condition found tbRes List
LDH, Lactate Dehydrogenase: Click to Expand ⟱
Source:
Type:
LDH is a general term that refers to the enzyme that catalyzes the interconversion of lactate and pyruvate. LDH is a tetrameric enzyme, meaning it is composed of four subunits.
LDH refers to the enzyme as a whole, while LDHA specifically refers to the M subunit. Elevated LDHA levels are often associated with poor prognosis and aggressive tumor behavior, similar to elevated LDH levels.

However, it's worth noting that some studies have shown that LDHA is a more specific and sensitive biomarker for cancer than total LDH, as it is more closely associated with the Warburg effect and cancer metabolism.

Dysregulated LDH activity contributes significantly to cancer development, promoting the Warburg effect (Chen et al., 2007), which involves increased glucose uptake and lactate production, even in the presence of oxygen, to meet the energy demands of rapidly proliferating cancer cells (Warburg and Minami, 1923; Dai et al., 2016b). LDHA overexpression favors pyruvate to lactate conversion, leading to tumor microenvironment acidification and aiding cancer progression and metastasis.

Inhibitors:
Flavonoids, a group of polyphenols abundant in fruit, vegetables, and medicinal plants, function as LDH inhibitors.

• Galloflavin: A flavonoid compound found in the plant Galphimia gracilis, which has been shown to inhibit LDH and have anti-cancer activity.
• Fisetin: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity.
• Quercetin: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity.
• Kaempferol: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity.
• Resveratrol: A polyphenol compound found in grapes and other plants, which has been shown to inhibit LDH and have anti-cancer activity.
• Curcumin: A polyphenol compound found in turmeric, which has been shown to inhibit LDH and have anti-cancer activity.
• Berberine: A compound found in the plant Berberis, which has been shown to inhibit LDH and have anti-cancer activity.
• Honokiol: A lignan compound found in the plant Magnolia, which has been shown to inhibit LDH and have anti-cancer activity.
• Silibinin: A flavonoid compound found in milk thistle, which has been shown to inhibit LDH and have anti-cancer activity.
Others:Ursolic acid, Oleanolic acid, Limonin, Allicin (garlic), Taurine


Scientific Papers found: Click to Expand⟱
1340- 3BP,    Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study
- Review, NA, NA
Glycolysis↓, inhibiting key glycolysis enzymes
HK2↓,
LDH↓,
OXPHOS↓, inhibits mitochondrial oxidative phosphorylation
angioG↓,
H2O2↑, induces hydrogen peroxide generation in cancer cells (oxidative stress effect)
eff↑, Concurrent use of a GSH depletor(paracetamol) with 3BP killed resistant melanoma cells

3452- 5-ALA,    5-ALA Is a Potent Lactate Dehydrogenase Inhibitor but Not a Substrate: Implications for Cell Glycolysis and New Avenues in 5-ALA-Mediated Anticancer Action
- in-vitro, GBM, T98G - in-vitro, GBM, LN-18 - in-vitro, GBM, U87MG
Glycolysis↓, we found that 5-ALA, a natural precursor of heme, can hinder cell glycolysis, which is the main path of energy production for most cancer cells.
LDH↓, ore specifically, we found that 5-ALA can block an enzyme involved in glycolysis, called lactate dehydrogenase (LDH)
eff↝, We found that 5-ALA has a potency of LDH inhibition comparable to other established LDH inhibitors, such as oxamate or tartronic acid
ECAR↓, a marked decrease in extracellular acidification rate (ECAR) was registered as a consequence of administering 5-ALA,

2656- AL,    Allicin Protects PC12 Cells Against 6-OHDA-Induced Oxidative Stress and Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics
- in-vitro, Park, PC12
*antiOx↑, Allicin, the main biologically active compound derived from garlic, has been shown to exert various anti-oxidative and anti-apoptotic activities in in vitro and in vivo studies.
*Apoptosis↓, allicin treatment significant increased cell viability, and decreased LDH release and apoptotic cell death after 6-OHDA exposure
*LDH↓,
ROS↓, Allicin also inhibited ROS generation
*lipid-P↓, reduced lipid peroxidation and preserved the endogenous antioxidant enzyme activities.
*mtDam↓, These protective effects were associated with suppressed mitochondrial dysfunction,
*MMP↓, as evidenced by decreased MMP collapse and cytochrome c release,
*Cyt‑c↓,
*ATP∅, preserved mitochondrial ATP synthesis,
*Ca+2↝, and the promotion of mitochondrial Ca(2+) buffering capacity
*neuroP↑, allicin treatment can exert protective effects against PD related neuronal injury through inhibiting oxidative stress and mitochondrial dysfunction with dynamic changes.

2660- AL,    Allicin: A review of its important pharmacological activities
- Review, AD, NA - Review, Var, NA - Review, Park, NA - Review, Stroke, NA
*Inflam↓, It showed neuroprotective effects, exhibited anti-inflammatory properties, demonstrated anticancer activity, acted as an antioxidant, provided cardioprotection, exerted antidiabetic effects, and offered hepatoprotection.
AntiCan↑,
*antiOx↑,
*cardioP↑, This vasodilatory effect helps protect against cardiovascular diseases by reducing the risk of hypertension and atherosclerosis.
*hepatoP↑,
*BBB↑, This allows allicin to easily traverse phospholipid bilayers and the blood-brain barrier
*Half-Life↝, biological half-life of allicin is estimated to be approximately one year at 4°C. However, it should be noted that its half-life may differ when it is dissolved in different solvents, such as vegetable oil
*H2S↑, allicin undergoes metabolism in the body, leading to the release of hydrogen sulfide (H2S)
*BP↓, H2S acts as a vasodilator, meaning it relaxes and widens blood vessels, promoting blood flow and reducing blood pressure.
*neuroP↑, It acts as a neuromodulator, regulating synaptic transmission and neuronal excitability.
*cognitive↑, Studies have suggested that H2S may enhance cognitive function and protect against neurodegenerative diseases like Alzheimer's and Parkinson's by promoting neuronal survival and reducing oxidative stress.
*neuroP↑, various research studies suggest that the neuroprotective mechanisms of allicin can be attributed to its antioxidant and anti-inflammatory properties
*ROS↓,
*GutMicro↑, may contribute to the overall health of the gut microbiota.
*LDH↓, Liu et al. found that allicin treatment led to a significant decrease in the release of lactate dehydrogenase (LDH),
*ROS↓, allicin's capacity to lower the production of reactive oxygen species (ROS), decrease lipid peroxidation, and maintain the activities of antioxidant enzymes
*lipid-P↓,
*antiOx↑,
*other↑, allicin was found to enhance the expression of sphingosine kinases 2 (Sphk2), which is considered a neuroprotective mechanism in ischemic stroke
*PI3K↓, allicin downregulated the PI3K/Akt/nuclear factor-kappa B (NF-κB) pathway, inhibiting the overproduction of NO, iNOS, prostaglandin E2, cyclooxygenase-2, interleukin-6, and tumor necrosis factor-alpha induced by interleukin-1 (IL-1)
*Akt↓,
*NF-kB↓,
*NO↓,
*iNOS↓,
*PGE2↓,
*COX2↓,
*IL6↓,
*TNF-α↓, Allicin has been found to regulate the immune system and reduce the levels of TNF-α and IL-8.
*MPO↓, Furthermore, allicin significantly decreased tumor necrosis factor-alpha (TNF-α) levels and myeloperoxidase (MPO) activity, indicating its neuroprotective effect against brain ischemia via an anti-inflammatory pathway
*eff↑, Allicin, in combination with melatonin, demonstrated a marked reduction in the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), Kelch-like ECH-associated protein 1 (Keap-1), and NF-κB genes in rats with brain damage induced by acryl
*NRF2↑, Allicin treatment decreased oxidative stress by upregulating Nrf2 protein and downregulating Keap-1 expression.
*Keap1↓,
*TBARS↓, It significantly reduced myeloperoxidase (MPO) and thiobarbituric acid reactive substances (TBARS) levels,
*creat↓, and decreased blood urea nitrogen (BUN), creatinine, LDH, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) levels.
*LDH↓,
*AST↓,
*ALAT↓,
*MDA↓,
*SOD↑, Allicin also increased the activity of superoxide dismutase (SOD) as well as the levels of glutathione S-transferase (GST) and glutathione (GSH) in the liver, kidneys, and brain
*GSH↑,
*GSTs↑,
*memory↑, Allicin has demonstrated its ability to improve learning and memory deficits caused by lead acetate injury by promoting hippocampal astrocyte differentiation.
chemoP↑, Allicin safeguards mitochondria from damage, prevents the release of cytochrome c, and decreases the expression of pro-apoptotic factors (Bax, cleaved caspase-9, cleaved caspase-3, and p53) typically activated by cisplatin
IL8↓, Allicin has been found to regulate the immune system and reduce the levels of TNF-α and IL-8.
Cyt‑c↑, In addition, allicin was reported to induce cytochrome c, increase expression of caspase 3 [86], caspase 8, 9 [82,87], caspase 12 [80] along with enhanced p38 protein expression levels [81], Fas expression levels [82].
Casp3↑,
Casp8↑,
Casp9↑,
Casp12↑,
p38↑,
Fas↑,
P53↑, Also, significantly increased p53, p21, and CHK1 expression levels decreased cyclin B after allicin treatment.
P21↑,
CHK1↓,
CycB↓,
GSH↓, Depletion of GSH and alterations in intracellular redox status have been found to trigger activation of the mitochondrial apoptotic pathway was the antiproliferative function of allicin
ROS↑, Hepatocellular carcinoma (HCC) cells were sensitised by allicin to the mitochondrial ROS-mediated apoptosis induced by 5-fluorouracil
TumCCA↑, According to research findings, allicin has been shown to decrease the percentage of cells in the G0/G1 and S phases [87], while causing cell cycle arrest at the G2/M phase
Hif1a↓, Allicin treatment was found to effectively reduce HIF-1α protein levels, leading to decreased expression of Bcl-2 and VEGF, and suppressing the colony formation capacity and cell migration rate of cancer cells
Bcl-2↓,
VEGF↓,
TumCMig↓,
STAT3↓, antitumor properties of allicin have been attributed to various mechanisms, including promotion of apoptosis, inhibition of STAT3 signaling
VEGFR2↓, suppression of VEGFR2 and FAK phosphorylation
p‑FAK↓,

3451- ALA,    Alpha-lipoic acid ameliorates H2O2-induced human vein endothelial cells injury via suppression of inflammation and oxidative stress
- in-vitro, Nor, HUVECs
*LDH↓, ALA reduces LDH release from H2O2-induced cells
*NOX4↓, ALA downregulates the expression of Nox4
*NF-kB↓, ALA inhibits H2O2-induced activation of the NF-κB signaling pathway
*iNOS↓, ALA suppresses the upregulation of iNOS, VCAM-1 and ICAM-1 in H2O2-induced HUVECs
*VCAM-1↓,
*ICAM-1↓,
*ROS↓, ALA protected HUVECs against oxidative damage induced by H2O2, as assessed by cell viability and LDH activity.
*cardioP↑, regulating Nox4 protein expression and play a protective role in cardiovascular disease.

