| Source: HalifaxProj(inhibit) CGL-Driver |
| Type: Oncogene |
| EGFR (Epidermal growth factor receptor), which belongs to the tyrosine kinase receptor family (RTKs) Epidermal Growth Factor Receptor (EGFR) is a cell surface protein that plays a crucial role in the regulation of cell growth, survival, proliferation, and differentiation. It is part of the ErbB family of receptors and is activated by binding to its ligands, such as epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-α). -plays a crucial role in regulating cell growth and division. Many cancers exhibit overexpression of EGFR, which can lead to enhanced signaling and contribute to tumor growth and survival. This overexpression is often associated with aggressive tumor behavior and poor prognosis. |
| 231- | AL, | EGFR_Protein_for_Lung_Cancer_Therapy">Molecular Docking Studies with Garlic Phytochemical Constituents to Inhibit the Human EGFR Protein for Lung Cancer Therapy |
| - | Analysis, | Lung, | NA |
| 297- | ALA, | Insights on the Use of α-Lipoic Acid for Therapeutic Purposes |
| - | Review, | BC, | SkBr3 | - | Review, | neuroblastoma, | SK-N-SH | - | Review, | AD, | NA |
| 3443- | ALA, | Molecular and Therapeutic Insights of Alpha-Lipoic Acid as a Potential Molecule for Disease Prevention |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 416- | Api, | In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma |
| - | vitro+vivo, | NA, | NA |
| 2640- | Api, | Apigenin: A Promising Molecule for Cancer Prevention |
| - | Review, | Var, | NA |
| 556- | ART/DHA, | Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing |
| - | Review, | NA, | NA |
| 557- | ART/DHA, | Artemisinin and Its Derivatives in Cancer Care |
| - | Review, | Var, | NA |
| 1358- | Ash, | Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms |
| - | Review, | Var, | NA |
| 2021- | BBR, | Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways |
| - | Review, | NA, | NA |
| 2694- | BBR, | Berberine down-regulates IL-8 expression through inhibition of the EGFR/MEK/ERK pathway in triple-negative breast cancer cells |
| - | in-vitro, | BC, | NA |
| 2678- | BBR, | Berberine as a Potential Agent for the Treatment of Colorectal Cancer |
| - | Review, | CRC, | NA |
| 2686- | BBR, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | Nor, | NA |
| 2745- | BetA, | Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors |
| - | in-vitro, | CRC, | RKO | - | in-vitro, | CRC, | SW480 | - | in-vivo, | NA, | NA |
| - | Review, | Var, | NA |
| 3525- | Bor, | Synthesis of DNA-Boron Cluster Composites and Assembly into Functional Nanoparticles with Dual, Anti-EGFR, and Anti-c-MYC Oncogene Silencing Activity |
| - | in-vitro, | PC, | PANC1 |
| 2016- | CAP, | Capsaicin binds the N-terminus of Hsp90, induces lysosomal degradation of Hsp70, and enhances the anti-tumor effects of 17-AAG (Tanespimycin) |
| 2785- | CHr, | Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin |
| - | Review, | Var, | NA |
| 136- | CUR, | docx, | Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 13- | CUR, | Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action |
| - | Review, | BC, | NA |
| 452- | CUR, | Curcumin downregulates the PI3K-AKT-mTOR pathway and inhibits growth and progression in head and neck cancer cells |
| - | vitro+vivo, | HNSCC, | SCC9 | - | vitro+vivo, | HNSCC, | FaDu | - | vitro+vivo, | HNSCC, | HaCaT |
| 484- | CUR, | PDT, | Low concentrations of curcumin induce growth arrest and apoptosis in skin keratinocytes only in combination with UVA or visible light |
| - | in-vitro, | Melanoma, | NA |
| 2979- | CUR, | GB, | Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death |
| - | in-vitro, | Lung, | H157 | - | in-vitro, | Lung, | H1299 |
| 2814- | CUR, | Curcumin in Cancer and Inflammation: An In-Depth Exploration of Molecular Interactions, Therapeutic Potentials, and the Role in Disease Management |
| - | Review, | Var, | NA |
| 1443- | Deg, | Deguelin Action Involves c-Met and EGFR Signaling Pathways in Triple Negative Breast Cancer Cells |
| - | vitro+vivo, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MDA-MB-435 | - | in-vitro, | BC, | BT549 |
| 1605- | EA, | Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence |
