condition found tbRes List
MEL, Melatonin: Click to Expand ⟱
Features:
Hormone in the body made by pineal gland.
• Melatonin is a potent antioxidant. It neutralizes reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are involved in DNA damage and cancer progression.
• Melatonin has been shown to modulate apoptotic pathways by influencing mitochondrial permeability, cytochrome c release, and caspase activation.
• In several cancer cell models, melatonin appears to promote apoptosis in malignant cells while sparing normal cells.

The most well-known indolamines are serotonin and melatonin, both of which play significant roles in regulating mood, sleep, and overall mental well-being.

Melatonin doses (20 mg to even 40 mg per day), often given as an adjuvant treatment for cancer.
-The plasma half-life of melatonin is generally in the range of approximately 20 to 60 minutes
-It has been suggested that administering melatonin at the appropriate phase of the circadian cycle may enhance its anti-tumor activity and reduce the side effects of chemotherapy and radiation therapy.

Bio-availability: Oral melatonin has a low and variable bio-availability (often estimated between 3% and 33%), which means that only a fraction of the ingested dose reaches the bloodstream unchanged.

For proOxidant effect might need >10uM, which might be 100mg dose (assuming 10% bio-availability) Might also be required X10 levels?
-It remains unknown whether the pro-oxidant action exists in vivo. the vast majority of evidence indicates that melatonin is a potent antioxidant in vivo even at pharmacological concentrations.

Interactions:
-Melatonin could potentially add to the blood pressure–lowering properties of antihypertensive drugs.
-Patients using insulin should be monitored for changes in blood glucose levels.
-Melatonin might interact with drugs like warfarin, aspirin, or clopidogrel.(antiplatelet)


ROS, Reactive Oxygen Species: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
Reactive oxygen species (ROS) are highly reactive molecules that contain oxygen and can lead to oxidative stress in cells. They play a dual role in cancer biology, acting as both promoters and suppressors of cancer.
ROS can cause oxidative damage to DNA, leading to mutations that may contribute to cancer initiation and progression. So normally you want to inhibit ROS to prevent cell mutations.
However excessive ROS can induce apoptosis (programmed cell death) in cancer cells, potentially limiting tumor growth. Chemotherapy typically raises ROS.

"Reactive oxygen species (ROS) are two electron reduction products of oxygen, including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid peroxides, protein peroxides and peroxides formed in nucleic acids 1. They are maintained in a dynamic balance by a series of reduction-oxidation (redox) reactions in biological systems and act as signaling molecules to drive cellular regulatory pathways."
"During different stages of cancer formation, abnormal ROS levels play paradoxical roles in cell growth and death 8. A physiological concentration of ROS that maintained in equilibrium is necessary for normal cell survival. Ectopic ROS accumulation promotes cell proliferation and consequently induces malignant transformation of normal cells by initiating pathological conversion of physiological signaling networks. Excessive ROS levels lead to cell death by damaging cellular components, including proteins, lipid bilayers, and chromosomes. Therefore, both scavenging abnormally elevated ROS to prevent early neoplasia and facilitating ROS production to specifically kill cancer cells are promising anticancer therapeutic strategies, in spite of their contradictoriness and complexity."
"ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H 2O 2 ), organic hydroperoxides (ROOH), singlet molecular oxygen ( 1 O 2 ), electronically excited carbonyl, ozone (O3 ), hypochlorous acid (HOCl, and hypobromous acid HOBr). Free radical species are super-oxide anion radical (O 2•−), hydroxyl radical (•OH), peroxyl radical (ROO•) and alkoxyl radical (RO•) [130]. Any imbalance of ROS can lead to adverse effects. H2 O 2 and O 2 •− are the main redox signalling agents. The cellular concentration of H2 O 2 is about 10−8 M, which is almost a thousand times more than that of O2 •−".
"Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules."