2324- ART/DHA,    Research Progress of Warburg Effect in Hepatocellular Carcinoma
- Review, Var, NA
PKM2↓, DHA effectively suppressed aerobic glycolysis and ESCC progression by downregulating PKM2 expression in esophageal squamous cell carcinoma (ESCC) and ESCC cells
GLUT1↓, DHA inhibited leukemia cell K562 proliferation by suppressing GLUT1 and PKM2 levels, thereby regulating glucose uptake and inhibiting aerobic glycolysis
Glycolysis↓,
Akt↓, In LNCaP cells, DHA reduced Akt/mTOR and HIF-1α activity, leading to decreased expression of GLUT1, HK2, PKM2, and LDH and subsequent inhibition of aerobic glycolysis
mTOR↓,
Hif1a↓,
HK2↓,
LDH↓,
NF-kB↓, DHA was also found to inhibit the NF-κB signaling pathway to prevent GLUT1 translocation to the plasma membrane, thereby inhibiting the progression of non-small-cell lung cancer (NSCLC) cells via targeting glucose metabolism

3166- Ash,    Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives
- Review, Var, NA
*p‑PPARγ↓, preventing the phosphorylation of peroxisome proliferator-activated receptors (PPARγ)
*cardioP↑, cardioprotective activity by AMP-activated protein kinase (AMPK) activation and suppressing mitochondrial apoptosis.
*AMPK↑,
*BioAv↝, The oral bioavailability was found to be 32.4 ± 4.8% after 5 mg/kg intravenous and 10 mg/kg oral WA administration.
*Half-Life↝, The stability studies of WA in gastric fluid, liver microsomes, and intestinal microflora solution showed similar results in male rats and humans with a half-life of 5.6 min.
*Half-Life↝, WA reduced quickly, and 27.1% left within 1 h
*Dose↑, WA showed that formulation at dose 4800 mg having equivalent to 216 mg of WA, was tolerated well without showing any dose-limiting toxicity.
*chemoP↑, Here, we discuss the chemo-preventive effects of WA on multiple organs.
IL6↓, attenuates IL-6 in inducible (MCF-7 and MDA-MB-231)
STAT3↓, WA displayed downregulation of STAT3 transcriptional activity
ROS↓, associated with reactive oxygen species (ROS) generation, resulted in apoptosis of cells. The WA treatment decreases the oxidative phosphorylation
OXPHOS↓,
PCNA↓, uppresses human breast cells’ proliferation by decreasing the proliferating cell nuclear antigen (PCNA) expression
LDH↓, WA treatment decreases the lactate dehydrogenase (LDH) expression, increases AMP protein kinase activation, and reduces adenosine triphosphate
AMPK↑,
TumCCA↑, (SKOV3 andCaOV3), WA arrest the G2/M phase cell cycle
NOTCH3↓, It downregulated the Notch-3/Akt/Bcl-2 signaling mediated cell survival, thereby causing caspase-3 stimulation, which induces apoptosis.
Akt↓,
Bcl-2↓,
Casp3↑,
Apoptosis↑,
eff↑, Withaferin-A, combined with doxorubicin, and cisplatin at suboptimal dose generates ROS and causes cell death
NF-kB↓, reduces the cytosolic and nuclear levels of NF-κB-related phospho-p65 cytokines in xenografted tumors
CSCs↓, WA can be used as a pharmaceutical agent that effectively kills cancer stem cells (CSCs).
HSP90↓, WA inhibit Hsp90 chaperone activity, disrupting Hsp90 client proteins, thus showing antiproliferative effects
PI3K↓, WA inhibited PI3K/AKT pathway.
FOXO3↑, Par-4 and FOXO3A proapoptotic proteins were increased in Pten-KO mice supplemented with WA.
β-catenin/ZEB1↓, decreased pAKT expression and the β-catenin and N-cadherin epithelial-to-mesenchymal transition markers in WA-treated tumors control
N-cadherin↓,
EMT↓,
FASN↓, WA intraperitoneal administration (0.1 mg) resulted in significant suppression of circulatory free fatty acid and fatty acid synthase expression, ATP citrate lyase,
ACLY↓,
ROS↑, WA generates ROS followed by the activation of Nrf2, HO-1, NQO1 pathways, and upregulating the expression of the c-Jun-N-terminal kinase (JNK)
NRF2↑,
HO-1↑,
NQO1↑,
JNK↑,
mTOR↓, suppressing the mTOR/STAT3 pathway
neuroP↑, neuroprotective ability of WA (50 mg/kg b.w)
*TNF-α↓, WA attenuate the levels of neuroinflammatory mediators (TNF-α, IL-1β, and IL-6)
*IL1β↓,
*IL6↓,
*IL8↓, WA decreases the pro-inflammatory cytokines (IL-6, TNFα, IL-8, IL-18)
*IL18↓,
RadioS↑, radiosensitizing combination effect of WA and hyperthermia (HT) or radiotherapy (RT)
eff↑, WA and cisplatin at suboptimal dose generates ROS and causes cell death [41]. The actions of this combination is attributed by eradicating cells, revealing markers of cancer stem cells like CD34, CD44, Oct4, CD24, and CD117

1523- Ba,    Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression
- in-vitro, OS, MG63 - in-vitro, Nor, hFOB1.19
TumCD↑,
Apoptosis↑,
ROS↑, baicalein activated apoptosis through induced intracellular reactive oxygen species (ROS) generation
eff↓, and that ROS scavenger N-acetyl-cysteine (NAC), glutathione (GSH), and superoxide dismutase (SOD) apparently inhibited intracellular ROS production, consequently attenuating the baicalein-induced apoptosis.
Casp3↑, Baicalein treatment markedly increased active caspase-3 expression
Bcl-2↓,
selectivity↑, baicalein influenced little growth reduction of hFOB1.19 cells. (normal cells)
Cyt‑c↑, release of cytochrome c from mitochondrial to cytosol
LDH?, (25 and 50 μM) induced increases of LDH release (2.2- and 3.6-folds) which showed the cytotoxicity of baicalein
BNIP3?, we conclude that baicalein induces ROS production and BNIP3 expression with the subsequent activation of Bax
BAX↑,

1092- BBR,    Berberine as a Potential Anticancer Agent: A Comprehensive Review
- Review, NA, NA
Apoptosis↑,
TumCCA↑,
TumAuto↑,
TumCI↓,
IL1↓, IL-1α, IL-1β
IL6↓,
TNF-α↓,
LDH↓, BBR also increases the release of Lactic Acid Dehydrogenase (LDH) in the MDA epithelial human breast cancer cell line (MDA-cells)
P2X7↓,
proCasp1↓,
Casp1↓,
ASC↓,

2710- BBR,    Berberine inhibits the Warburg effect through TET3/miR-145/HK2 pathways in ovarian cancer cells
- in-vitro, Ovarian, SKOV3
Warburg↓, berberine inhibited the Warburg effect by up-regulating miR-145, miR-145 targeted HK2 directly.
miR-145↑,
HK2↓, westernblot suggested that berberine could significantly down regulate the expression of HK2
TET3↑, Berberine increased the expression of miR-145 by promoting the expression of TET3 and reducing the methylation level of the promoter region of miR-145 precursor gene.
Glycolysis↓, Furthermore, the effect of berberine on glycolysis related enzymes was detected, the results of qRT-PCR and westernblot suggested that berberine could significantly down regulate the expression of HK2
PKM2↓, Western blot results showed down-expression of miR-145 reversed berberine's inhibition of HK2 expression. PKM2, pyruvate kinase M2; HK2, Hexokinase2; GLUT1, glucose transporter 1; LDH, lactate dehydrogenase; PFK2, phosphofructokinase 2; PDK1,
GLUT1↓,
LDH↓,
PFK2↓,
PDK1↓,

2760- BetA,    A Review on Preparation of Betulinic Acid and Its Biological Activities
- Review, Var, NA - Review, Stroke, NA
AntiTum↑, BA is considered a future promising antitumor compound
Cyt‑c↑, BA stimulated mitochondria to release cytochrome c and Smac and cause further apoptosis reactions
Smad1↑,
Sepsis↓, Administration of 10 and 30 mg/kg of BA significantly improved survival against sepsis and attenuated lung injury.
NF-kB↓, BA inhibited nuclear factor-kappa B (NF-κB) expression in the lung and decreased levels of cytokine, intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinase-9 (MMP-9)
ICAM-1↓,
MCP1↓,
MMP9↓,
COX2↓, In hPBMCs, BA suppressed cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PEG2) production by inhibiting extracellular regulated kinase (ERK) and Akt phosphorylation and thereby modulated the NF-κB signaling pathway
PGE2↓,
ERK↓,
p‑Akt↓,
*ROS↓, BA significantly decreased the mortality of mice against endotoxin shock and inhibited the production of PEG2 in two of the most susceptible organs, lungs and livers [80]. Moreover, BA reduced reactive oxygen species (ROS) formation
*LDH↓, and the release of lactate dehydrogenase
*hepatoP↑, hepatoprotective effect of BA from Tecomella undulata.
*SOD↑, Pretreatment of BA prevented the depletion of hepatic antioxidants superoxide dismutase (SOD) and catalase (CAT), reduced glutathione (GSH) and ascorbic acid (AA) and decreased the CCl4-induced LPO level
*Catalase↑,
*GSH↑,
*AST↓, A also attenuated the elevation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) plasma level,
*ALAT↓,
*RenoP↑, BA also exhibits renal-protective effects. Renal fibrosis is an end-stage renal disease symptom that develops from chronic kidney disease (CKD).
*ROS↓, BA protected against this ischemia-reperfusion injury in a mice model by enhancing blood flow and reducing oxidative stress and nitrosative stress
*α-SMA↓, Moreover, BA reduced the expression of α-smooth muscle actin (α-SMA) and collagen-I

2771- BetA,    Cardioprotective Effect of Betulinic Acid on Myocardial Ischemia Reperfusion Injury in Rats
- in-vivo, Nor, NA - in-vivo, Stroke, NA
*cardioP↑, Pretreatment with BA improved cardiac function and attenuated LDH and CK activities compared with IR group
*LDH↓,
eff↑, prevent cardiomyocytes apoptosis, and eventually alleviate the extent of the myocardial ischemia/reperfusion injury.

2775- Bos,    The journey of boswellic acids from synthesis to pharmacological activities
- Review, Var, NA - Review, AD, NA - Review, PSA, NA
ROS↑, modulation of reactive oxygen species (ROS) formation and the resulting endoplasmic reticulum stress is central to BA’s molecular and cellular anticancer activities
ER Stress↑,
TumCG↓, Cell cycle arrest, growth inhibition, apoptosis induction, and control of inflammation are all the effects of BA’s altered gene expression
Apoptosis↑,
Inflam↓,
ChemoSen↑, BA has additional synergistic effects, increasing both the sensitivity and cytotoxicity of doxorubicin and cisplatin
Casp↑, BA decreases viability and induces apoptosis by activat- ing the caspase-dependent pathway in human pancreatic cancer (PC) cell lines
ERK↓, BA might inhibit the activation of Ak strain transforming (Akt) and extracellular signal–regulated kinase (ERK)1/2,
cl‑PARP↑, initiation of cleavage of PARP were prompted by the treatment with AKBA
AR↓, AKBA affects the androgen receptor by reducing its expression,
cycD1↓, decrease in cyclin D1, which inhibits cellular proliferation
VEGFR2↓, In prostate cancer, the downregulation of vascular endothelial growth factor receptor 2–mediated angiogenesis caused by BA
CXCR4↓, Figure 6
radioP↑,
NF-kB↓,
VEGF↓,
P21↑,
Wnt↓,
β-catenin/ZEB1↓,
Cyt‑c↑,
MMP2↓,
MMP1↓,
MMP9↓,
PI3K↓,
MAPK↓,
JNK↑,
*5LO↓, Table 1 (non cancer)
*NRF2↑,
*HO-1↑,
*MDA↓,
*SOD↑,
*hepatoP↑, Preclinical studies demonstrated hepatoprotective impact for BA against different models of hepatotoxicity via tackling oxidative stress, and inflammatory and apoptotic indices
*ALAT↓,
*AST↓,
*LDH↑,
*CRP↓,
*COX2↓,
*GSH↑,
*ROS↓,
*Imm↑, oral administration of biopolymeric fraction (BOS 200) from B. serrata in mice led to immunostimulatory effects
*Dose↝, BA at low concentration tend to stimulate an immune response, as those utilized in the study of Beghelli et al. (2017) however, utilizing higher concentration suppressed the immune response
*eff↑, Useful actions on skin and psoriasis
*neuroP↑, AKBA has substantially diminished the levels of inflammatory markers such as 5-LOX, TNF-, IL-6, and meliorated cognition in lipopolysaccharide-induced neuroinflammation rodent models
*cognitive↑,
*IL6↓,
*TNF-α↓,

1640- CA,  MET,    Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines
- in-vitro, Cerv, SiHa
GLS↓, downregulation of Glutaminase (GLS) and Malic Enzyme 1 (ME1)
NADPH↓, CA alone and co-treated with Met caused significant reduction of NADPH
ROS↑, increased ROS formation and enhanced cell death
TumCD↑,
AMPK↑, activation of AMPK
Hif1a↓, Met inhibited Hypoxia-inducible Factor 1 (HIF-1α). CA treatment at 100 μM for 24 h also inhibited HIF-1α
GLUT1↓,
GLUT3↓,
HK2↓,
PFK↓, PFKFB4
PKM2↓,
LDH↓,
cMyc↓, Met suppressed the expression of c-Myc, BAX and cyclin-D1 (CCND1) a
BAX↓,
cycD1↓,
PDH↓, CA at a concentration of 100 µM caused inhibition of PDK activity
ROS↑, CA Regulates TCA Cycle Supply via Pyruvate Dehydrogenase Complex (PDH), Induces Mitochondrial ROS Generation and Evokes Apoptosis
Apoptosis↑,
eff↑, both drugs inhibited the expression of ACLY and FAS, but the greatest effect was detected after co-treatment
ACLY↓,
FASN↓,
Bcl-2↓,
Glycolysis↓, Met acts as a glycolytic inhibitor under normoxic and hypoxic conditions