| - | Review, | Var, | NA |
| 26- | EGCG, | QC, | docx, | Green tea and quercetin sensitize PC-3 xenograft prostate tumors to docetaxel chemotherapy |
| - | vitro+vivo, | Pca, | PC3 |
| 20- | EGCG, | Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer |
| - | in-vivo, | Liver, | NA | - | in-vivo, | Tong, | NA |
| 649- | EGCG, | CUR, | PI, | Targeting Cancer Hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic Basis and Therapeutic Targets |
| - | Review, | Var, | NA |
| 643- | EGCG, | New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate |
| - | Analysis, | NA, | NA |
| 682- | EGCG, | Suppressive Effects of EGCG on Cervical Cancer |
| - | Review, | NA, | NA |
| 670- | EGCG, | Epigallocatechin-3-gallate and its nanoformulation in cervical cancer therapy: the role of genes, MicroRNA and DNA methylation patterns |
| - | Review, | NA, | NA |
| 668- | EGCG, | The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment |
| - | Review, | BC, | MCF-7 | - | Review, | BC, | MDA-MB-231 |
| 2459- | EGCG, | Epigallocatechin gallate inhibits human tongue carcinoma cells via HK2‑mediated glycolysis |
| - | in-vitro, | Tong, | Tca8113 | - | in-vitro, | Tong, | TSCCa |
| 3238- | EGCG, | Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications |
| - | Review, | Var, | NA |
| 1113- | FIS, | Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 2845- | FIS, | Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy |
| - | Review, | Var, | NA |
| 2847- | FIS, | Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells |
| - | in-vitro, | CCA, | NA |
| 2852- | FIS, | A comprehensive view on the fisetin impact on colorectal cancer in animal models: Focusing on cellular and molecular mechanisms |
| - | Review, | CRC, | NA |
| 2857- | FIS, | A review on the chemotherapeutic potential of fisetin: In vitro evidences |
| - | Review, | Var, | NA |
| 2859- | FIS, | The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways |
| - | in-vitro, | Liver, | HepG2 | - | NA, | Colon, | Caco-2 |
| 2824- | FIS, | Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics |
| - | Review, | Var, | NA |
| 2828- | FIS, | Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review |
| - | Review, | Var, | NA |
| 2830- | FIS, | Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent |
| - | Review, | Var, | NA |
| 2839- | FIS, | Dietary flavonoid fisetin for cancer prevention and treatment |
| - | Review, | Var, | NA |
| 2843- | FIS, | Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential |
| - | Review, | Var, | NA |
| 1091- | GA, | Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Cerv, | HTB-35 |
| 834- | Gra, | Anticancer Properties of Graviola (Annona muricata): A Comprehensive Mechanistic Review |
| - | Review, | NA, | NA |
| 1232- | Gra, | Graviola: A Systematic Review on Its Anticancer Properties |
| - | Review, | NA, | NA |
| 1153- | HNK, | Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor |
| - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | U87MG | - | in-vivo, | NA, | NA |
| 2883- | HNK, | Honokiol targets mitochondria to halt cancer progression and metastasis |
| - | Review, | Var, | NA |
| 2885- | HNK, | Honokiol: a novel natural agent for cancer prevention and therapy |
| 2897- | HNK, | Honokiol Inhibits Proliferation, Invasion and Induces Apoptosis Through Targeting Lyn Kinase in Human Lung Adenocarcinoma Cells |
| - | in-vitro, | Lung, | PC9 | - | in-vitro, | Lung, | A549 |
| 2891- | HNK, | Honokiol, an Active Compound of Magnolia Plant, Inhibits Growth, and Progression of Cancers of Different Organs |
| - | Review, | Var, | NA |
| 2868- | HNK, | Honokiol: A review of its pharmacological potential and therapeutic insights |
| - | Review, | Var, | NA | - | Review, | Sepsis, | NA |
| 2874- | HNK, | Suppressing migration and invasion of H1299 lung cancer cells by honokiol through disrupting expression of an HDAC6‐mediated matrix metalloproteinase 9 |
| - | in-vitro, | Lung, | H1299 |
| 2876- | HNK, | Honokiol from Magnolia spp. induces G1 arrest via disruption of EGFR stability through repressing HDAC6 deacetylated Hsp90 function in lung cancer cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H23 | - | in-vitro, | Lung, | HCC827 |
| 1787- | LE, | Licorice and cancer |
