condition found tbRes List
QC, Quercetin: Click to Expand ⟱
Features:
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries.
Quercetin is thought to contribute to anticancer effects through several mechanisms:
-Antioxidant Activity:
-Induction of Apoptosis:modify Bax:Bcl-2 ratio
-Anti-inflammatory Effects:
-Cell Cycle Arrest:
-Inhibition of Angiogenesis and Metastasis: (VEGF)

Cellular Pathways:
-PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism.
-MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis.
-NF-κB Pathway: downregulate NF-κB
-JAK/STAT Pathway: interfere with the activation of STAT3
-Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways

Quercetin has been used at doses around 500–1000 mg per day
Quercetin’s bioavailability from foods or standard supplements can be low.

-Note half-life 11 to 28 hours.
BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC.
Pathways:
- induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox"
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓,
- some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ChemoSen, chemo-sensitization: Click to Expand ⟱
Source:
Type:
The effectiveness of chemotherapy by increasing cancer cell sensitivity to the drugs used to treat them, which is known as “chemo-sensitization”.

Chemo-Sensitizers:
-Curcumin
-Resveratrol
-EGCG
-Quercetin
-Genistein
-Berberine
-Piperine: alkaloid from black pepper
-Ginsenosides: active components of ginseng
-Silymarin
-Allicin
-Lycopene
-Ellagic acid
-caffeic acid phenethyl ester
-flavopiridol
-oleandrin
-ursolic acid
-butein
-betulinic acid



Scientific Papers found: Click to Expand⟱
1493- QC,    New quercetin-coated titanate nanotubes and their radiosensitization effect on human bladder cancer
- NA, Bladder, NA
RadioS↑,
ChemoSen↑,

2303- QC,  doxoR,    Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells
- in-vitro, BC, 4T1 - in-vivo, NA, NA
cardioP↑, Quercetin had better cardioprotective and hepatoprotective activities.
hepatoP↑,
TumCG↓, In vivo, quercetin suppressed tumor growth and prolonged survival in BALB/c mice bearing 4T1 breast cancer.
OS↑,
ChemoSen↑, quercetin enhanced therapeutic efficacy of DOX and simultaneously reduced DOX-induced toxic side effects
chemoP↑, IC50 of DOX in combination with quercetin 10 or 25 uM was increased by three- and fourfold, respectively, compared with that of DOX alone
Hif1a↓, Further study showed that quercetin suppressed intratumoral HIF-1α in a hypoxia-dependent way but increased its accumulation in normal cells
*Hif1a↑,
selectivity↑, quercetin could improve therapeutic index of DOX by its opposing effects on HIF-1α in tumor and normal cells
TumVol↓,
OS↑,