2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, suppressed pro-inflammatory cytokine expression and histamine release, downregulated nuclear factor kappa B (NF-kB), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS)
*COX2↓,
*iNOS↓,
angioG↓, upregulated apoptotic pathways [28], inhibited angiogenesis [29] and metastasis formation
TOP1↓, suppressed DNA topoisomerases [31] and histone deacetylase [32], downregulated tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β)
HDAC↓,
TNF-α↓,
IL1β↓,
cardioP↑, promoted protective signaling pathways in the heart [34], kidney [35] and brain [8], decreased cholesterol level
RenoP↑,
neuroP↑,
LDL↓,
BioAv↑, bioavailability of chrysin in the oral route of administration was appraised to be 0.003–0.02% [55], the maximum plasma concentration—12–64 nM
eff↑, Chrysin alone and potentially in combination with metformin decreased cyclin D1 and hTERT gene expression in the T47D breast cancer cell line
cycD1↓,
hTERT↓,
MMP-10↓, Chrysin pretreatment inhibited MMP-10 and Akt signaling pathways
Akt↓,
STAT3↓, Chrysin declined hypoxic survival, inhibited activation of STAT3, and reduced VEGF expression in hypoxic cancer cells
VEGF↓,
EGFR↓, chrysin to inhibit EGFR was reported in a breast cancer stem cell model [
Snail↓, chrysin downregulated MMP-10, reduced snail, slug, and vimentin expressions increased E-cadherin expression, and inhibited Akt signaling pathway in TNBC cells, proposing that chrysin possessed a reversal activity on EMT
Slug↓,
Vim↓,
E-cadherin↑,
eff↑, Fabrication of chrysin-attached to silver and gold nanoparticles crossbred reduced graphene oxide nanocomposites led to augmentation of the generation of ROS-induced apoptosis in breast cancer
TET1↑, Chrysin induced augmentation in TET1
ROS↑, Pretreatment with chrysin induced ROS formation, and consecutively, inhibited Akt phosphorylation and mTOR.
mTOR↓,
PPARα↓, Chrysin inhibited mRNA expression of PPARα
ER Stress↑, ROS production by chrysin was the critical mediator behind induction of ER stress, leading to JNK phosphorylation, intracellular Ca2+ release, and activation of the mitochondrial apoptosis pathway
Ca+2↑,
ERK↓, reduced protein expression of p-ERK/ERK
MMP↑, Chrysin pretreatment led to an increase in mitochondrial ROS creation, swelling in isolated mitochondria from hepatocytes, collapse in MMP, and release cytochrome c.
Cyt‑c↑,
Casp3↑, Chrysin could elevate caspase-3 activity in the HCC rats group
HK2↓, chrysin declined HK-2 combined with VDAC-1 on mitochondria
NRF2↓, chrysin inhibited the Nrf2 expression and its downstream genes comprising AKR1B10, HO-1, and MRP5 by quenching ERK and PI3K-Akt pathway
HO-1↓,
MMP2↓, Chrysin pretreatment also downregulated MMP2, MMP9, fibronectin, and snail expression
MMP9↓,
Fibronectin↓,
GRP78/BiP↑, chrysin induced GRP78 overexpression, spliced XBP-1, and eIF2-α phosphorylation
XBP-1↓,
p‑eIF2α↑,
*AST↓, Chrysin administration significantly reduced AST, ALT, ALP, LDH and γGT serum activities
ALAT↓,
ALP↓,
LDH↓,
COX2↑, chrysin attenuated COX-2 and NFkB p65 expression, and Bcl-xL and β-arrestin levels
Bcl-xL↓,
IL6↓, Reduction in IL-6 and TNF-α and augmentation in caspases-9 and 3 were observed due to chrysin supplementation.
PGE2↓, Chrysin induced entire suppression NF-kB, COX-2, PG-E2, iNOS as well.
iNOS↓,
DNAdam↑, Chrysin induced apoptosis of cells by causing DNA fragmentation and increasing the proportions of DU145 and PC-3 cells
UPR↑, Also, it induced ER stress via activation of UPR proteins comprising PERK, eIF2α, and GRP78 in DU145 and PC-3 cells.
Hif1a↓, Chrysin increased the ubiquitination and degradation of HIF-1α by increasing its prolyl hydroxylation
EMT↓, chrysin was effective in HeLa cell by inhibiting EMT and CSLC properties, NF-κBp65, and Twist1 expression
Twist↓,
lipid-P↑, Chrysin disrupted intracellular homeostasis by altering MMP, cytosolic Ca (2+) levels, ROS generation, and lipid peroxidation, which plays a role in the death of choriocarcinoma cells.
CLDN1↓, Chrysin decreased CLDN1 and CLDN11 expression in human lung SCC
PDK1↓, Chrysin alleviated p-Akt and inhibited PDK1 and Akt
IL10↓, Chrysin inhibited cytokines release, TNF-α, IL-1β, IL-10, and IL-6 induced by Ni in A549 cells.
TLR4↓, Chrysin suppressed TLR4 and Myd88 mRNA and protein expression.
NOTCH1↑, Chrysin inhibited tumor growth in ATC both in vitro and in vivo through inducing Notch1
PARP↑, Pretreating cells with chrysin increased cleaved PARP, cleaved caspase-3, and declined cyclin D1, Mcl-1, and XIAP.
Mcl-1↓,
XIAP↓,

1579- Citrate,    Effect of Food Additive Citric Acid on The Growth of Human Esophageal Carcinoma Cell Line EC109
- in-vitro, ESCC, Eca109
TumCP↓, higher citric acid concentrations (800, 1600 μg/ml)
e-LDH↑, incubation with either 400, 800 or 1600 µg/ml CA for 48 hours caused a significant increase (P<0.01) in LDH release by 1.67-fold, 2.79fold and 3.16-fold, respectively
MMP↓,
Ca+2?, CA level can directly regulate several metabolic pathways and increase calcium uptake from foods
PFK↓, potential inhibitor of PFK
Glycolysis↓, increasingly evidences have indicated that a high level of citrate could inhibit the glycolytic pathway

945- Croc,    Characterization of the Saffron Derivative Crocetin as an Inhibitor of Human Lactate Dehydrogenase 5 in the Antiglycolytic Approach against Cancer
- in-vitro, Lung, A549 - in-vitro, Cerv, HeLa
LDH↓, LDH inhibitor, IC50=54.9 ± 4.7 μM

2818- CUR,    Novel Insight to Neuroprotective Potential of Curcumin: A Mechanistic Review of Possible Involvement of Mitochondrial Biogenesis and PI3/Akt/ GSK3 or PI3/Akt/CREB/BDNF Signaling Pathways
- Review, AD, NA
*neuroP↑, Curcumin's protective functions against neural cell degeneration due to mitochondrial dysfunction and consequent events such as oxidative stress, inflammation, and apoptosis in neural cells have been documented
*ROS↓, studies show that curcumin exerts neuroprotective effects on oxidative stress.
*Inflam↓,
*Apoptosis↓,
*cognitive↑, cognitive performance to receive the title of neuroprotective
*cardioP↑, Studies have shown that curcumin can induce cell regeneration and defense in multiple organs such as the brain, cardiovascular system,
other↑, It has been shown that chronic use of curcumin in patients with neurodegenerative disorder can cause gray matter volume increase
*COX2↓, Curcumin also decreased the brain protein levels and activity of cyclooxygenase 2 (COX-2)
*IL1β↓, inhibition of IL-1β and TNF-α production, and enhancement of Nf-Kβ inhibition
*TNF-α↓,
NF-kB↓,
*PGE2↓, hronic curcumin therapy has shown a significant decrease in lipopolysaccharide (LPS)-induced elevation of brain prostaglandin E2 (PGE2) synthesis in rats
*iNOS↓, curcumin pretreatment decreased NOS activity in the ischemic rat model
*NO↓, curcumin has been shown to decrease NOS expression and NO production in rat brain tissue
*IL2↓, IL-2 is a cytokine that is anti-inflammatory. Numerous studies have shown that curcumin increases the secretion of IL-2
*IL4↓, curcumin reduced levels of IL-4
*IL6↓, Numerous studies have shown that curcumin in neurodegenerative events attenuates IL-6 production
*INF-γ↓, curcumin reduced the production of INF-γ, as pro-inflammatory cytokine
*GSK‐3β↓, Furthermore, previous findings have confirmed that inhibition of GSK-3β or CREB activation by curcumin has reduced the production of pro-inflammatory mediators under different conditions
*STAT↓, Inhibition of GSK-3β by curcumin has been found to result in reduced STAT activation
*GSH↑, chronic curcumin therapy increased glutathione levels in primary cultivated rat cerebral cortical cells
*MDA↓, multiple doses of 5, 10, 40 and 60 mg/kg) in rodents will inhibit neurodegenerative agent malicious effects, and reduce the amount of MDA and lipid peroxidation in brain tissue
*lipid-P↓,
*SOD↑, Curcumin induces increased production of SOD, glutathione peroxidase (GPx), CAT, and glutathione reductase (GR) activating antioxidant defenses
*GPx↑,
*Catalase↑,
*GSR↓,
*LDH↓, Curcumin decreased lactate dehydrogenase, lipoid peroxidation, ROS, H2O2 and inhibited Caspase 3 and 9
*H2O2↓,
*Casp3↓,
*Casp9↓,
*NRF2↑, ncreased mitochondrial uncoupling protein 2 and increased mitochondrial biogenesis. Nuclear factor-erythroid 2-related factor 2 (Nrf2)
*AIF↓, Curcumin treatment decreased the number of AIF positive nuclei 24 h after treatment in the hippocampus,
*ATP↑, curcumin in hippocampal cells induced an increase in mitochondrial mass leading to increased production of ATP with major improvements in mitochondrial efficiency

1869- DCA,    Dichloroacetate induces autophagy in colorectal cancer cells and tumours
- in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116 - in-vitro, Pca, PC3 - in-vitro, CRC, HT-29
LC3II↑, Increased expression of the autophagy markers LC3B II was observed following DCA treatment both in vitro and in vivo
ROS↑, increased production of reactive oxygen species (ROS)
mTOR↓, mTOR inhibition
MCT1↓, DCA is a possible competitive MCT-1 inhibitor
NADH:NAD↓, increased NAD+/NADH ratios
NAD↑,
TumAuto↑, DCA induces autophagy in cancer cells accompanied by ROS production and mTOR inhibition, reduced lactate excretion, reduced kPL and increased NAD+/NADH ratio.
lactateProd↓, DCA treatment reduces lactate excretion with no change in glucose uptake
LDH↑, Increased LDH activity

951- DHA,    Docosahexaenoic Acid Attenuates Breast Cancer Cell Metabolism and the Warburg Phenotype by Targeting Bioenergetic Function
- in-vitro, BC, BT474 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
Hif1a↓, in the malignant cell lines but not in the non-transformed cell line. ****
GLUT1↓, Downstream targets of HIF-1a, including glucose transporter 1 (GLUT 1) and lactate dehydrogenase (LDH), were decreased
LDH↓,
GlucoseCon↓,
lactateProd↓,
ATP↓, 50%
p‑AMPK↑,
ECAR↓, DHA significantly decreased basal ECAR by over 60%
OCR↓, basal OCR was decreased by 80%
*toxicity↓, while not affecting non-transformed MCF-10A cells

1606- EA,    Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells
- in-vitro, Colon, HCT15
TumCP↓,
cycD1↓,
Apoptosis↑,
PI3K↓, strong inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway by EA
Akt↓,
ROS↑, production of reactive oxygen intermediates, which were examined by 2,7-dichlorodihydrofluorescein diacetate (H2DCF-DA), increased with time, after treatment with EA
Casp3↑, EA promoted the expression of Bax, caspase-3, and cytochrome c, and suppression of Bcl-2 activity in HCT-15 cells
Cyt‑c↑,
Bcl-2↓,
TumCCA↑, induces G2/M phase cell cycle arrest in HCT-15 cells
Dose∅, since 60 lM of the drug concentration could cause attentional loss of cells (60 and 45 % were viable in 12 and 24 h treatment, respectively) for crucial experiments, we used this dosage to assess the effect of EA in killing HCT-15 cells
ALP↓, significant decrease in the activity of ALP at 60 lM concentration of EA for the 12 h treatment
LDH↓, decrease in the activity of LDH in cells was proportional to increase in the incubation time with EA.
PCNA↓, EA down-regulated the expressions of PCNA and cyclin D1
P53↑, EA promoted p53 gene expression
Bax:Bcl2↑, increase in the Bcl-2/Bax ratio