| - | Review, | Var, | NA |
| 2906- | LT, | Luteolin, a flavonoid with potentials for cancer prevention and therapy |
| - | Review, | Var, | NA |
| 518- | MF, | Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation |
| - | in-vitro, | NA, | HCT116 |
| 1141- | Myr, | Myricetin: targeting signaling networks in cancer and its implication in chemotherapy |
| - | Review, | NA, | NA |
| 1805- | NarG, | Naringenin suppresses epithelial ovarian cancer by inhibiting proliferation and modulating gut microbiota |
| - | in-vitro, | Ovarian, | A2780S | - | in-vivo, | NA, | NA |
| 2948- | PL, | The promising potential of piperlongumine as an emerging therapeutics for cancer |
| - | Review, | Var, | NA |
| 2940- | PL, | Piperlongumine Induces Reactive Oxygen Species (ROS)-dependent Downregulation of Specificity Protein Transcription Factors |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Kidney, | 786-O | - | in-vitro, | BC, | SkBr3 |
| 3369- | QC, | Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects |
| - | Review, | Pca, | NA |
| 3368- | QC, | The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update |
| - | Review, | Var, | NA |
| 3603- | QC, | Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitus |
| - | Review, | AD, | NA | - | Review, | Diabetic, | NA |
| 66- | QC, | Emerging impact of quercetin in the treatment of prostate cancer |
| - | in-vitro, | Pca, | NA |
| 80- | QC, | Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway |
| - | in-vitro, | Pca, | PC3 |
| 62- | QC, | GoldNP, | Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231) |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 85- | QC, | Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3) |
| - | in-vitro, | Pca, | PC3 |
| 923- | QC, | Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health |
| - | Review, | Var, | NA |
| 2441- | RES, | Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions |
| - | Review, | Var, | NA |
| 2440- | RES, | Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway |
| - | in-vitro, | Lung, | H460 | - | in-vivo, | Lung, | NA | - | in-vitro, | Lung, | H1650 | - | in-vitro, | Lung, | HCC827 |
| 3089- | RES, | The Role of Resveratrol in Cancer Therapy |
| - | Review, | Var, | NA |
| 1458- | SFN, | Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma |
| - | Review, | Bladder, | NA |
| 1460- | SFN, | High levels of EGFR prevent sulforaphane-induced reactive oxygen species-mediated apoptosis in non-small-cell lung cancer cells |
| - | in-vitro, | Lung, | NA |
| 2448- | SFN, | Sulforaphane and bladder cancer: a potential novel antitumor compound |
| - | Review, | Bladder, | NA |
| 3282- | SIL, | Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions |
| - | Review, | NA, | NA |
| 3290- | SIL, | A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents |
| - | Analysis, | Var, | NA |
| 3331- | SIL, | The clinical anti-inflammatory effects and underlying mechanisms of silymarin |
| - | Review, | NA, | NA |
| 2370- | SK, | The role of pyruvate kinase M2 in anticancer therapeutic treatments |
| - | Review, | Var, | NA |
| 3043- | SK, | Shikonin Induces Apoptosis by Inhibiting Phosphorylation of IGF-1 Receptor in Myeloma Cells. |
| - | in-vitro, | Melanoma, | RPMI-8226 |
| 2010- | SK, | Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway |
| - | in-vitro, | Lung, | H1975 | - | in-vitro, | Lung, | H1650 | - | in-vitro, | Nor, | CCD19 |
| 2188- | SK, | Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment |
| - | Review, | Var, | NA |
| 2194- | SK, | Efficacy of Shikonin against Esophageal Cancer Cells and its possible mechanisms in vitro and in vivo |
| - | in-vitro, | ESCC, | Eca109 | - | in-vitro, | ESCC, | EC9706 | - | in-vivo, | NA, | NA |
| - | in-vitro, | NSCLC, | A549 |
| 3413- | TQ, | Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src‑mediated phosphorylation of EGF receptor tyrosine kinase |
| - | in-vitro, | CRC, | HCT116 |
| 2411- | UA, | Ursolic acid in health and disease |
| - | Review, | Var, | NA |
| 2414- | β‐Ele, | Beta‐elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vivo, | NA, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:1 prod#:% Target#:94 State#:0 Dir#:1
wNotes=0 sortOrder:rid,rpid