrot, | MF, | Selective induction of rapid cytotoxic effect in glioblastoma cells by oscillating magnetic fields |
| - | in-vitro, | GBM, | GBM | - | in-vitro, | Lung, | NA |
| 595- | MFrot, | VitC, | MF, | The Effect of Alternating Magnetic Field Exposure and Vitamin C on Cancer Cells |
| - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | CRC, | SW-620 | - | in-vitro, | NA, | HT1080 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | OS, | U2OS | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | CCD-18Co |
| 2258- | MFrot, | MF, | EXTH-68. ONCOMAGNETIC TREATMENT SELECTIVELY KILLS GLIOMA CANCER CELLS BY INDUCING OXIDATIVE STRESS AND DNA DAMAGE |
| - | in-vitro, | GBM, | GBM | - | in-vitro, | Nor, | SVGp12 |
| 2039- | PB, | TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4‐phenylbutyrate treatment |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HEK293 |
| 2078- | PB, | Butyrate-induced apoptosis in HCT116 colorectal cancer cells includes induction of a cell stress response |
| - | in-vitro, | CRC, | HCT116 |
| 1765- | PG, | Enhanced cell death effects of MAP kinase inhibitors in propyl gallate-treated lung cancer cells are related to increased ROS levels and GSH depletion |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | Calu-6 |
| 2943- | PL, | Piperlongumine Inhibits Thioredoxin Reductase 1 by Targeting Selenocysteine Residues and Sensitizes Cancer Cells to Erastin |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Lung, | A549 | - | in-vitro, | BC, | MCF-7 |
| 3381- | QC, | Quercetin induces cell death in cervical cancer by reducing O-GlcNAcylation of adenosine monophosphate-activated protein kinase |
| - | in-vitro, | Cerv, | HeLa |
| 3378- | QC, | CK2 and PI3K are direct molecular targets of quercetin in chronic lymphocytic leukaemia |
| - | in-vitro, | AML, | NA |
| 884- | RES, | PTS, | Resveratrol and Pterostilbene Exhibit Anticancer Properties Involving the Downregulation of HPV Oncoprotein E6 in Cervical Cancer Cells |
| - | in-vitro, | Cerv, | HeLa |
| 323- | Sal, | SNP, | Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Ovarian, | A2780S |
| 1732- | SFN, | Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | SUM159 | - | in-vivo, | NA, | NA |
| 3323- | SIL, | Anticancer therapeutic potential of silibinin: current trends, scope and relevance |
| - | Review, | Var, | NA |
| 2227- | SK, | Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species |
| - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | Nor, | GES-1 |
| 338- | SNP, | Biogenic silver nanoparticles: In vitro and in vivo antitumor activity in bladder cancer |
| - | vitro+vivo, | Bladder, | 5637 |
| 339- | SNP, | Cancer cell specific cytotoxic potential of the silver nanoparticles synthesized using the endophytic fungus, Penicillium citrinum CGJ-C2 |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Melanoma, | A431 | - | in-vitro, | HCC, | HepG2 |
| 340- | SNP, | Screening bioactivities of Caesalpinia pulcherrima L. swartz and cytotoxicity of extract synthesized silver nanoparticles on HCT116 cell line |
| - | in-vitro, | CRC, | HCT116 |
| 341- | SNP, | Bioprospecting a native silver-resistant Bacillus safensis strain for green synthesis and subsequent antibacterial and anticancer activities of silver nanoparticles |
| - | in-vitro, | Liver, | HepG2 |
| 352- | SNP, | Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum |
| - | in-vitro, | BC, | MCF-7 |
| - | in-vitro, | neuroblastoma, | SH-SY5Y |
| 364- | SNP, | Differential Action of Silver Nanoparticles on ABCB1 (MDR1) and ABCC1 (MRP1) Activity in Mammalian Cell Lines |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Hepat, | HepG2 | - | in-vitro, | CRC, | SW-620 |
| 365- | SNP, | Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species |
| - | in-vitro, | Hepat, | HepG2 |
| 4379- | SNP, | Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells |
| - | in-vitro, | CRC, | LoVo |
| 4374- | SNP, | Enhancing antitumor activity of silver nanoparticles by modification with cell-penetrating peptides |
| - | in-vitro, | BC, | MCF-7 |
| 4373- | SNP, | In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells |
| - | in-vitro, | Liver, | HepG2 |
| 4372- | SNP, | Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Lung, | A549 |
| 4402- | SNP, | Enhancement of Triple-Negative Breast Cancer-Specific Induction of Cell Death by Silver Nanoparticles by Combined Treatment with Proteotoxic Stress Response Inhibitors |
| - | in-vitro, | BC, | BT549 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | MCF10 |
| 4406- | SNP, | Silver nanoparticles achieve cytotoxicity against breast cancer by regulating long-chain noncoding RNA XLOC_006390-mediated pathway |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | MDA-MB-231 |
| 4364- | SNP, | Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties |
| - | in-vitro, | BC, | MCF-7 |
| 4361- | SNP, | GoldNP, | Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: in vitro and in vivo perspectives |
| - | in-vivo, | Liver, | HepG2 |
| 4358- | SNP, | HPT, | Rad, | Silver nanocrystals mediated combination therapy of radiation with magnetic hyperthermia on glioma cells |
| - | in-vitro, | GBM, | U251 |
| 4430- | SNP, | Evaluation of the Genotoxic and Oxidative Damage Potential of Silver Nanoparticles in Human NCM460 and HCT116 Cells |
| - | in-vitro, | Colon, | HCT116 | - | in-vitro, | Nor, | NCM460 |
| 4439- | SNP, | Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA) |
| - | in-vitro, | Cerv, | HeLa |
| 2093- | TQ, | Regulation of NF-κB Expression by Thymoquinone; A Role in Regulating Pro-Inflammatory Cytokines and Programmed Cell Death in Hepatic Cancer Cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Nor, | NA |
| 4468- | VitC, | Se, | Selenium modulates cancer cell response to pharmacologic ascorbate |
| - | in-vivo, | GBM, | U87MG | - | in-vitro, | CRC, | HCT116 |
| 1819- | VitC, | VitK3, | The association of vitamins C and K3 kills cancer cells mainly by autoschizis, a novel form of cell death. Basis for their potential use as coadjuvants in anticancer therapy |
| - | Review, | Var, | NA |
| 3136- | VitC, | Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer |
| - | in-vitro, | Colon, | SW48 | - | in-vitro, | Colon, | LoVo |
| 628- | VitC, | Mg, | Enhanced Anticancer Effect of Adding Magnesium to Vitamin C Therapy: Inhibition of Hormetic Response by SVCT-2 Activation |
| - | in-vivo, | Colon, | CT26 | - | in-vitro, | NA, | MCF-7 | - | in-vitro, | NA, | SkBr3 |
| 600- | VitC, | VitK3, | Serum markers variation consistent with autoschizis induced by ascorbic acid-menadione in patients with prostate cancer |
| - | in-vitro, | NA, | NA |
| 611- | VitC, | Characterization of a new malignant human T-cell line (PFI-285) sensitive to ascorbic acid |
| - | in-vitro, | NA, | NA |
| 1835- | VitK3, | VitC, | Potential therapeutic application of the association of vitamins C and K3 in cancer treatment |
| - | Review, | Var, | NA |
| 1760- | WBV, | Molecular jackhammers eradicate cancer cells by vibronic-driven action |
| - | in-vitro, | Melanoma, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:1 prod#:% Target#:619 State#:0 Dir#:2
wNotes=0 sortOrder:rid,rpid