1621- EA,    The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art
- Review, Var, NA
AntiCan↑, Studies have shown its anti-tumor effect in gastric cancer, liver cancer, pancreatic cancer, breast cancer, colorectal cancer, lung cancer and other malignant tumors
Apoptosis↑,
TumCP↓,
TumMeta↓,
TumCI↓,
TumAuto↑,
VEGFR2↓, inhibition of VEGFR-2 signaling
MAPK↓, MAPK and PI3K/Akt pathways
PI3K↓,
Akt↓,
PD-1↓, Downregulation of VEGFR-2 and PD-1 expression
NOTCH↓, Inhibition of Akt and Notch
PCNA↓, regulation of the expression of proliferation-related proteins PCNA, Ki67, CyclinD1, CDK-2, and CDK-6
Ki-67↓,
cycD1↓,
CDK2↑,
CDK6↓,
Bcl-2↓,
cl‑PARP↑, up-regulated the expression of cleaved PARP, Bax, Active Caspase3, DR4, and DR5
BAX↑,
Casp3↑,
DR4↑,
DR5↑,
Snail↓, down-regulated the expression of Snail, MMP-2, and MMP-9
MMP2↓,
MMP9↓,
TGF-β↑, up-regulation of TGF-β1
PKCδ↓, Inhibition of PKC signaling
β-catenin/ZEB1↓, decreases the expression level of β-catenin
SIRT1↓, down-regulates the expression of anti-apoptotic protein, SIRT1, HuR, and HO-1 protein
HO-1↓,
ROS↑, up-regulates ROS
CHOP↑, activating the CHOP signaling pathway to induce apoptosis
Cyt‑c↑, releases cytochrome c
MMP↓, decreases mitochondrial membrane potential and oxygen consumption,
OCR↓,
AMPK↑, activates AMPK, and downregulates HIF-1α expression
Hif1a↓,
NF-kB↓, inhibition of NF-κB pathway
E-cadherin↑, Upregulates E-cadherin, downregulates vimentin and then blocks EMT progression
Vim↓,
EMT↓,
LC3II↑, Up-regulation of LC3 – II expression and down-regulation of CIP2A
CIP2A↓,
GLUT1↓, regulation of glycolysis-related gene GLUT1 and downstream protein PDH expression
PDH↝,
MAD↓, Downregulation of MAD, LDH, GR, GST, and GSH-Px related protein expressio
LDH↓,
GSTs↑,
NOTCH↓, inhibited the expression of Akt and Notch protein
survivin↓, survivin and XIAP was also significantly down-regulated
XIAP↓,
ER Stress↑, through ER stress
ChemoSideEff↓, could improve cisplatin-induced hepatotoxicity in colorectal cancer cells
ChemoSen↑, Enhancing chemosensitivity

1516- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*Dose∅, A pharmacokinetic study in healthy individuals receiving single doses of EGCGrevealed that plasma concentrations exceeded 1 μM only with doses of >1 g
Half-Life∅, peak levels observed between 1.3 and 2.2 h (and a half-life (t1/2z) of 1.9 to 4.6 h)
BioAv∅, oral bioavailability of 20.3% relative to intravenous admistration
BBB↑, EGCG can cross the blood–brain barrier, allowing it to reach the brain
toxicity∅, Isbrucher et al. found no evidence of genotoxicity in rats following oral administration of EGCG at doses of 500, 1000, or 2000 mg/kg, or intravenous injections of 10, 25, or 50 mg/kg/day.
eff↓, interaction with the folate transporter has been reported, leading to reduced bioavailability of folic acid
Apoptosis↑,
Casp3↑,
Cyt‑c↑, cytochrome c release
cl‑PARP↑,
DNMTs↓,
Telomerase↓,
angioG↓,
Hif1a↓,
NF-kB↓,
MMPs↓,
BAX↑,
Bak↑,
Bcl-2↓,
Bcl-xL↓,
P53↑,
PTEN↑,
IGF-1↓,
H3↓,
HDAC1↓,
*LDH↓, reduces LDL cholesterol, decreases oxidative stress by neutralizing ROS
*ROS↓,

1654- FA,    Molecular mechanism of ferulic acid and its derivatives in tumor progression
- Review, Var, NA
AntiCan↑, FA has anti-inflammatory, analgesic, anti-radiation, and immune-enhancing effects and also shows anticancer activity,
Inflam↓,
RadioS↑,
ROS↑, FA can cause mitochondrial apoptosis by inducing the generation of intracellular reactive oxygen species (ROS)
Apoptosis↑,
TumCCA↑, G0/G1 phase
TumCMig↑, inducing autophagy; inhibiting cell migration, invasion, and angiogenesis
TumCI↓,
angioG↓,
ChemoSen↑, synergistically improving the efficacy of chemotherapy drugs and reducing adverse reactions.
ChemoSideEff↓,
P53↑, FA could increase the expression level of p53 in MIA PaCa-2 pancreatic cancer cells
cycD1↓, while reducing the expression levels of cyclin D1 and cyclin-dependent kinase (CDK) 4/6.
CDK4↓,
CDK6↓,
TumW↓, FA treatment was found to reduce tumor weight in a dose-dependent manner, increase miR-34a expression, downregulate Bcl-2 protein expression, and upregulate caspase-3 protein expression
miR-34a↑,
Bcl-2↓,
Casp3↑,
BAX↑,
β-catenin/ZEB1↓, isoferulic acid dose-dependently downregulated the expression of β-catenin and MYC proto-oncogene (c-Myc), inducing apoptosis
cMyc↓,
Bax:Bcl2↑, FXS-3 can inhibit the activity of A549 cells by upregulating the Bax/Bcl-2 ratio
SOD↓, After treatment with FA, Cao et al. [40] observed an increase in ROS production and a decrease in superoxide dismutase activity and glutathione content in EC-1 and TE-4 oesophageal cancer cells
GSH↓,
LDH↓, FA could promote the release of lactate dehydrogenase (LDH)
ERK↑, A can activate the ERK1/2 pathway
eff↑, conjugated zinc oxide nanoparticles with FA (ZnONPs-FA) to act on hepatoma Huh-7 and HepG2 cells. The results showed that ZnONPs-FA could induce oxidative DNA damage and apoptosis by inducing ROS production.
JAK2↓, by inhibiting the JAK2/STAT6 immune signaling pathway
STAT6↓,
NF-kB↓, thus inhibiting the activation of NF-κB
PYCR1↓, FA can target PYCR1 and inhibit its enzyme activity in a concentration-dependent manner.
PI3K↓, FA inhibits the activation of the PI3K/AKT pathway
Akt↓,
mTOR↓, FA could significantly reduce the expression level of mTOR mRNA and Ki-67 protein in A549 lung cancer graft tissue
Ki-67↓,
VEGF↓,
FGFR1↓, FA is a novel FGFR1 inhibitor
EMT↓, FA can inhibit EMT
CAIX↓, selectively inhibit CAIX
LC3II↑, Autophagy vacuoles and increased LC3-II and p62 autophagy proteins were observed after treatment with this compound
p62↑,
PKM2↓, FA could inhibit the expression of PKM2 and block aerobic glycolysis
Glycolysis↓,
*BioAv↓, FA has poor solubility in water and a poor ability to pass through biological barriers [118]; therefore, the extent to which it is metabolized in vivo after oral administration is largely unknown

2841- FIS,    Fisetin, an Anti-Inflammatory Agent, Overcomes Radioresistance by Activating the PERK-ATF4-CHOP Axis in Liver Cancer
- in-vitro, Nor, RAW264.7 - in-vitro, Liver, HepG2 - in-vitro, Liver, Hep3B - in-vitro, Liver, HUH7
*Inflam↓, fisetin reduced the LPS-induced production of pro-inflammation markers, such as TNF-α, IL-1β, and IL-6, demonstrating the anti-inflammatory effects of fisetin
*TNF-α↓,
*IL1β↓,
*IL6↓,
Apoptosis↓, fisetin induced apoptotic cell death and ER stress through intracellular calcium (Ca2+) release, the PERK-ATF4-CHOP signaling pathway, and induction of GRP78 exosomes.
ER Stress↑,
Ca+2↑,
PERK↑, inducing the GRP78-PERK-ATF4-CHOP pathway in fisetin-treated radioresistant liver cancer cells.
ATF4↑, fisetin treatment of HepG2 and Hep3B cells resulted in the upregulation of ATF4 and CHOP in a time-dependent manner
CHOP↑,
GRP78/BiP↑,
tumCV↓, fisetin decreased the cell viability and increased LDH activity in HepG2, Hep3B, and Huh7 cells in a concentration-dependent manner
LDH↑,
Casp3↑, caspase-3 activity was significantly enhanced
cl‑Casp3↑, fisetin treatment significantly increased the pro-apoptotic markers, including cleaved caspase-3, caspase-8, and caspase-9
cl‑Casp8↑,
cl‑Casp9↑,
p‑eIF2α↑, fisetin treatment increased CHOP, p-eIF2α, ATF4, p-PERK, and GRP78 levels
RadioS↑, Radiation Combined with Fisetin Overcomes Radioresistance

987- GA,    Targeting Aerobic Glycolysis: Gallic Acid as Promising Anticancer Drug
- in-vitro, GBM, AMGM - in-vitro, Cerv, HeLa - in-vitro, BC, MCF-7
LDH↓, LDH inhibitor
TumCG↓,

935- Gallo,    Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
LDH↓, our experimental data show that the inhibition of LDH caused by GF can exert comparable growth inhibitory effects on breast cancer cells
ROS↑, induction of an oxidative stress condition

934- Gallo,    Galloflavin (CAS 568-80-9): a novel inhibitor of lactate dehydrogenase
- Analysis, NA, NA
LDH↓, hinders both the A and B isoforms of the enzyme.
Glycolysis↓, galloflavin blocked aerobic glycolysis at micromolar concentrations
Apoptosis↑,

841- Gra,    The Chemopotential Effect of Annona muricata Leaves against Azoxymethane-Induced Colonic Aberrant Crypt Foci in Rats and the Apoptotic Effect of Acetogenin Annomuricin E in HT-29 Cells: A Bioassay-Guided Approach
- in-vitro, CRC, HT-29 - in-vitro, Nor, CCD841
PCNA↓,
Bcl-2↓,
BAX↑,
*MDA↓, decrease in the malondialdehyde level of the colon tissue homogenates
lipid-P↓, suggesting the suppression of lipid peroxidation
TumCG↓, G1 cell cycle arrest
MMP↓,
Cyt‑c↑, leakage of cytochrome c from the mitochondria
Casp3↑,
Casp7↑,
Casp9↑,
*ROS↓, confirmed the protective effects of EEAML against oxidative stress in colon tissues
LDH↓, irreversible membrane damage to cells causes a leakage of LDH from the cytosol
*toxicity↓, IC50: <2ug/ml for cancer, but 32ug/ml for normal cells
selectivity↑, When compared with HT-29 cells, annomuricin E was far less cytotoxic to the normal cells, as revealed by the relatively high IC50 value on CCD841 (32.51 ± 1.18 μg/ml for 48 h)

854- Gra,  SNP,    Green Synthesis of Silver Nanoparticles Using Annona muricata Extract as an Inducer of Apoptosis in Cancer Cells and Inhibitor for NLRP3 Inflammasome via Enhanced Autophagy
- vitro+vivo, AML, THP1 - in-vitro, AML, AMJ13 - vitro+vivo, lymphoma, HBL
TumCP↓, THP-1 and AMJ-13
TumAuto↑,
IL1↓, IL-1b
NLRP3↓,
Apoptosis↑,
mtDam↑,
P53↑,
LDH↓, ability of AgNPs in increasing of LDH release.

2901- HNK,  doxoR,    Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts
- in-vivo, Nor, NA
*mitResp↑, mice treated with Honokiol showed enhanced mitochondrial respiration
*PPARγ↑, Honokiol modestly increased PPARγ transcriptional activities in cultured embryonic rat cardiomyocytes
*Inflam↓, Honokiol repressed cardiac inflammatory responses and oxidative stress in mice subjected to Dox treatment.
*ROS↓,
*cardioP↑, We conclude that Honokiol protects the heart from Dox-cardiotoxicity
*SOD2↑, Both SOD2 and CD36 were upregulated in the heart of Honokiol treated mice
*LDH↓, Furthermore, Honokiol treatment reduced the Dox-induced elevation of lactate dehydrogenase (LDH) activity (Fig. 6D) in mice subjected to acute Dox treatment.

2534- M-Blu,  doxoR,  PDT,    Methylene Blue-Mediated Photodynamic Therapy in Combination With Doxorubicin: A Novel Approach in the Treatment of HT-29 Colon Cancer Cells
- in-vitro, CRC, HT-29
LDH↑, present study, the results strongly suggest that the groups treated with DOX + MB + L 610/830 nm had the highest rates of LDH release
ROS↑, Several studies have shown that PDT via different mechanisms, including ROS generation, damage to cellular components (for example lipids, proteins, and nucleic acids) and, as a result, disrupting the integrity of the cell membrane

2531- M-Blu,    Anticancer activity of methylene blue via inhibition of heat shock protein 70
- in-vitro, Lung, A549 - in-vivo, NA, NA
tumCV↓, MB demonstrated lower cell viability versus NB
HSP70/HSPA5↓, In vivo, MB significantly inhibited Hsp70
LDH↓, MB significantly alleviated tumor biomarkers (ADA and LDH)
SOD↑, MB treatment significantly increased mean ± SD superoxide dismutase ([SOD

3475- MF,    A Pulsed Electromagnetic Field Protects against Glutamate-Induced Excitotoxicity by Modulating the Endocannabinoid System in HT22 Cells
- in-vitro, Nor, HT22 - Review, AD, NA
*Apoptosis↓, PEMF exposure improved viability of HT22 cells after excitotoxicity and reduced lactate dehydrogenase release and cell death.
*LDH↓,
*neuroP↑, PEMF exposure indicated that the neuroprotective effects of PEMF were related to modulation of the eCB metabolic system.
*toxicity∅, Recent studies have shown that PEMF is a safe and non-invasive approach for management of several neurological diseases, including Alzheimer's disease
*IL1β↓, Previous studies have shown that PEMF could modulate inflammation after traumatic brain injury by inhibiting production of pro-inflammatory factor IL-1β
*Inflam↓, PEMF influences neuroinflammation via elevation of anti-inflammatory IL-10 and reduction of pro-apoptotic tumor necrosis factor
*IL10↑,
*TNF-α↓,

2042- PB,    Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury
- in-vitro, Nor, NA
*HDAC↓, Recently, several histone deacetylase inhibitors (HDACIs) including phenylbutyrate (PBA) have shown promise in the treatment of cancer
*toxicity↓, with little known toxicity to normal tissues.
*LDH↓, PBA significantly decreased the ADR-associated elevation of serum lactase dehydrogenase (LDH)
*SOD2↑, by the increase of MnSOD
*ROS↓, PBA protects normal tissues against oxidative stress
*cardioP↑, PBA improved cardiac functions in ADR-treated mice
*antiOx↑, suggesting that PBA may exert an antioxidant function, via modulation of MnSOD, to protect cardiac tissue against ADR-induced injury.