Recent investigations have documented that polyphenols with good antioxidant activity may exhibit pro-oxidant activity in the presence of copper ions, which can induce apoptosis in various cancer cell lines but not in normal cells. "We have shown that such cell growth inhibition by polyphenols in cancer cells is reversed by copper-specific sequestering agent neocuproine to a significant extent whereas iron and zinc chelators are relatively ineffective, thus confirming the role of endogenous copper in the cytotoxic action of polyphenols against cancer cells. Therefore, this mechanism of mobilization of endogenous copper." > Ions could be one of the important mechanisms for the cytotoxic action of plant polyphenols against cancer cells and is possibly a common mechanism for all plant polyphenols. In fact, similar results obtained with four different polyphenolic compounds in this study, namely apigenin, luteolin, EGCG, and resveratrol, strengthen this idea.
Interestingly, the normal breast epithelial MCF10A cells have earlier been shown to possess no detectable copper as opposed to breast cancer cells [24], which may explain their resistance to polyphenols apigenin- and luteolin-induced growth inhibition as observed here (Fig. 1). We have earlier proposed [25] that this preferential cytotoxicity of plant polyphenols toward cancer cells is explained by the observation made several years earlier, which showed that copper levels in cancer cells are significantly elevated in various malignancies. Thus, because of higher intracellular copper levels in cancer cells, it may be predicted that the cytotoxic concentrations of polyphenols required would be lower in these cells as compared to normal cells."

Majority of ROS are produced as a by-product of oxidative phosphorylation, high levels of ROS are detected in almost all cancers.
-It is well established that during ER stress, cytosolic calcium released from the ER is taken up by the mitochondrion to stimulate ROS overgeneration and the release of cytochrome c, both of which lead to apoptosis.

Note: Products that may raise ROS can be found using this database, by:
Filtering on the target of ROS, and selecting the Effect Direction of ↑

Targets to raise ROS (to kill cancer cells):
• NADPH oxidases (NOX): NOX enzymes are involved in the production of ROS.
    -Targeting NOX enzymes can increase ROS levels and induce cancer cell death.
    -eNOX2 inhibition leads to a high NADH/NAD⁺ ratio which can lead to increased ROS
• Mitochondrial complex I: Inhibiting can increase ROS production
• P53: Activating p53 can increase ROS levels(by inducing the expression of pro-oxidant genes)
• Nrf2: regulates the expression of antioxidant genes. Inhibiting Nrf2 can increase ROS levels
• Glutathione (GSH): an antioxidant. Depleting GSH can increase ROS levels
• Catalase: Catalase converts H2O2 into H2O+O. Inhibiting catalase can increase ROS levels
• SOD1: converts superoxide into hydrogen peroxide. Inhibiting SOD1 can increase ROS levels
• PI3K/AKT pathway: regulates cell survival and metabolism. Inhibiting can increase ROS levels
• HIF-1α: regulates genes involved in metabolism and angiogenesis. Inhibiting HIF-1α can increase ROS
• Glycolysis: Inhibiting glycolysis can increase ROS levels • Fatty acid oxidation: Cancer cells often rely on fatty acid oxidation for energy production.
-Inhibiting fatty acid oxidation can increase ROS levels
• ER stress: Endoplasmic reticulum (ER) stress can increase ROS levels
• Autophagy: process by which cells recycle damaged organelles and proteins.
-Inhibiting autophagy can increase ROS levels and induce cancer cell death.
• KEAP1/Nrf2 pathway: regulates the expression of antioxidant genes.
    -Inhibiting KEAP1 or activating Nrf2 can increase ROS levels and induce cancer cell death.
• DJ-1: regulates the expression of antioxidant genes. Inhibiting DJ-1 can increase ROS levels
• PARK2: regulates the expression of antioxidant genes. Inhibiting PARK2 can increase ROS levels
• SIRT1:regulates the expression of antioxidant genes. Inhibiting SIRT1 can increase ROS levels
• AMPK: regulates energy metabolism and can increase ROS levels when activated.
• mTOR: regulates cell growth and metabolism. Inhibiting mTOR can increase ROS levels
• HSP90: regulates protein folding and can increase ROS levels when inhibited.
• Proteasome: degrades damaged proteins. Inhibiting the proteasome can increase ROS levels
• Lipid peroxidation: a process by which lipids are oxidized, leading to the production of ROS.
    -Increasing lipid peroxidation can increase ROS levels
• Ferroptosis: form of cell death that is regulated by iron and lipid peroxidation.
    -Increasing ferroptosis can increase ROS levels
• Mitochondrial permeability transition pore (mPTP): regulates mitochondrial permeability.
    -Opening the mPTP can increase ROS levels
• BCL-2 family proteins: regulate apoptosis and can increase ROS levels when inhibited.
• Caspase-independent cell death: a form of cell death that is regulated by ROS.
    -Increasing caspase-independent cell death can increase ROS levels
• DNA damage response: regulates the repair of DNA damage. Increasing DNA damage can increase ROS
• Epigenetic regulation: process by which gene expression is regulated.
    -Increasing epigenetic regulation can increase ROS levels

