condition found tbRes List
QC, Quercetin: Click to Expand ⟱
Features:
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries.
Quercetin is thought to contribute to anticancer effects through several mechanisms:
-Antioxidant Activity:
-Induction of Apoptosis:modify Bax:Bcl-2 ratio
-Anti-inflammatory Effects:
-Cell Cycle Arrest:
-Inhibition of Angiogenesis and Metastasis: (VEGF)

Cellular Pathways:
-PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism.
-MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis.
-NF-κB Pathway: downregulate NF-κB
-JAK/STAT Pathway: interfere with the activation of STAT3
-Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways

Quercetin has been used at doses around 500–1000 mg per day
Quercetin’s bioavailability from foods or standard supplements can be low.

-Note half-life 11 to 28 hours.
BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC.
Pathways:
- induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox"
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓,
- some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


FAK, FAK signaling: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
FAK (Focal Adhesion Kinase) is a non-receptor tyrosine kinase that plays a crucial role in cellular processes such as adhesion, migration, proliferation, and survival. It is primarily localized at focal adhesions, where it interacts with integrins and other signaling molecules. FAK promotes cell proliferation by activating signaling pathways such as the PI3K/Akt and MAPK/ERK pathways. These pathways are often upregulated in cancer cells, leading to uncontrolled growth.


Scientific Papers found: Click to Expand⟱
3369- QC,    Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects
- Review, Pca, NA
FAK↓, Quercetin can inhibit HGF-induced melanoma cell migration by inhibiting the activation of c-Met and its downstream Gabl, FAK and PAK [84]
TumCCA↑, stimulation of cell cycle arrest at the G1 stage
p‑pRB↓, mediated through regulation of p21 CDK inhibitor and suppression of pRb phosphorylation resulting in E2F1 sequestering.
CDK2↑, low dose of quercetin has brought minor DNA injury and Chk2 induction
CycB↓, quercetin has a role in the reduction of cyclin B1 and CDK1 levels,
CDK1↓,
EMT↓, quercetin suppresses epithelial to mesenchymal transition (EMT) and cell proliferation through modulation of Sonic Hedgehog signaling pathway
PI3K↓, quercetin on other pathways such as PI3K, MAPK and WNT pathways have also been validated in cervical cancer
MAPK↓,
Wnt↓,
ROS↑, colorectal cancer, quercetin has been shown to suppress carcinogenesis through various mechanisms including affecting cell proliferation, production of reactive oxygen species and expression of miR-21
miR-21↑,
Akt↓, Figure 1 anti-cancer mechanisms
NF-kB↓,
FasL↑,
Bak↑,
BAX↑,
Bcl-2↓,
Casp3↓,
Casp9↑,
P53↑,
p38↑,
MAPK↑,
Cyt‑c↑,
PARP↓,
CHOP↑,
ROS↓,
LDH↑,
GRP78/BiP↑,
ERK↑,
MDA↓,
SOD↑,
GSH↑,
NRF2↑,
VEGF↓,
PDGF↓,
EGF↓,
FGF↓,
TNF-α↓,
TGF-β↓,
VEGFR2↓,
EGFR↓,
FGFR1↓,
mTOR↓,
cMyc↓,
MMPs↓,
LC3B-II↑,
Beclin-1↑,
IL1β↓,
CRP↓,
IL10↓,
COX2↓,
IL6↓,
TLR4↓,
Shh↓,
HER2/EBBR2↓,
NOTCH↓,
DR5↑, quercetin has enhanced DR5 expression in prostate cancer cells
HSP70/HSPA5↓, Quercetin has also suppressed the upsurge of hsp70 expression in prostate cancer cells following heat treatment and enhanced the quantity of subG1 cells
CSCs↓, Quercetin could also suppress cancer stem cell attributes and metastatic aptitude of isolated prostate cancer cells through modulating JNK signaling pathway
angioG↓, Quercetin inhibits angiogenesis-mediated of human prostate cancer cells through negatively modulating angiogenic factors (TGF-β, VEGF, PDGF, EGF, bFGF, Ang-1, Ang-2, MMP-2, and MMP-9)
MMP2↓,
MMP9↓,
IGFBP3↑, Quercetin via increasing the level of IGFBP-3 could induce apoptosis in PC-3 cells
uPA↓, Quercetin through decreasing uPA and uPAR expression and suppressing cell survival protein and Ras/Raf signaling molecules could decrease prostate cancer progression
uPAR↓,
RAS↓,
Raf↓,
TSP-1↑, Quercetin through TSP-1 enhancement could effectively inhibit angiogenesis