3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, quercetin is known for its anti-inflammatory, antioxidant, and anticancer properties.
*antiOx↑,
*AntiCan↑,
Casp3↓, Quercetin increases apoptosis and autophagy in cancer by activating caspase-3, inhibiting the phosphorylation of Akt, mTOR, and ERK, lessening β-catenin, and stabilizing the stabilization of HIF-1α.
p‑Akt↓,
p‑mTOR↓,
p‑ERK↓,
β-catenin/ZEB1↓,
Hif1a↓,
AntiAg↓, Quercetin have revealed an anti-tumor effect by reducing development of blood vessels. I
VEGFR2↓, decrease tumor growth through targeting VEGFR-2-mediated angiogenesis pathway and suppressing the downstream regulatory component AKT in prostate and breast malignancies.
EMT↓, effects of quercetin on inhibition of EMT, angiogenesis, and invasiveness through the epidermal growth factor receptor (EGFR)/VEGFR-2-mediated pathway in breast cancer
EGFR↓,
MMP2↓, MMP2 and MMP9 are two remarkable compounds in metastatic breast cancer (28–30). quercetin on breast cancer cell lines (MDA-MB-231) and showed that after treatment with this flavonoid, the expression of these two proteinases decreased
MMP↓,
TumMeta↓, head and neck (HNSCC), the inhibitory effect of quercetin on the migration of tumor cells has been shown by regulating the expression of MMPs
MMPs↓,
Akt↓, quercetin by inhibiting the Akt activation pathway dependent on Snail, diminishing the expression of N-cadherin, vimentin, and ADAM9 and raising the expression of E-cadherin and proteins
Snail↓,
N-cadherin↓,
Vim↓,
E-cadherin↑,
STAT3↓, inhibiting STAT3 signaling
TGF-β↓, reducing the expression of TGF-β caused by vimentin and N-cadherin, Twist, Snail, and Slug and increasing the expression of E-cadherin in PC-3 cells.
ROS↓, quercetin exerted an anti-proliferative role on HCC cells by lessening intracellular ROS independently of p53 expression
P53↑, increasing the expression of p53 and BAX in hepatocellular carcinoma (HepG2) cell lines through the reduction of PKC, PI3K, and cyclooxygenase (COX-2)
BAX↑,
PKCδ↓,
PI3K↓,
COX2↓,
cFLIP↓, quercetin by inhibiting PI3K/AKT/mTOR and STAT3 pathways, decreasing the expression of cellular proteins such as c-FLIP, cyclin D1, and c-Myc, as well as reducing the production of IL-6 and IL-10 cytokines, leads to the death of PEL cells
cycD1↓,
cMyc↓,
IL6↓,
IL10↓,
Cyt‑c↑, In addition, quercetin induced c-cytochrome-dependent apoptosis and caspase-3 almost exclusively in the HSB2 cell line
TumCCA↑, Exposure of K562 cells to quercetin also significantly raised the cells in the G2/M phase, which reached a maximum peak in 24 hours
DNMTs↓, pathway through DNA demethylation activity, histone deacetylase (HDAC) repression, and H3ac and H4ac enrichment
HDAC↓,
ac‑H3↑,
ac‑H4↑,
Diablo↑, SMAC/DIABLO exhibited activation
Casp3↑, enhanced levels of activated caspase 3, cleaved caspase 9, and PARP1
Casp9↑,
PARP1↑,
eff↑, green tea and quercetin as monotherapy caused the reduction of levels of anti-apoptotic proteins, CDK6, CDK2, CYCLIN D/E/A, BCL-2, BCL-XL, and MCL-1 and an increase in expression of BAX.
PTEN↑, Quercetin upregulates the level of PTEN as a tumor suppressor, which inhibits AKT signaling
VEGF↓, Quercetin had anti-inflammatory and anti-angiogenesis effects, decreasing VGEF-A, NO, iNOS, and COX-2 levels
NO↓,
iNOS↓,
ChemoSen↑, quercetin and chemotherapy can potentiate their effect on the malignant cell
eff↑, combination with hyperthermia, Shen et al. Quercetin is a method used in cancer treatment by heating, and it was found to reduce Doxorubicin hydrochloride resistance in leukemia cell line K562
eff↑, treatment with ellagic acid, luteolin, and curcumin alone showed excellent anticancer effects.
eff↑, co-treatment with quercetin and curcumin led to a reduction of mitochondrial membrane integrity, promotion of cytochrome C release, and apoptosis induction in CML cells
uPA↓, A-549 cells were shown to have reduced mRNA expressions of urokinase plasminogen activator (uPA), Upar, protein expression of CXCR-4, CXCL-12, SDF-1 when quercetin was applied at 20 and 40 mM/ml by real-time PCR.
CXCR4↓,
CXCL12↓,
CLDN2↓, A-549 cells, indicated that quercetin could reduce mRNA and protein expression of Claudin-2 in A-549 cell lines without involving Akt and ERK1/2,
CDK6↓, CDK6, which supports the growth and viability of various cancer cells, was hampered by the dose-dependent manner of quercetin (IC50 dose of QR for A-549 cells is 52.35 ± 2.44 μM).
MMP9↓, quercetin up-regulated the rates of G1 phase cell cycle and cellular apoptotic in both examined cell lines compared with the control group, while it declined the expressions of the PI3K, AKT, MMP-2, and MMP-9 proteins
TSP-1↑, quercetin increased TSP-1 mRNA and protein expression to inhibit angiogenesis,
Ki-67↓, significant reductions in Ki67 and PCNA proliferation markers and cell survival markers in response to quercetin and/or resveratrol.
PCNA↓,
ROS↑, Also, quercetin effectively causes intracellular ROS production and ER stress
ER Stress↑,