-PKM2, but not PKM1, can be inhibited by direct oxidation of cysteine 358 as an adaptive response to increased intracellular reactive oxygen species (ROS)

ProOxidant Strategy:(inhibit the Melavonate Pathway (likely will also inhibit GPx)
-HydroxyCitrate (HCA) found as supplement online and typically used in a dose of about 1.5g/day or more
-Atorvastatin typically 40-80mg/day
-Dipyridamole typically 200mg 2x/day
-Lycopene typically 100mg/day range

Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy

Scientific Papers found: Click to Expand⟱
1351- And,  MEL,    Impact of Andrographolide and Melatonin Combinatorial Drug Therapy on Metastatic Colon Cancer Cells and Organoids
- in-vitro, CRC, T84 - in-vitro, CRC, COLO205 - in-vitro, CRC, HT-29 - in-vitro, CRC, DLD1
eff↑, dual therapy significantly promotes CRC cell death
Ki-67↓,
Casp3↑,
ER Stress↑,
ROS↑,
BAX↑,
XBP-1↑,
CHOP↑, Apoptosis signaling molecules BAX, XBP-1, and CHOP were significantly increased
eff↑, combinatorial treatment increased reactive oxygen species (ROS) levels

134- CUR,  RES,  MEL,  SIL,    Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
Apoptosis↑,
ROS↑,
Trx1↓,

1777- MEL,    Melatonin as an antioxidant: under promises but over delivers
- Review, NA, NA
*ROS↓, uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances
*Fenton↓, reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions
*antiOx↑, credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant
*toxicity∅, uncommonly high-safety profile of melatonin also bolsters this conclusion.
*GPx↑, melatonin was found to stimulate antioxidative enzymes including glutathione peroxidase and glutathione reductase
*GSR↑,
*GSH↑, melatonin upregulates the synthesis of glutathione
*NO↓, neutralize nitrogen-based toxicants, i.e., nitric oxide
*Iron↓, Melatonin chelates both iron (III) and iron (II), which is the form that participates in the Fenton reaction to generate the hydroxyl radical
*Copper↓, copper-chelating ability of melaton
*IL1β↓, significant reductions in plasma cardiac troponin 1, interleukin 1 beta, inducible nitric oxide synthase (iNOS) and caspase 3 due to melatonin
*iNOS↓,
*Casp3↓,
*BBB↑, melatonin readily crosses the blood-brain barrier;
*RenoP↑, Published reports haveshown that the lung,231, 232 liver, 233- 235 kidney,236 pancreas,237 intestine,238 urinary bladder,239,240 corpus cavernosum,241 skeletal muscle242, 243 spinal cord244, 245 and stem cells246 are alsoprotected by melatonin.
chemoP↑, Melatonin has not been found to interfere with the efficacy of prescription drugs. Doxorubicin, if given it in combination with melatonin may allow the use of a larger dose with greater efficacy.
*Ca+2↝, Moreover, melatonin regulates free Ca2+ movement intracellularly
eff↑, elatonin was found to exaggerate the cancer inhibiting actions of pitavastatin270 and pravastatin271 against breast cancer in experimental studies
*PKCδ?, major targets by which melatonin reduces methamphetamine-related neuronal damage is due to the inhibition of the PKCδ gene
ChemoSen↑, at least some cases melatonin reduces the toxicity of these pharmacological agents in normal cells256, 289, 290 while enhancing the cancer-killing actions (also, see below) of conventional chemotherapeutic agents.256, 291-293
eff↑, TRAIL was combined with melatonin for the treatment of A172 and U87 human glioblastoma cells, however, apoptotic cell death was greatly exaggerated over that caused by TRAIL alone
Akt↓, in GBM: observed effect was related to a modulation of protein kinase c which reduced Akt activation resulting in a rise in death receptor 5 (DR5) levels;
DR5↑,
selectivity↑, The pro-oxidant action of melatonin is common in cancer cells while in normal cells the indoleamine is a powerful antioxidant.
ROS↑, cancer cells
eff↑, human lung adenocarcinoma cells (SK-LV-1) showed that melatonin also increased their sensitivity to the chemotherapy, cisplatin.