3372- QC,  FIS,  KaempF,    Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers
- Review, HNSCC, NA
ROCK1↑, quercetin affects the level of RhoA and NF-κB proteins in SAS cells, and stimulates the expression of RhoA, ROCK1, and NF-κB in SAS cells [53].
TumCCA↓, inhibition of the cell cycle;
HSPs↓, inhibition of heat shock proteins;
RAS↓, inhibition of Ras protein expression.
ROS↑, fisetin induces production of reactive oxygen species (ROS), increases Ca2+ release, and decreases the mitochondrial membrane potential (Ψm) in head and neck neoplastic cells.
Ca+2↑,
MMP↓,
Cyt‑c↑, quercetin increases the expression level of cytochrome c, apoptosis inducing factor and endonuclease G
Endon↑,
MMP9↓, quercetin inhibits MMP-9 and MMP-2 expression and reduces levels of the following proteins: MMP-2, -7, -9 [49,53] and -10
MMP2↓,
MMP7↓,
MMP-10↓,
VEGF↓, as well as VEGF, NF-κB p65, iNOS, COX-2, and uPA, PI3K, IKB-α, IKB-α/β, p-IKKα/β, FAK, SOS1, GRB2, MEKK3 and MEKK7, ERK1/2, p-ERK1/2, JNK1/2, p38, p-p38, c-JUN, and pc-JUN
NF-kB↓,
p65↓,
iNOS↓,
COX2↓,
uPA↓,
PI3K↓,
FAK↓,
MEK↓,
ERK↓,
JNK↓,
p38↓,
cJun↓,
FOXO3↑, Quercetin causes an increase in the level of FOXO1 protein both in a dose- and time-dependent way; however, it does not affect changes in expression of FOXO3a


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   angioG↓,1,   Bak↑,1,   BAX↑,1,   Bcl-2↓,1,   Beclin-1↑,1,   Ca+2↑,1,   Casp3↓,1,   Casp9↑,1,   CDK1↓,1,   CDK2↑,1,   CHOP↑,1,   cJun↓,1,   cMyc↓,1,   COX2↓,2,   CRP↓,1,   CSCs↓,1,   CycB↓,1,   Cyt‑c↑,2,   DR5↑,1,   EGF↓,1,   EGFR↓,1,   EMT↓,1,   Endon↑,1,   ERK↓,1,   ERK↑,1,   FAK↓,2,   FasL↑,1,   FGF↓,1,   FGFR1↓,1,   FOXO3↑,1,   GRP78/BiP↑,1,   GSH↑,1,   HER2/EBBR2↓,1,   HSP70/HSPA5↓,1,   HSPs↓,1,   IGFBP3↑,1,   IL10↓,1,   IL1β↓,1,   IL6↓,1,   iNOS↓,1,   JNK↓,1,   LC3B-II↑,1,   LDH↑,1,   MAPK↓,1,   MAPK↑,1,   MDA↓,1,   MEK↓,1,   miR-21↑,1,   MMP↓,1,   MMP-10↓,1,   MMP2↓,2,   MMP7↓,1,   MMP9↓,2,   MMPs↓,1,   mTOR↓,1,   NF-kB↓,2,   NOTCH↓,1,   NRF2↑,1,   p38↓,1,   p38↑,1,   P53↑,1,   p65↓,1,   PARP↓,1,   PDGF↓,1,   PI3K↓,2,   p‑pRB↓,1,   Raf↓,1,   RAS↓,2,   ROCK1↑,1,   ROS↓,1,   ROS↑,2,   Shh↓,1,   SOD↑,1,   TGF-β↓,1,   TLR4↓,1,   TNF-α↓,1,   TSP-1↑,1,   TumCCA↓,1,   TumCCA↑,1,   uPA↓,2,   uPAR↓,1,   VEGF↓,2,   VEGFR2↓,1,   Wnt↓,1,  
Total Targets: 85

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: FAK, FAK signaling
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:140  Target#:110  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page