1672- PBG,    The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers
- Review, BC, NA
ChemoSen↓, 4 human clinical trials that demonstrated the successful use of propolis in alleviating side effects of chemotherapy and radiotherapy while increasing the quality of life of breast cancer patients, with minimal adverse effects.
RadioS↑,
Inflam↓, immunomodulatory, anti-inflammatory, and anti-cancer properties.
AntiCan↑,
Dose∅, Indonesia: IC50 = 4.57 μg/mL and 10.23 μg/mL
mtDam↑, Poland: propolis induced mitochondrial damage and subsequent apoptosis in breast cancer cells.
Apoptosis?,
OCR↓, China: CAPE inhibited mitochondrial oxygen consumption rate (OCR) by reducing basal, maximal, and spare respiration rate and consequently inhibiting ATP production
ATP↓,
ROS↑, Iran: inducing intracellular ROS production, IC50 = 65-96 μg/mL
ROS↑, Propolis induced mitochondrial dysfunction and lactate dehydrogenase release indicating the occurrence of ROS-associated necrosis.
LDH↓,
TP53↓, Interestingly, a reduced expression of apoptosis-related genes such as TP53, CASP3, BAX, and P21)
Casp3↓,
BAX↓,
P21↓,
ROS↑, CAPE: inducing oxidative stress through upregulation of e-NOS and i-NOS levels
eNOS↑,
iNOS↑,
eff↑, The combination of propolis and mangostin significantly reduced the expression of Wnt2, FAK, and HIF-1α, when compared to propolis or mangostin alone
hTERT↓, downregulation of the mRNA levels of hTERT and cyclin D1
cycD1↓,
eff↑, Synergism with bee venom was observed
eff↑, Statistically significant decrease was found in the MCF-7 cell viability 48 h after applying different combinations of cisplatin (3.12 μg/mL) and curcumin (0.31 μg/mL) and propolis (160 μg/mL)
eff↑, Nanoparticles of chrysin had significantly higher cytotoxicity against MCF-7 cells, compared to chrysin
eff↑, Propolis nanoparticles appeared to increase cytotoxicity of propolis against MCF-7 cells
STAT3↓, Chrysin also inhibited the hypoxia-induced STAT3 tyrosine phosphorylation suggesting the mechanism of action was through STAT3 inhibition.
TIMP1↓, Propolis reduced the expression of TIMP-1, IL-4, and IL-10.
IL4↓,
IL10↓,
OS↑, patients supplemented with propolis had significantly longer median disease free survival time (400 mg, 3 times daily for 10 d pre-, during, and post)
Dose∅, 400 mg, 3 times daily for 10 d pre-, during, and post
ER Stress↑, endoplasmic reticulum stress
ROS↑, upregulating the expression of Annexin A7 (ANXA7), reactive oxygen species (ROS) level, and NF-κB p65 level, while simultaneously reducing the mitochondrial membrane potential.
NF-kB↓,
p65↓,
MMP↓,
TumAuto↑, propolis induced autophagy by increasing the expression of LC3-II and reducing the expression of p62 level
LC3II↑,
p62↓,
TLR4↓, propolis downregulates the inflammatory TLR4
mtDam↑, propolis induced mitochondrial dysfunction and lactate dehydrogenase release indicating ROS-associated necrosis in MDA MB-231cancer cells
LDH↓,
ROS↑,
Glycolysis↓, inhibit the proliferation of MDA-MB-231 cells by targeting key enzymes of glycolysis, namely glycolysis-hexokinase 2 (HK2), phosphofructokinase (PFK), pyruvate kinase muscle isozyme M2 (PKM2), and lactate dehydrogenase A (LDHA),
HK2↓,
PFK↓,
PKM2↓,
LDH↓,
IL10↓, propolis significantly reduced the relative number of CD4+, CD25+, FoxP3+ regulatory T cells expressing IL-10
HDAC8↓, Chrysin, a propolis bioactive compound, inhibits HDAC8
eff↑, combination of propolis and mangostin significantly reduced the expression of Wnt2, FAK, and HIF-1α, when compared to propolis or mangostin alone.
eff↑, Propolis also upregulated the expression of catalase, HTRA2/Omi, FADD, and TRAIL-associated DR5 and DR4 which significantly enhanced the cytotoxicity of doxorubicin in MCF-7 cells
P21↑, Chrysin, a propolis bioactive compound, inhibits HDAC8 and significantly increases the expression of p21 (waf1/cip1) in breast cancer cells, leading to apoptosis.

1663- PBG,    Propolis and Their Active Constituents for Chronic Diseases
- Review, Var, NA
NF-kB↓, CAPE (a bioactive constituent of propolis) was reported to have anticancer properties by inhibiting NF-κB, caspase and Fas signaling activation in MCF-7 cells
Casp↓,
Fas↓,
DNAdam↑, DNA fragmentation, CCAAT/enhancer binding protein homologous protein expression and caspase-3 activity
Casp3↑,
P53↝, Chinese propolis (EECP) and its bioactive constituents mainly persist due to regulation of the annexin A7 and p53 proteins, mitochondrial membrane potential and ROSs, as well as that inhibition of NF-κB causes apoptosis in cancer cells
MMP↝,
ROS↑, Herrera et al. and reported on the MDA-MB 231 tumor cell line, and the inhibitory effect of propolis was proposed to occur through the induction of mitochondrial dysfunction, resulting in ROS-associated necrosis
mtDam↑,
Dose?, A concentration of 100 μg/mL was able to attain 71% cytotoxicity
angioG↓, negative effect on angiogenesis, proliferation and migration of tumor cells. A concentration of 25–200 μg/mL noticeably inhibited the metastasis of breast cancer
TumCP↓,
TumCMig↓,
BAX↑,
selectivity↑, Negligible effect in fibroblasts
MMP↓, Cuban: Disturbed the mitochondrial potential, lactate dehydrogenase released, production of ROS and cell migration
LDH↓,
IL6↓, Chinese: Decreased cell tube generation, IL-6, IL-1β, TNF-α-like inflammatory mediators, glycolytic enzymes and mitochondrial potential. Promoted ROS generation
IL1β↓,
TNF-α↓,

1682- PBG,    Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits
- Review, Var, NA
i-LDH↓, cytotoxic activities of Tualang honey in human breast cancer cells were demonstrated by elevated secretion of lactate dehydrogenase (LDH)
Akt↓, figure 2
MAPK↓, figure 2
NF-kB↓, figure 2
IL1β↓, figure 2
IL6↓, figure 2
TNF-α↓, figure 2
iNOS↓, figure 2
COX2↓, figure 2
ROS↓, figure 2
Bcl-2↓, figure 2
PARP↓, figure 2
P53↑, figure 2
BAX↑, figure 2
Casp3↑, figure 2
TumCCA↑, Several components of honey such as chrysin, quercetin, and kaempferol have been shown to arrest cell cycle at various phases such as G0/G1, G1, and G2/M
Cyt‑c↑, hese stimuli cause several proteins located within the intermembrane space (IMS) of the mitochondria, such as cytochrome c, to be released
MMP↓, Honey induces MOMP in cancer cell lines by decreasing the mitochondrial membrane potential
eff↑, amplifying the apoptotic effect of tamoxifen by intensified depolarization of the mitochondrial membrane.

2430- PBG,    The cytotoxic effects of propolis on breast cancer cells involve PI3K/Akt and ERK1/2 pathways, mitochondrial membrane potential, and reactive oxygen species generation
- in-vitro, BC, MDA-MB-231
TumCP↓, CP extract exhibited antiproliferative and cytotoxic effects on MDA MB-231 cells, what may be probably related to PI3K/Akt and ERK1/2 pathways.
TP53↓, decreased expression of apoptosis-related genes (TP53, CASP3, BAX and P21)
Casp3↓,
BAX↓,
P21↓,
ROS↑, These results suggested that CP cytotoxic effects on MDA MB-231 cells might be associated with the intracellular ROS production
eff↓, CP-induced ROS generation was reduced after cotreatment with the antioxidant NAC, which increased the percentage of viable cells, suggesting that CP-induced necrotic-related cell death could be associated with ROS production
MMP↓, Necrosis death is associated with mitochondrial dysfunction and our propolis sample reduced the MMP and increased LDH levels.
LDH↑,
ATP↓, rupture of mitochondrial membrane, loss of adenosine triphosphate (ATP),
Ca+2↑, excessive ROS production, intracellular [Ca+2] elevation, osmotic shock,

2972- PL,    Piperlongumine Is an NLRP3 Inhibitor With Anti-inflammatory Activity
- in-vitro, AML, THP1
NLRP3↓, PL is a natural inhibitor of Nod-like receptor family pyrin domain-containing protein-3 (NLRP3) inflammasome,
IL1β↓, We further observed that PL inhibited IL-1β secretion, LDH release, and caspase-1 cleavage when macrophages were treated with other NLRP3 agonists, including ATP and MSU
LDH↓,
cl‑Casp1↓,
Inflam↓, Piperlongumine Suppresses NLRP3-Dependent Inflammation in vivo

98- QC,    Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway
- in-vivo, Stroke, NA
*Bcl-2↑,
*BAX↓,
*Bax:Bcl2↓, Que postconditioning significantly decreased Bax expression and increased Bcl-2 expression
*cardioP↑, cardioprotection by activating the PI3K/Akt signaling pathway and modulating the expression of Bcl-2 and Bax proteins.
*Akt↑,
*PI3K↑,
*LDH↓, Que postconditioning reduced the levels of CK (1642.9±194.3 vs 2679.5±194.3 U/L, P<0.05) and LDH (1273.6±176.5 vs 2618±197.7 U/L, P<0.05) compared to the I/R group

3374- QC,    Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis
- Review, Oral, NA - Review, AD, NA
α-SMA↓, In oral cancer cells, quercetin could inhibit EMT via up-regulation of claudin-1 and E-cadherin and down-regulation of α-SMA, vimentin, fibronectin, and Slug [29]
α-SMA↑, OSC20 Invasion: ↓Migration, ↑Expression of epithelial markers (E-cadherin & claudin-1), ↑Expression of mesenchymal markers (fibronectin, vimentin, & α-SMA),
TumCP↓, quercetin significantly reduced cancer cell proliferation, cell viability, tumor volume, invasion, metastasis and migration
tumCV↓,
TumVol↓,
TumCI↓,
TumMeta↓,
TumCMig↓,
ROS↑, This anti-cancer agent induced oxidative stress and apoptosis in the cancer cells.
Apoptosis↑,
BioAv↓, The efficacy of quercetin (as lipophilic) is much impacted by its poor absorption rates, which define its bioavailability. The research on quercetin's bioavailability in animal models shows it may be as low as 10%
*neuroP↑, quercetin has been observed to exhibit neuroprotective effects in Alzheimer's disease through its anti-oxidants, and anti-inflammatory properties and inhibition of amyloid-β (Aβ) fibril formation
*antiOx↑,
*Inflam↓,
*Aβ↓,
*cardioP↑, Additionally, quercetin protects the heart by stopping oxidative stress, inflammation, apoptosis, and protein kinases
MMP↓, ↓MMP, ↑Cytosolic Cyt. C,
Cyt‑c↑,
MMP2↓, ↓Activation MMP-2 & MMP-9, ↓Expression levels of EMT inducers & MMPs, Downregulated Twist & Slug
MMP9↓,
EMT↓,
MMPs↓,
Twist↓,
Slug↓,
Ca+2↑, ↑Apoptosis, ↑ROS, ↑Ca2+ production, ↑Activities of caspase‑3, caspase‑8 & caspase‑9
AIF↑, ↑Mitochondrial release of Cyt. C, AIF, & Endo G
Endon↑,
P-gp↓, ↓ Protein levels of P-gp, & P-gp Expression
LDH↑, LDH release
HK2↓, CAL27 cells) 80µM/24h Molecular markers: ↓Activities of HK, PK, & LDH, ↓Glycolysis, ↓Glucose uptake, ↓Lactate production, ↓Viability, ↓G3BP1, & YWHA2 protein levels
PKA↓,
Glycolysis↓,
GlucoseCon↓,
lactateProd↓,
GRP78/BiP↑, Quercetin controls the activation of intracellular Ca2+ and calpain-1, which then activates GRP78, caspase-12, and C/EBP homologous protein (CHOP) in oral cancer cells
Casp12↑,
CHOP↑,