1782- MEL,    Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities
- Review, Var, NA
AntiCan↑, involvement of melatonin in different anticancer mechanisms
Apoptosis↑, apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases
TumCP↓,
TumCG↑,
TumMeta↑,
ChemoSideEff↓, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy,
radioP↑,
ChemoSen↑, augmentation of the therapeutic effects of conventional anticancer therapies
*ROS↓, directly scavenge ROS and reactive nitrogen species (RNS)
*SOD↑, melatonin can regulate the activities of several antioxidant enzymes like superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase
*GSH↑,
*GPx↑,
*Catalase↑,
Dose∅, demonstrated that 1 mM melatonin concentration is the pharmacological concentration that is able to produce anticancer effects
VEGF↓, downregulatory action on VEGF expression in human breast cancer cells
eff↑, tumor-bearing mice were treated with (10 mg/kg) of melatonin and (5 mg/kg) of cisplatin. The results have shown that melatonin was able to reduce DNA damage
Hif1a↓, MDA-MB-231-downregulation of the HIF-1α gene and protein expression coupled with the production of GLUT1, GLUT3, CA-IX, and CA-XII
GLUT1↑,
GLUT3↑,
CAIX↑,
P21↑, upregulation of p21, p27, and PTEN protein is another way of melatonin to promote cell programmed death in uterine leiomyoma
p27↑,
PTEN↑,
Warburg↓, FIGURE 3
PI3K↓, in colon cancer cells by downregulation of PI3K/AKT and NF-κB/iNOS
Akt↓,
NF-kB↓,
cycD1↓,
CDK4↓,
CycB↓,
CDK4↓,
MAPK↑,
IGF-1R↓,
STAT3↓,
MMP9↓,
MMP2↓,
MMP13↓,
E-cadherin↑,
Vim↓,
RANKL↓,
JNK↑,
Bcl-2↓,
P53↑,
Casp3↑,
Casp9↑,
BAX↑,
DNArepair↑,
COX2↓,
IL6↓,
IL8↓,
NO↓,
T-Cell↑,
NK cell↑,
Treg lymp↓,
FOXP3↓,
CD4+↑,
TNF-α↑,
Th1 response↑, FIGURE 3
BioAv↝, varies 1% to 50%?
RadioS↑, melatonin’s radio-sensitizing properties
OS↑, In those individuals taking melatonin, the overall tumor regression rate and the 5-year survival were elevated

