Database Query Results : Luteolin, , CSCs

LT, Luteolin: Click to Expand ⟱
Features:
Luteolin a Flavonoid found in celery, parsley, broccoli, onion leaves, carrots, peppers, cabbages, apple skins, and chrysanthemum flowers.
-MDR1 expression, MMP-9, IGF-1 and Epithelial to mesenchymal transition.

*** ACTIVE WORK IN PROGRESS**

-Note half-life 2–3 hours
BioAv low, but could be improved with Res, or blend of castor oil, kolliphor and polyethylene glycol
Pathways:
- induce ROS production in cancer cell but a few reports of reduction. Always seems to reduce ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, LDHA↓, HK2↓, GRP78↑,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


CSCs, Cancer Stem Cells: Click to Expand ⟱
Source:
Type:
Cancer Stem Cells

Phytochemicals (natural plant-derived compounds) that may affect CSCs:
Curcumin
— suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Resveratrol
— shown to reduce CSC populations and sphere formation in multiple models.
Sulforaphane (from broccoli sprouts)
— reported to inhibit CSC properties and pathways; active in vitro and in vivo.
EGCG (epigallocatechin-3-gallate, green tea)
— reduces CSC markers and sphere formation in several cancer types.
Quercetin
— reported to inhibit CSC proliferation, self-renewal and invasiveness (breast, endometrial, others).
Berberine
— shown to suppress CSC “stemness” and reduce tumorigenic properties in multiple models.
Genistein (soy isoflavone)
— decreases CSC markers, sphere formation and stemness signaling in prostate/breast/other models.
Honokiol (Magnolia bark)
— shown to eliminate or suppress CSC-like populations in oral, colon, glioma models.
Luteolin
— inhibits stemness/EMT and reduces CSC markers and self-renewal in breast, prostate and other models.
Withaferin A (from Withania somnifera / ashwagandha)
— multiple preclinical reports show WA targets CSCs and reduces tumor growth/metastasis in models.


Scientific Papers found: Click to Expand⟱
2589- LT,  Chemo,    Luteolin Inhibits Breast Cancer Stemness and Enhances Chemosensitivity through the Nrf2-Mediated Pathway
- in-vitro, BC, MDA-MB-231
NRF2↓, HO-1↓, ChemoSen↑, CSCs↓, SIRT1↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
ChemoSen↑,1,   CSCs↓,1,   HO-1↓,1,   NRF2↓,1,   SIRT1↓,1,  
Total Targets: 5

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: CSCs, Cancer Stem Cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:118  Target#:795  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page