3369- QC,    Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects
- Review, Pca, NA
FAK↓, Quercetin can inhibit HGF-induced melanoma cell migration by inhibiting the activation of c-Met and its downstream Gabl, FAK and PAK [84]
TumCCA↑, stimulation of cell cycle arrest at the G1 stage
p‑pRB↓, mediated through regulation of p21 CDK inhibitor and suppression of pRb phosphorylation resulting in E2F1 sequestering.
CDK2↑, low dose of quercetin has brought minor DNA injury and Chk2 induction
CycB↓, quercetin has a role in the reduction of cyclin B1 and CDK1 levels,
CDK1↓,
EMT↓, quercetin suppresses epithelial to mesenchymal transition (EMT) and cell proliferation through modulation of Sonic Hedgehog signaling pathway
PI3K↓, quercetin on other pathways such as PI3K, MAPK and WNT pathways have also been validated in cervical cancer
MAPK↓,
Wnt↓,
ROS↑, colorectal cancer, quercetin has been shown to suppress carcinogenesis through various mechanisms including affecting cell proliferation, production of reactive oxygen species and expression of miR-21
miR-21↑,
Akt↓, Figure 1 anti-cancer mechanisms
NF-kB↓,
FasL↑,
Bak↑,
BAX↑,
Bcl-2↓,
Casp3↓,
Casp9↑,
P53↑,
p38↑,
MAPK↑,
Cyt‑c↑,
PARP↓,
CHOP↑,
ROS↓,
LDH↑,
GRP78/BiP↑,
ERK↑,
MDA↓,
SOD↑,
GSH↑,
NRF2↑,
VEGF↓,
PDGF↓,
EGF↓,
FGF↓,
TNF-α↓,
TGF-β↓,
VEGFR2↓,
EGFR↓,
FGFR1↓,
mTOR↓,
cMyc↓,
MMPs↓,
LC3B-II↑,
Beclin-1↑,
IL1β↓,
CRP↓,
IL10↓,
COX2↓,
IL6↓,
TLR4↓,
Shh↓,
HER2/EBBR2↓,
NOTCH↓,
DR5↑, quercetin has enhanced DR5 expression in prostate cancer cells
HSP70/HSPA5↓, Quercetin has also suppressed the upsurge of hsp70 expression in prostate cancer cells following heat treatment and enhanced the quantity of subG1 cells
CSCs↓, Quercetin could also suppress cancer stem cell attributes and metastatic aptitude of isolated prostate cancer cells through modulating JNK signaling pathway
angioG↓, Quercetin inhibits angiogenesis-mediated of human prostate cancer cells through negatively modulating angiogenic factors (TGF-β, VEGF, PDGF, EGF, bFGF, Ang-1, Ang-2, MMP-2, and MMP-9)
MMP2↓,
MMP9↓,
IGFBP3↑, Quercetin via increasing the level of IGFBP-3 could induce apoptosis in PC-3 cells
uPA↓, Quercetin through decreasing uPA and uPAR expression and suppressing cell survival protein and Ras/Raf signaling molecules could decrease prostate cancer progression
uPAR↓,
RAS↓,
Raf↓,
TSP-1↑, Quercetin through TSP-1 enhancement could effectively inhibit angiogenesis

2332- RES,    Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism
- Review, Var, NA
Glycolysis↓, Resveratrol reduces glucose uptake and glycolysis by affecting Glut1, PFK1, HIF-1α, ROS, PDH, and the CamKKB/AMPK pathway.
GLUT1↓, resveratrol reduces glycolytic flux and Glut1 expression by targeting ROS-mediated HIF-1α activation in Lewis lung carcinoma tumor-bearing mice
PFK1↓,
Hif1a↓, Resveratrol specifically suppresses the nuclear β-catenin protein by inhibiting HIF-1α
ROS↑, Resveratrol increases ROS production
PDH↑, leading to increased PDH activity, inhibiting HK and PFK, and downregulating PKM2 activity
AMPK↑, esveratrol elevated NAD+/NADH, subsequently activated Sirt1, and in turn activated the AMP-activated kinase (AMPK),
TumCG↓, inhibits cell growth, invasion, and proliferation by targeting NF-kB, Sirt1, Sirt3, LDH, PI-3K, mTOR, PKM2, R5P, G6PD, TKT, talin, and PGAM.
TumCI↓,
TumCP↓,
p‑NF-kB↓, suppressing NF-κB phosphorylation
SIRT1↑, Resveratrol activates the target subcellular histone deacetylase Sirt1 in various human tissues, including tumors
SIRT3↑,
LDH↓, decreases glycolytic enzymes (pyruvate kinase and LDH) in Caco2 and HCT-116 cells
PI3K↓, Resveratrol also targets “classical” tumor-promoting pathways, such as PI3K/Akt, STAT3/5, and MAPK, which support glycolysis
mTOR↓, AMPK activation further inhibits the mTOR pathway
PKM2↓, inhibiting HK and PFK, and downregulating PKM2 activity
R5P↝,
G6PD↓, G6PDH knockdown significantly reduced cell proliferation
TKT↝,
talin↓, induces apoptosis by targeting the pentose phosphate and talin-FAK signaling pathways
HK2↓, Resveratrol downregulates glucose metabolism, mainly by inhibiting HK2;
GRP78/BiP↑, resveratrol stimulates GRP-78, and decreases glucose uptake,
GlucoseCon↓,
ER Stress↑, resveratrol-induced ER-stress leads to apoptosis of CRC cells
Warburg↓, Resveratrol reverses the Warburg effect
PFK↓, leading to increased PDH activity, inhibiting HK and PFK, and downregulating PKM2 activity

323- Sal,  SNP,    Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy
- in-vitro, BC, MDA-MB-231 - in-vitro, Ovarian, A2780S
TumCD↑, Sal and AgNPs enhanced the cell death (81%)
LDH↓, Sal increased LDH release and MDA levels
MDA↑,
SOD↓,
ROS↑,
GSH↓,
Catalase↓,
MMP↓, loss of Mitochondrial membrane potential
P53↑, 1.5x combined treatment
P21↑, 25x combined treatment
BAX↑,
Bcl-2↓,
Casp3↑,
Casp9↑,
Apoptosis↑,
TumAuto↑, upregulates autophagy genes that are involved in autophagosome formation

3184- SFN,    The Integrative Role of Sulforaphane in Preventing Inflammation, Oxidative Stress and Fatigue: A Review of a Potential Protective Phytochemical
- Review, Nor, NA
*NRF2↑, SFN treatment modulates redox balance via activating redox regulator nuclear factor E2 factor-related factor (Nrf2).
*Inflam↓, SFN reduces inflammation by suppressing centrally involved inflammatory regulator nuclear factor-kappa B (NF-κB),
*NF-kB↓,
*ROS↓, SFN in preventing fatigue, inflammation, and oxidative stress,
*BioAv↝, It was identified that the lowest oral dose of SFN (2.8 µmol/kg or 0.5 mg/kg) has an absolute bioavailability of more than 80%, whilst with the highest dose (28 µmol/kg or 5 mg/kg) had only 20% bioavailability
*BioAv↝, For example, quickly steaming broccoli sprouts, followed by myrosinase treatment, contains the highest amount SFN, which is approximately 11 and 5 times higher than freeze dried and untreated steamed broccoli sprouts, respectively
*BioAv↝, The peak concentration of SFN metabolites (1.91 ± 0.24 µM) was identified in urine after 1 h of oral dose (200 µmol) of broccoli sprout ITCs to four healthy human volunteers
*BioAv↝, study with 20 participants, providing 200 µmol of SFN in capsule form revealed a peak of SFN equivalence (0.7 ± 0.2 µM) at 3 h
*cardioP↑, FN actives signaling pathways and phosphorylates Nrf2, which further increases the expression and activity of phase 2 enzymes, such as GR, GST, TR, NQO1, to minimize cardiac cell arrest,
*GPx↑, 200 mg of dried broccoli sprouts increased glutathione content, decreased levels of oxidized glutathione, increased the activity of GR and glutathione peroxidase (GPx), which are associated with decreasing oxidative stress in the cardiovascular syst
*SOD↑, SFN treatment activates Nrf2, which translocates into the nucleus to induce production of cellular defense enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), heme oxygenase (HO) 1, NADPH quinone oxidoreductase
*Catalase↑,
*GPx↑,
*HO-1↑,
*NADPH↑,
*NQO1↑,
*LDH↓, Furthermore, creatinine phosphokinase (CPK) and lactate dehydrogenase (LDH) (two enzymatic markers to assess muscle damage) were significantly lower after SFN treatment compared to a placebo
*hepatoP↑, protects exercise-induced liver damage, evidenced by reducing blood levels of enzymes such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), via inducing antioxidant defense response
*ALAT↓,
*AST↓,
*IL6↓, fresh broccoli sprouts (30 g/day) daily for 10 weeks. After the intervention period, plasma IL-6 concentrations were significantly lower

3330- SIL,    Mechanistic Insights into the Pharmacological Significance of Silymarin
- Review, Var, NA
*neuroP↑, silymarin is employed significantly as a neuroprotective, hepatoprotective, cardioprotective, antioxidant, anti-cancer, anti-diabetic, anti-viral, anti-hypertensive, immunomodulator, anti-inflammatory, photoprotective and detoxification agent
*hepatoP↑,
*cardioP↑,
*antiOx↓,
*NLRP3↓, Zhang et al. (2018) observed that silybin significantly impedes NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in NAFLD by elevating NAD+ levels,
*NAD↑,
ROS↓, MDA-MB-231: it was observed that silybin treatment also abolishes activation of the NLRP3 inflammasome through repression of ROS generation, resulting in reduced tumor cell migration and invasion
NLRP3↓,
TumCMig↓,
*COX2↓, mpairing several enzymes (COX-2, iNOS, SGPT, SGOT, MMP, MPO, AChE, G6Pase, MAO-B, LDH, Telomerase, FAS and CK-MB)
*iNOS↓,
*MPO↓,
*AChE↓,
*LDH↓,
*Telomerase↓,
*Fas↓,

3040- SK,    Pharmacological Properties of Shikonin – A Review of Literature since 2002
- Review, Var, NA - Review, IBD, NA - Review, Stroke, NA
*Half-Life↝, One study using H-shikonin in mice showed that shikonin was rapidly absorbed after oral and intramuscular administration, with a half-life in plasma of 8.79 h and a distribution volume of 8.91 L/kg.
*BioAv↓, shikonin is generally used in creams and ointments, that is, oil-based preparations; indeed, its insolubility in water is usually the cause of its low bioavailability
*BioAv↑, 200-fold increase in the solubility, photostability, and in vitro permeability of shikonin through the formation of a 1 : 1 inclusion complex with hydroxypropyl-β-cyclodextrin.
*BioAv↑, 181-fold increase in the solubility of shikonin in aqueous media in the presence of β-lactoglobulin at a concentra- tion of 3.1 mg/mL
*Inflam↓, anti-inflammatory effect of shikonin
*TNF-α↓, shikonin inhibited TNF-α production in LPS-stimulated rat primary macrophages as well as NF-κB translocation from the cytoplasm to the nucleus.
*other↑, authors found that treatment with shikonin prevented the shortening of the colorectum and decreased weight loss by 5 % while improving the ap- pearance of feces and preventing bloody stools.
*MPO↓, MPO activity was reduced as well as the expression of COX-2, the activation of NF-κB and that of STAT3.
*COX2↓,
*NF-kB↑,
*STAT3↑,
*antiOx↑, Antioxidant Effects of Shikonin
*ROS↓, radical scavenging activity of shikonin
*neuroP↑, shown to exhibit a neuroprotective effect against the damage caused by ischemia/reperfusion in adult male Kunming mice
*SOD↑, it also attenuated neuronal damage and the upregulation of superoxide dismutase, catalase, and glutathione peroxidase activities while reducing the glutathione/glutathione disulfide ratio.
*Catalase↑,
*GPx↑,
*Bcl-2↑, shikonin upregulated Bcl-2, downregulated Bax and prevented cell nuclei from undergoing morphological changes typical of apoptosis.
*BAX↓,
cardioP↑, Two different studies have suggested a possible cardioprotective effect of shikonin that would be related to its anti-inflammatory and antioxidant effects.
AntiCan↑, A wide spectrum of anticancer mechanisms of action have been described for shikonin:
NF-kB↓, suppression of NF-κB-regulated gene products [44],
ROS↑, ROS generation [46],
PKM2↓, inhibition of tumor-specific pyruvate kinase-M2 [47,48]
TumCCA↑, cell cycle arrest [49]
Necroptosis↑, or induction of necroptosis [50],
Apoptosis↑, shikonin at 1 μM induced caspase-dependent apoptosis in U937 cells after 6 h with an increase in DNA fragmentation, intracellular ROS, low mitochondrial membrane potential
DNAdam↑,
MMP↓,
Cyt‑c↑, At 10 μM, shikonin induced a greater release of cytochrome c from the mitochondria and of lactate dehydrogenase,
LDH↝,