1780- MEL,    Utilizing Melatonin to Alleviate Side Effects of Chemotherapy: A Potentially Good Partner for Treating Cancer with Ageing
- Review, Var, NA
*antiOx↑, Melatonin is a potent antioxidant and antiageing molecule, is nontoxic, and enhances the efficacy and reduces the side effects of chemotherapy.
*toxicity↓,
ChemoSen↑,
*eff↑, melatonin was superior in preventing free radical destruction compared to other antioxidants, vitamin E, β-carotene, vitamin C, and garlic oil
*mitResp↑, increasing the expression and activity of the mitochondrial respiration chain complexes
*ATP↑, increasing the expression and activity of the mitochondrial respiration chain complexes
*ROS↓, most attractive property of melatonin is that its metabolites also regulate the mitochondrial redox status by scavenging ROS and RNS
*CardioT↓, melatonin has a protective effect on the heart without affecting DOX's antitumor activity,
*GSH↑, improving the de novo synthesis of glutathione (GSH) by promoting the activity of gamma-glutamylcysteine synthetase
*NOS2↓, melatonin inhibits the production of nitric oxide synthase (NOS)
*lipid-P↓, lipid peroxidation was reduced after melatonin treatment (role in induces organ failure)
eff↑, but it also enhances its antitumor activity more than vitamin E
*HO-1↑, melatonin upregulates heme oxygenase-1 (HO-1) (role in induces organ failure)
*NRF2↑, decreased bladder injury and apoptosis due to the upregulation of Nrf2 and nuclear transcription factor NF-κB expression
*NF-kB↑,
TumCP↓, significantly reduced cell proliferation
eff↑, Pretreatment with melatonin effectively preserved the ovaries from cisplatin-induced injury
neuroP↑, Melatonin has neuroprotective roles in oxaliplatin-induced peripheral neuropathy

1779- MEL,    Therapeutic Potential of Melatonin Counteracting Chemotherapy-Induced Toxicity in Breast Cancer Patients: A Systematic Review
- Review, BC, NA
QoL↑, melatonin combined with standard chemotherapy lines would derive, at least, a better quality of life for breast cancer patients
OS↑, Moreover, regular doses of 20 mg/day seemed to increase partial response and 1-year survival rates.
Dose∅, regular doses of 20 mg/day
antiOx↑, melatonin possesses antioxidant properties, which may help to protect cells from damage caused by free radicals
ROS↑, elimination of free radicals non-enzymatically transforms melatonin into metabolites with greater antioxidant capacity, which enabling the removal of 10 reactive species per molecule
SOD↑, melatonin upregulates various antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase
Catalase↑,
GPx↑,
Risk↓, individuals with higher melatonin levels show a lower risk of developing breast cancer, and melatonin supplementation may help inhibit the growth and spread of breast cancer cells
NK cell↑, enhance natural killer cell activity
IL1β↓, inhibit the production of pro-inflammatory cytokines such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)
IL6↓,
TNF-α↓,
radioP↑, protect hematopoietic progenitor cells from radiation therapy and chemotherapy
chemoP↑,
TumVol↓, most frequent observations was the ability of melatonin to reduce tumor size
TumMeta↓, decrease the risk of metastasis
angioG↓,
ChemoSen↑, melatonin can synergistically potentiate drug cytotoxicity.
eff↑, it has been suggested that administering melatonin at the appropriate phase of the circadian cycle may enhance its anti-tumor activity and reduce the side effects of chemotherapy and radiation therapy

1778- MEL,    Melatonin: a well-documented antioxidant with conditional pro-oxidant actions
- Review, Var, NA - Review, AD, NA
*ROS↓, melatonin and its metabolic derivatives possess strong free radical scavenging properties.
*antiOx↓, potent antioxidants against both ROS (reactive oxygen species) and RNS (reactive nitrogen species). reduce oxidative damage to lipids, proteins and DNA under a very wide set of conditions where toxic derivatives of oxygen are known to be produced.
ROS↑, a few studies using cultured cells found that melatonin promoted the generation of ROS at pharmacological concentrations (μm to mm range) in several tumor and nontumor cells; thus, melatonin functioned as a conditional pro-oxidant.
selectivity↑, melatonin functions as a prooxidant in cancer cells where it aids in the killing of tumor cells
Dose↑, Melatonin levels in the nucleus and mitochondria reached saturation with a lower dose of 40 mg/kg body weight, with no further accumulation under higher doses of injected melatonin
*mitResp↑, improves mitochondrial respiration and ATP production, thereby reducing electron leakage and ROS generation
*ATP↑,
*ROS↓,
eff↑, melatonin protects mitochondrial function in the brain of Alzheimer's patients through both MT1/MT2 dependent and independent mechanisms
ROS↑, Cytochrome P450 utilizes melatonin as a substrate to generate ROS in mitochondria (melatonin concentration ranges from 0.1 to 10 uM)
Dose↑, melatonin at high concentrations (10-1000uM ) was able to promote ROS generation and lead to Fas-induced apoptosis in human leukemic Jurkat cells. Concentrations of <10uM , melatonin did not induce significant ROS generation in these cancer cells
*toxicity∅, High levels of melatonin (uM to mM) did not cause cytotoxicity in several types of nontumor cells
ROS↑, lower concentrations of melatonin (0.1-10uM ), which exhibited antioxidant action in HepG2 cells within 24 hr, became pro-oxidant after 96 hr of treatment, as indicated by the increase of GSH with 24hr and depletion after 96 hr.
eff↓, Finally, a compound, chlorpromazine, which specifically interrupts the binding of melatonin to calmodulin [188], prevented melatonin-induced AA release and ROS generation;
ROS↝, It remains unknown whether the pro-oxidant action exists in vivo. the vast majority of evidence indicates that melatonin is a potent antioxidant in vivo even at pharmacological concentrations
Dose↑, decline of melatonin production with age may render it more beneficial to supplement melatonin to the aging population to improve health by reducing free radical damage
other↑, melatonin intake has the potential to improve cardiac function, inhibit cataract formation, maintain brain health, alleviate metabolic syndrome, obesity and diabetes,reduce tumorigenesis, protect tissues against ischemia

1776- MEL,    Therapeutic strategies of melatonin in cancer patients: a systematic review and meta-analysis
- Review, NA, NA
Remission↑, tumor remission rate in the MLT group was significantly higher than that in the control group
OS↑, MLT group had an overall survival rate of 28.24% (n=294/1,041), which was greatly increased compared with the control group (RR =2.07; 95% CI, 1.55–2.76; P<0.00001; I2=55%)
neuroP↑, MLT could effectively reduce the incidence of neurotoxicity
VEGF↓, by the downregulation of vascular endothelial growth factor (VEGF)
KISS1↑, MLT could suppress the metastasis of triple-negative breast cancer by inducing KISS1 expression
TumCP↓, MLT can significantly inhibit the proliferation of cancer cells
ChemoSideEff↓, while reducing the incidence of side effects in chemotherapy or radiotherapy
radioP↑, In the 20 randomized trials included, MLT was beneficial to reduce multiple side effects of radiotherapy and chemotherapy
Dose∅, mostly 20 mg/day and taken orally and taken at night, respectively
*ROS↓, Preclinical experimental research has confirmed that MLT was capable of scavenging ROS and repairing damaged DNA to exert antitumor effects
DNArepair↑,
ROS↑, The mechanisms of MLT exerting antitumor effect might involve with other pathways, such as antiangiogenesis and pro-oxidant

1063- MEL,    HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways
- in-vitro, Lung, A549 - in-vitro, Lung, PC9
AntiCan↑,
TumCMig↓,
GSH↓,
Casp3↑,
Apoptosis↑,
ROS↑,
HDAC1↓,
Ac-histone H3↑,
PUMA↑,
BAX↑,
PCNA↓,
Bcl-2↓,

995- MEL,    Melatonin Treatment Triggers Metabolic and Intracellular pH Imbalance in Glioblastoma
- vitro+vivo, GBM, NA
LDHA↓,
MCT4↓,
lactateProd↓,
i-pH↓, decrease in intracellular pH: melatonin treatment induced a pH reversal with intracellular acidosis parallel to a downregulation in glycolysis in GBM.
ROS↑,
ATP↓,
TumCD↑, cytotoxic effects on GBM were due, at least in part, to intracellular pH modulation
TumCCA↑, cell cycle arrest at G0/G1 in both GBM1A and QNS120 and G2/M in GBM1A
PDH↓, decrease in pyruvate dehydrogenase (PDH) expression for both cell lines at aMT 3.0 mM
Glycolysis↓,
GlucoseCon↓,
TumCG↓, in vivo