1284- SK,    Shikonin induces ferroptosis in multiple myeloma via GOT1-mediated ferritinophagy
- in-vitro, Melanoma, RPMI-8226 - in-vitro, Melanoma, U266
Ferroptosis↑, SHK treatment leads to the ferroptosis of MM cells
LDH↓,
ROS↑, Cellular mitochondrial lipid ROS also increased after SHK treatment
Iron↑,
lipid-P↑,
ATP↓, extracellular release of Adenosine 5’-triphosphate (ATP) and High mobility group protein B1 (HMGB1
HMGB1↓,
GPx4↓, Additionally, the ferroptosis markers GPX4 and solute carrier family 7 member 11 (xCT/SLC7A11) were downregulated at both the transcriptional and translational levels after SHK treatment
MDA↑, SHK treatment led to an increase in MDA content in cells. In contrast, the levels of SOD and GSH decreased in cells
SOD↓,
GSH↓,

2181- SK,    Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2
- in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Cerv, HeLa
Glycolysis↓, Shikonin and alkannin significantly inhibited the glycolytic rate, as manifested by cellular lactate production and glucose consumption in drug-sensitive and resistant cancer cell lines
lactateProd↓,
GlucoseCon↓,
PKM2↓, shikonin and alkannin are the most potent and specific inhibitors to PKM2 reported so far
LDH∅, LDH was not inhibited by shikonin, alkannin and the analogs

2836- SNP,  Gluc,    Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells
- in-vitro, Cerv, HeLa
eff↝, AgNPs synthesized are stable up to 10 days without silver and glucose dissolution.
TumCCA↑, AgNPs block the cells in S and G2/M phases, and increase the subG1 cell population.
eff↑, HeLa cells take up abundantly and rapidly AgNPs-G resulting toxic to cells in amount and incubation time dependent manner.
eff↑, The dissolution experiments demonstrated that the observed effects were due only to AgNPs-G since glucose capping prevents Ag+ release.
ROS↑, AgNPs cause toxic responses via induction of oxidative stress as consequence of the generation of intracellular (ROS), depletion of glutathione (GSH), reduction of the superoxide dismutase (SOD) enzyme activity, and increased lipid peroxidation
GSH↓,
SOD↓,
lipid-P↑,
LDH↑, significant LDH levels increase with the highest amount of AgNPs-G and maximum of toxicity was seen at 12 h.

327- SNP,  MS-275,    Combination Effect of Silver Nanoparticles and Histone Deacetylases Inhibitor in Human Alveolar Basal Epithelial Cells
- in-vitro, Lung, A549
Apoptosis↑,
ROS↑,
LDH↓, leakage of lactate dehydrogenase (LDH);
TNF-α↑,
mtDam↑,
TumAuto↑,
Casp3↑,
Casp9↑,
DNAdam↑, induced DNA-fragmentation

384- SNP,    Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy
- in-vitro, Testi, F9
LDH↓, When the cells were treated with AgNPs and AgNO3, the amount of LDH leaked into the media increased in a dose-dependent manner
ROS↑,
mtDam↑,
DNAdam↑,
P53↑,
P21↑,
BAX↑,
Casp3↑,
Bcl-2↓,
Casp9↑,
Nanog↓,
OCT4↓,

368- SNP,    In vitro evaluation of silver nanoparticles on human tumoral and normal cells
- in-vitro, Var, NA
mtDam↑,
LDH↓, LDH leakage also increased in all cell lines exposed to AgNPs

373- SNP,    Cytotoxic Potential and Molecular Pathway Analysis of Silver Nanoparticles in Human Colon Cancer Cells HCT116
- in-vitro, Colon, HCT116
LDH↓, Increased lactate dehydrogenase leakage (LDH),
ROS↑,
MDA↑,
ATP↓,
GSH↓,
MMP↓, loss of

376- SNP,    Antitumor activity of colloidal silver on MCF-7 human breast cancer cells
- in-vitro, BC, MCF-7
Apoptosis↑,
LDH↓, significantly decreased LDH (*P < 0.05) and significantly increased SOD (*P < 0.05) activities
SOD↑,
DNAdam↑,

2093- TQ,    Regulation of NF-κB Expression by Thymoquinone; A Role in Regulating Pro-Inflammatory Cytokines and Programmed Cell Death in Hepatic Cancer Cells
- in-vitro, Liver, HepG2 - in-vitro, Nor, NA
TumCD↑, evidence of the cytotoxic effects of TQ on HepG2 cells
selectivity↑, These findings indicate the selective regulation of HepG2 cell proliferation by TQ treatment without the detectable toxic effect of the normal hepatocytes
Casp3↑, TQ mediates the activation of Casp3, DLC1, and NF-κB, providing a new function of TQ in treating hepatocellular carcinoma (HCC).
DLC1↑,
NF-kB↑,
LDH↑, relative LDH production increased significantly in HepG2 cells treated with 500 ug/m
*toxicity↓, normal hepatocyte cells showed negligible differentiation in cell viability rate

3398- TQ,  5-FU,    Impact of thymoquinone on the Nrf2/HO-1 and MAPK/NF-κB axis in mitigating 5-fluorouracil-induced acute kidney injury in vivo
- in-vivo, Nor, NA
*RenoP↑, Pre-, post-, and cotreatment with TQ alleviated kidney injury
*TAC↑, by replenishing antioxidant reserves, reducing serum toxicity, decreasing ROS generation and lipid peroxidation, downregulating p38 MAPK/NF-κB axis/pathway proteins, and upregulating Nrf2 and HO-1,
*ROS↓, high-dose TQ alleviated ROS and H2O2 levels in groups III and IV
*lipid-P↓,
*p38↓,
*MAPK↓,
*NF-kB↓,
*NRF2↑,
*HO-1↑,
*MDA↓, TQ diminishes MDA levels
*GPx↑, GPx, GR, and CAT : restoration of GSH reserves and the abovementioned antioxidant enzymes
*GSR↑,
*Catalase↑,
*BUN↓, noticeable inhibition was observed in BUN, Cr, LDH, and KIM-1 at both doses
*LDH↓,
*IL1β↓, downregulation of IL-1β, diminishing inflammation

3559- TQ,    Molecular signaling pathway targeted therapeutic potential of thymoquinone in Alzheimer’s disease
- Review, AD, NA - Review, Var, NA
*antiOx↑, promising potential in the prevention and treatment of AD due to its significant antioxidative, anti-inflammatory,
*Inflam↑, anti-inflammatory activity of TQ is mediated through the Toll-like receptors (TLRs)
*AChE↓, In addition, it shows anticholinesterase activity and prevents α-synuclein induced synaptic damage.
AntiCan↑, NS plant, has been proven to have a wide range of pharmacological interventions, including antidiabetic, anticancer, cardioprotective, retinoprotective, renoprotective, neuroprotective, hepatoprotective and antihypertensive effects
*cardioP↑,
*RenoP↑,
*neuroP↑,
*hepatoP↑,
TumCG↓, potential ability to inhibit tumor growth by stimulating apoptosis as well as by suppression of the P13K/Akt pathways, cell cycle arrest and by inhibition of angiogenesis
Apoptosis↑,
PI3K↓,
Akt↑,
TumCCA↑,
angioG↓,
*NF-kB↓, TQ inhibits nuclear translocation of NF-kB which subsequently blocks the production of NF-kB mediated neuroinflammatory cytokines
*TLR2↓, TQ administration at different doses (10, 20, 40 mg/kg) significantly down-regulated the mRNA expression of TLR-2, TLR-4, MyD88, TRIF and their downstream effectors Interferon regulatory factor 3 (IRF-3)
*TLR4↓,
*MyD88↓,
*TRIF↓,
*IRF3↓,
*IL1β↓, TQ also inhibits LPS induced pro-inflammatory cytokine release like IL-1B, IL-6 and IL-12 p40/70 via its interaction with NF-kB
*IL6↓,
*IL12↓,
*NRF2↑, Nuclear erythroid-2 related factor/antioxidant response element (Nrf 2/ARE) being an upstream signaling pathway of NF-kB signaling pathway, its activation by TQ
*COX2↓, TQ also inhibits the expression of all genes regulated by NF-kB, i.e., COX-2, VEGF, MMP-9, c-Myc, and cyclin D1 which distinctively lowers NF-kB activation making it a potentially effective inhibitor of inflammation, proliferation and invasion
*VEGF↓,
*MMP9↓,
*cMyc↓,
*cycD1↓,
*TumCP↓,
*TumCI↓,
*MDA↓, it prevents the rise of malondialdehyde (MDA), transforming growth factor beta (TGF-β), c-reactive protein, IL1-β, caspase-3 and concomitantly upregulates glutathione (GSH), cytochrome c oxidase, and IL-10 levels [92].
*TGF-β↓,
*CRP↓,
*Casp3↓,
*GSH↑,
*IL10↑,
*iNOS↑, decline of inducible nitric oxide synthase (iNOS) protein expression
*lipid-P↓, TQ prominently mitigated hippocampal lipid peroxidation and improved SOD activity
*SOD↑,
*H2O2↓, TQ is a strong hydrogen peroxide, hydroxyl scavenger and lipid peroxidation inhibitor
*ROS↓, TQ (0.1 and 1 μM) ensured the inhibition of free radical generation, lowering of the release of lactate dehydrogenase (LDH)
*LDH↓,
*Catalase↑, upsurge the levels of GSH, SOD, catalase (CAT) and glutathione peroxidase (GPX)
*GPx↑,
*AChE↓, TQ exhibited the highest AChEI activity of 53.7 g/mL in which NS extract overall exhibited 84.7 g/mL, which suggests a significant AChE inhibition.
*cognitive↑, Most prominently, TQ has been found to regulate neurite maintenance for cognitive benefits by phosphorylating and thereby activating the MAPK protein, particularly the JNK proteins for embryogenesis and also lower the expression levels of BAX
*MAPK↑,
*JNK↑,
*BAX↓,
*memory↑, TQ portrays its potential of spatial memory enhancement by reversing the conditions as observed by MWM task
*Aβ↓, TQ thus, has been shown to ameliorate the Aβ accumulation
*MMP↑, improving the cellular activity, inhibiting mitochondrial membrane depolarization and suppressing ROS

3140- VitC,    Vitamin-C-dependent downregulation of the citrate metabolism pathway potentiates pancreatic ductal adenocarcinoma growth arrest
- in-vitro, PC, MIA PaCa-2 - in-vitro, Nor, HEK293
citrate↓, pharmacological doses of vitamin C are capable of exerting an inhibitory action on the activity of CS, reducing glucose-derived citrate levels
FASN↓, Moreover, ascorbate targets citrate metabolism towards the de novo lipogenesis pathway, impairing fatty acid synthase (FASN) and ATP citrate lyase (ACLY) expression.
ACLY↓,
LDH↓, correlated with a remarkable decrease in extracellular pH through inhibition of lactate dehydrogenase (LDH) and overall reduced glycolytic metabolism.
Glycolysis↓,
Warburg↓, Dismissed citrate metabolism correlated with reduced Warburg effectors such as the pyruvate dehydrogenase kinase 1 (PDK1) and the glucose transporter 1 (GLUT1),
PDK1↓,
GLUT1↓,
LDHA↓, Reduced LDHA expression was also observed after vitamin C exposure, leading to a vast extracellular acidification rate (ECAR) reduction.
ECAR↓,
PDH↑, enhancing PDH activity
eff↑, Surprisingly, an impressive 85% of tumor growth inhibition is described in the combinatory treatment of vitamin C and gemcitabine in our preclinical PDAC PDX model

3144- VitC,    Some characteristics of Rabbit muscle phosphofructokinase-1 inhibition by ascorbate
- in-vitro, Nor, NA
PFK1↓, We found that inhibition by ascorbate was PFK-1 concentration dependent
LDH↓, vitamin C specifically inhibits muscle isozymes of AK (adenylate kinase), LDH, and PFK-1

3139- VitC,    Vitamin C and sodium bicarbonate enhance the antioxidant ability of H9C2 cells and induce HSPs to relieve heat stress
- in-vitro, Nor, H9c2
*Apoptosis∅, Supplementation with vitamin C and vitamin C-Na for 16 h had no significant influence on apoptosis, LDH or MDA, but SOD activity was significantly reduced about 8.6% for VC
*LDH∅,
*MDA∅,
*SOD↓, SOD activity was significantly reduced about 8.6% for VC. further heat stress at 5 h, SOD activity recovered slightly but was still lower than that at 1 h.
eff↝, Thus, under heat stress conditions, the concentration of vitamin C entering the cell could be much higher than in normal conditions.

2621- Wog,    Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review
- Review, Var, NA
Hif1a↓, Wogonin at 15 μg/ml reduces the expression of HIF-1α, and down-regulates the levels of MCT4 and LDH
MCT4↓,
LDH↓,
lactateProd↓, thereby reducing the production of lactic acid,
ECAR↓, improving the acidic microenvironment,
TumCP↓, inhibiting cellular proliferation
Glycolysis↓, Compounds such as wogonin inhibited glycolysis by suppressing HIF-1α


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 63

Results for Effect on Cancer/Diseased Cells:
ACLY↓,3,   AIF↑,1,   Akt↓,8,   Akt↑,1,   p‑Akt↓,1,   ALAT↓,1,   ALP↓,2,   AMPK↑,4,   p‑AMPK↑,1,   angioG↓,7,   AntiCan↑,6,   AntiTum↑,1,   Apoptosis?,1,   Apoptosis↓,1,   Apoptosis↑,17,   AR↓,1,   ASC↓,1,   ATF4↑,1,   ATP↓,5,   Bak↑,2,   BAX↓,3,   BAX↑,10,   Bax:Bcl2↑,2,   BBB↑,1,   Bcl-2↓,13,   Bcl-xL↓,2,   Beclin-1↑,1,   BioAv↓,1,   BioAv↑,1,   BioAv∅,1,   BNIP3?,1,   Ca+2?,1,   Ca+2↑,4,   CAIX↓,1,   cardioP↑,2,   Casp↓,1,   Casp↑,1,   Casp1↓,1,   cl‑Casp1↓,1,   proCasp1↓,1,   Casp12↑,2,   Casp3↓,3,   Casp3↑,16,   cl‑Casp3↑,1,   Casp7↑,1,   Casp8↑,1,   cl‑Casp8↑,1,   Casp9↑,6,   cl‑Casp9↑,1,   Catalase↓,1,   CDK1↓,1,   CDK2↑,2,   CDK4↓,1,   CDK6↓,2,   chemoP↑,1,   ChemoSen↓,1,   ChemoSen↑,3,   ChemoSideEff↓,2,   CHK1↓,1,   CHOP↑,4,   CIP2A↓,1,   citrate↓,1,   CLDN1↓,1,   cMyc↓,3,   COX2↓,3,   COX2↑,1,   CRP↓,1,   CSCs↓,2,   CXCR4↓,1,   CycB↓,2,   cycD1↓,7,   Cyt‑c↑,13,   DLC1↑,1,   DNAdam↑,6,   DNMTs↓,1,   Dose?,1,   Dose∅,3,   DR4↑,1,   DR5↑,2,   E-cadherin↑,2,   ECAR↓,4,   eff↓,3,   eff↑,19,   eff↝,3,   EGF↓,1,   EGFR↓,2,   p‑eIF2α↑,2,   EMT↓,6,   Endon↑,1,   eNOS↑,1,   ER Stress↑,6,   ERK↓,3,   ERK↑,2,   FAK↓,1,   p‑FAK↓,1,   Fas↓,1,   Fas↑,1,   FasL↑,1,   FASN↓,3,   Ferroptosis↑,1,   FGF↓,1,   FGFR1↓,2,   Fibronectin↓,1,   FOXO3↑,1,   G6PD↓,1,   GLS↓,1,   GlucoseCon↓,4,   GLUT1↓,7,   GLUT3↓,1,   Glycolysis↓,14,   GPx4↓,1,   GRP78/BiP↑,5,   GSH↓,6,   GSH↑,1,   GSTs↑,1,   H2O2↑,1,   H3↓,1,   Half-Life∅,1,   HDAC↓,1,   HDAC1↓,1,   HDAC8↓,1,   HER2/EBBR2↓,1,   Hif1a↓,9,   HK2↓,8,   HMGB1↓,1,   HO-1↓,2,   HO-1↑,1,   HSP70/HSPA5↓,2,   HSP90↓,1,   hTERT↓,2,   ICAM-1↓,1,   IGF-1↓,1,   IGFBP3↑,1,   IL1↓,2,   IL10↓,4,   IL1β↓,5,   IL4↓,1,   IL6↓,6,   IL8↓,1,   Inflam↓,4,   iNOS↓,2,   iNOS↑,1,   Iron↑,1,   JAK2↓,1,   JNK↑,2,   Ki-67↓,2,   lactateProd↓,5,   LC3B-II↑,1,   LC3II↑,4,   LDH?,1,   LDH↓,35,   LDH↑,8,   LDH↝,1,   LDH∅,1,   e-LDH↑,1,   i-LDH↓,1,   LDHA↓,1,   LDL↓,1,   lipid-P↓,1,   lipid-P↑,3,   MAD↓,1,   MAPK↓,4,   MAPK↑,1,   Mcl-1↓,1,   MCP1↓,1,   MCT1↓,1,   MCT4↓,1,   MDA↓,1,   MDA↑,3,   miR-145↑,1,   miR-21↑,1,   miR-34a↑,1,   MMP↓,11,   MMP↑,1,   MMP↝,1,   MMP-10↓,1,   MMP1↓,1,   MMP2↓,5,   MMP9↓,6,   MMPs↓,3,   mtDam↑,7,   mTOR↓,7,   N-cadherin↓,1,   NAD↑,1,   NADH:NAD↓,1,   NADPH↓,1,   Nanog↓,1,   Necroptosis↑,1,   neuroP↑,2,   NF-kB↓,13,   NF-kB↑,1,   p‑NF-kB↓,1,   NLRP3↓,3,   NOTCH↓,3,   NOTCH1↑,1,   NOTCH3↓,1,   NQO1↑,1,   NRF2↓,1,   NRF2↑,2,   OCR↓,3,   OCT4↓,1,   OS↑,1,   other↑,1,   OXPHOS↓,2,   P-gp↓,1,   P21↓,2,   P21↑,5,   P2X7↓,1,   p38↑,2,   P53↑,9,   P53↝,1,   p62↓,1,   p62↑,1,   p65↓,1,   PARP↓,2,   PARP↑,1,   cl‑PARP↑,3,   PCNA↓,4,   PD-1↓,1,   PDGF↓,1,   PDH↓,1,   PDH↑,2,   PDH↝,1,   PDK1↓,3,   PERK↑,1,   PFK↓,4,   PFK1↓,2,   PFK2↓,1,   PGE2↓,2,   PI3K↓,8,   PKA↓,1,   PKCδ↓,1,   PKM2↓,8,   PPARα↓,1,   p‑pRB↓,1,   PTEN↑,1,   PYCR1↓,1,   R5P↝,1,   radioP↑,1,   RadioS↑,4,   Raf↓,1,   RAS↓,1,   RenoP↑,1,   ROS↓,5,   ROS↑,30,   selectivity↑,4,   Sepsis↓,1,   Shh↓,1,   SIRT1↓,1,   SIRT1↑,1,   SIRT3↑,1,   Slug↓,2,   Smad1↑,1,   Snail↓,2,   SOD↓,4,   SOD↑,3,   STAT3↓,4,   STAT6↓,1,   survivin↓,1,   talin↓,1,   Telomerase↓,1,   TET1↑,1,   TET3↑,1,   TGF-β↓,1,   TGF-β↑,1,   TIMP1↓,1,   TKT↝,1,   TLR4↓,3,   TNF-α↓,5,   TNF-α↑,1,   TOP1↓,1,   toxicity∅,1,   TP53↓,2,   TSP-1↑,1,   TumAuto↑,7,   TumCCA↑,10,   TumCD↑,4,   TumCG↓,5,   TumCI↓,5,   TumCMig↓,4,   TumCMig↑,1,   TumCP↓,9,   tumCV↓,3,   TumMeta↓,2,   TumVol↓,1,   TumW↓,1,   Twist↓,2,   uPA↓,1,   uPAR↓,1,   UPR↑,1,   VEGF↓,5,   VEGFR2↓,4,   Vim↓,2,   Warburg↓,3,   Wnt↓,2,   XBP-1↓,1,   XIAP↓,2,   α-SMA↓,1,   α-SMA↑,1,   β-catenin/ZEB1↓,4,  
Total Targets: 300

Results for Effect on Normal Cells:
5LO↓,1,   AChE↓,3,   AIF↓,1,   Akt↓,1,   Akt↑,1,   ALAT↓,4,   AMPK↑,1,   antiOx↓,1,   antiOx↑,7,   Apoptosis↓,3,   Apoptosis∅,1,   AST↓,5,   ATP↑,1,   ATP∅,1,   Aβ↓,2,   BAX↓,3,   Bax:Bcl2↓,1,   BBB↑,1,   Bcl-2↑,2,   BioAv↓,2,   BioAv↑,2,   BioAv↝,5,   BP↓,1,   BUN↓,1,   Ca+2↝,1,   cardioP↑,12,   Casp3↓,2,   Casp9↓,1,   Catalase↑,6,   chemoP↑,1,   cMyc↓,1,   cognitive↑,4,   COX2↓,7,   creat↓,1,   CRP↓,2,   cycD1↓,1,   Cyt‑c↓,1,   Dose↑,1,   Dose↝,1,   Dose∅,1,   eff↑,2,   Fas↓,1,   GPx↑,6,   GSH↑,5,   GSK‐3β↓,1,   GSR↓,1,   GSR↑,1,   GSTs↑,1,   GutMicro↑,1,   H2O2↓,2,   H2S↑,1,   Half-Life↝,4,   HDAC↓,1,   hepatoP↑,6,   HO-1↑,3,   ICAM-1↓,1,   IL10↑,2,   IL12↓,1,   IL18↓,1,   IL1β↓,6,   IL2↓,1,   IL4↓,1,   IL6↓,7,   IL8↓,1,   Imm↑,1,   INF-γ↓,1,   Inflam↓,8,   Inflam↑,1,   iNOS↓,5,   iNOS↑,1,   IRF3↓,1,   JNK↑,1,   Keap1↓,1,   LDH↓,16,   LDH↑,1,   LDH∅,1,   lipid-P↓,5,   MAPK↓,1,   MAPK↑,1,   MDA↓,6,   MDA∅,1,   memory↑,2,   mitResp↑,1,   MMP↓,1,   MMP↑,1,   MMP9↓,1,   MPO↓,3,   mtDam↓,1,   MyD88↓,1,   NAD↑,1,   NADPH↑,1,   neuroP↑,10,   NF-kB↓,6,   NF-kB↑,1,   NLRP3↓,1,   NO↓,2,   NOX4↓,1,   NQO1↑,1,   NRF2↑,6,   other↑,2,   p38↓,1,   PGE2↓,2,   PI3K↓,1,   PI3K↑,1,   PPARγ↑,1,   p‑PPARγ↓,1,   RenoP↑,3,   ROS↓,15,   SOD↓,1,   SOD↑,7,   SOD2↑,2,   STAT↓,1,   STAT3↑,1,   TAC↑,1,   TBARS↓,1,   Telomerase↓,1,   TGF-β↓,1,   TLR2↓,1,   TLR4↓,1,   TNF-α↓,7,   toxicity↓,4,   toxicity∅,1,   TRIF↓,1,   TumCI↓,1,   TumCP↓,1,   VCAM-1↓,1,   VEGF↓,1,   α-SMA↓,1,  
Total Targets: 128

Scientific Paper Hit Count for: LDH, Lactate Dehydrogenase
8 Silver-NanoParticles
4 Propolis -bee glue
3 Quercetin
3 Shikonin
3 Thymoquinone
3 Vitamin C (Ascorbic Acid)
2 Allicin (mainly Garlic)
2 Berberine
2 Betulinic acid
2 Ellagic acid
2 Galloflavin
2 Graviola
2 doxorubicin
2 Methylene blue
1 3-bromopyruvate
1 5-Aminolevulinic acid
1 Alpha-Lipoic-Acid
1 Artemisinin
1 Ashwagandha
1 Baicalein
1 Boswellia (frankincense)
1 Caffeic acid
1 Metformin
1 Chrysin
1 Citric Acid
1 Crocetin
1 Curcumin
1 Dichloroacetate
1 Docosahexaenoic Acid
1 EGCG (Epigallocatechin Gallate)
1 Ferulic acid
1 Fisetin
1 Gallic acid
1 Honokiol
1 Photodynamic Therapy
1 Magnetic Fields
1 Phenylbutyrate
1 Piperlongumine
1 Resveratrol
1 salinomycin
1 Sulforaphane (mainly Broccoli)
1 Silymarin (Milk Thistle) silibinin
1 Glucose
1 entinostat
1 5-fluorouracil
1 Wogonin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:906  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page