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 10

Results for Effect on Cancer/Diseased Cells:
Ac-histone H3↑,1,   Akt↓,2,   angioG↓,1,   AntiCan↑,2,   antiOx↑,1,   Apoptosis↑,3,   ATP↓,1,   BAX↑,3,   Bcl-2↓,2,   BioAv↝,1,   CAIX↑,1,   Casp3↑,3,   Casp9↑,1,   Catalase↑,1,   CD4+↑,1,   CDK4↓,2,   chemoP↑,2,   ChemoSen↑,4,   ChemoSideEff↓,2,   CHOP↑,1,   COX2↓,1,   CycB↓,1,   cycD1↓,1,   DNArepair↑,2,   Dose↑,3,   Dose∅,3,   DR5↑,1,   E-cadherin↑,1,   eff↓,1,   eff↑,10,   ER Stress↑,1,   FOXP3↓,1,   GlucoseCon↓,1,   GLUT1↑,1,   GLUT3↑,1,   Glycolysis↓,1,   GPx↑,1,   GSH↓,1,   HDAC1↓,1,   Hif1a↓,1,   IGF-1R↓,1,   IL1β↓,1,   IL6↓,2,   IL8↓,1,   JNK↑,1,   Ki-67↓,1,   KISS1↑,1,   lactateProd↓,1,   LDHA↓,1,   MAPK↑,1,   MCT4↓,1,   MMP13↓,1,   MMP2↓,1,   MMP9↓,1,   neuroP↑,2,   NF-kB↓,1,   NK cell↑,2,   NO↓,1,   OS↑,3,   other↑,1,   P21↑,1,   p27↑,1,   P53↑,1,   PCNA↓,1,   PDH↓,1,   i-pH↓,1,   PI3K↓,1,   PTEN↑,1,   PUMA↑,1,   QoL↑,1,   radioP↑,3,   RadioS↑,1,   RANKL↓,1,   Remission↑,1,   Risk↓,1,   ROS↑,10,   ROS↝,1,   selectivity↑,2,   SOD↑,1,   STAT3↓,1,   T-Cell↑,1,   Th1 response↑,1,   TNF-α↓,1,   TNF-α↑,1,   Treg lymp↓,1,   Trx1↓,1,   TumCCA↑,1,   TumCD↑,1,   TumCG↓,1,   TumCG↑,1,   TumCMig↓,1,   TumCP↓,3,   TumMeta↓,1,   TumMeta↑,1,   TumVol↓,1,   VEGF↓,2,   Vim↓,1,   Warburg↓,1,   XBP-1↑,1,  
Total Targets: 99

Results for Effect on Normal Cells:
antiOx↓,1,   antiOx↑,2,   ATP↑,2,   BBB↑,1,   Ca+2↝,1,   CardioT↓,1,   Casp3↓,1,   Catalase↑,1,   Copper↓,1,   eff↑,1,   Fenton↓,1,   GPx↑,2,   GSH↑,3,   GSR↑,1,   HO-1↑,1,   IL1β↓,1,   iNOS↓,1,   Iron↓,1,   lipid-P↓,1,   mitResp↑,2,   NF-kB↑,1,   NO↓,1,   NOS2↓,1,   NRF2↑,1,   PKCδ?,1,   RenoP↑,1,   ROS↓,6,   SOD↑,1,   toxicity↓,1,   toxicity∅,2,  
Total Targets: 30

Scientific Paper Hit Count for: ROS, Reactive Oxygen Species
10 Melatonin
1 Andrographis
1 Curcumin
1 Resveratrol
1 Silymarin (Milk Thistle) silibinin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:122  Target#:275  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page