3347- QC,    Recent Advances in Potential Health Benefits of Quercetin
- Review, Var, NA - Review, AD, NA
*antiOx↑, Its strong antioxidant properties enable it to scavenge free radicals, reduce oxidative stress, and protect against cellular damage.
*ROS↓,
*Inflam?, Quercetin’s anti-inflammatory properties involve inhibiting the production of inflammatory cytokines and enzymes,
TumCP↓, exhibits anticancer effects by inhibiting cancer cell proliferation and inducing apoptosis.
Apoptosis↑,
*cardioP↑, cardiovascular benefits such as lowering blood pressure, reducing cholesterol levels, and improving endothelial function
*BP↓, Quercetin‘s ability to reduce blood pressure was also supported by a different investigation
TumMeta↓, The most important impact of quercetin is its ability to inhibit the spread of certain cancers including those of the breast, cervical, lung, colon, prostate, and liver
MDR1↓, quercetin decreased the expression of genes multidrug resistance protein 1 and NAD(P)H quinone oxidoreductase 1 and sensitized MCF-7 cells to the chemotherapy medication doxorubicin
NADPH↓,
ChemoSen↑,
MMPs↓, Inhibiting CT26 cells’ migration and invasion abilities by inhibiting their expression of tissue inhibitors of metalloproteinases (TIMPs) inhibits their invasion and migration abilities
TIMP2↑,
*NLRP3↓, inhibited NLRP3 by acting on this inflammasome
*IFN-γ↑, quercetin significantly upregulates the gene expression and production of interferon-γ (IFN-γ), which is obtained from T helper cell 1 (Th1), and downregulates IL-4, which is obtained from Th2.
*COX2↓, quercetin is known to decrease the production of inflammatory molecules COX-2, nuclear factor-kappa B (NF-κB), activator protein 1 (AP-1), mitogen-activated protein kinase (MAPK), reactive nitric oxide synthase (NOS), and reactive C-protein (CRP)
*NF-kB↓,
*MAPK↓,
*CRP↓,
*IL6↓, Quercetin suppressed the production of inflammatory cytokines such as IL-6, TNF-α, and IL-1β via upregulating TLR4.
*TNF-α↓,
*IL1β↓,
*TLR4↑,
*PKCδ↓, Quercetin employed suppression on the phosphorylation of PKCδ to control the PKCδ–JNK1/2–c-Jun pathway.
*AP-1↓, This pathway arrested the accumulation of AP-1 transcription factor in the target genes, thereby resulting in reduced ICAM-1 and inflammatory inhabitation
*ICAM-1↓,
*NRF2↑, Quercetin overexpressed Nrf2 and targeted its downstream gene, contributing to increased HO-1 levels responsible for the down-regulation of TNF-α, iNOS, and IL-6
*HO-1↑,
*lipid-P↓, Quercetin acts as a potent antioxidant by scavenging ROS, inhibiting lipid peroxidation, and enhancing the activity of antioxidant enzymes
*neuroP↑, This helps to counteract oxidative stress and protect against neurodegenerative processes that contribute to AD
*eff↑, rats treated with chronic rotenone or 3-nitropropionic acid showed enhanced neuroprotection when quercetin and fish oil were taken orally
*memory↑, Both memory and learning abilities in the test animals increased
*cognitive↑,
*AChE↓, The increase in AChE activity brought on by diabetes was prevented in the cerebral cortex and hippocampus by quercetin at a level of 50 mg/kg body weight.
*BioAv↑, consumption of fried onions compared to black tea, suggesting that the form of quercetin present in onions is better absorbed than that in tea
*BioAv↑, This suggests that dietary fat can increase the absorption of quercetin [180]
*BioAv↑, potential of liposomes to enhance the bioactivity and bioavailability of quercetin has been the subject of several investigations
*BioAv↑, several emulsion types that may be employed to encapsulate quercetin, but oil-in-water (O/W) emulsions are the most widely utilized.
*BioAv↑, the kind of oil (triglyceride oils made up of either long-chain or medium-chain fatty acids) affected the bioaccessibility of quercetin and gastrointestinal stability, emphasizing the significance of picking a suitable oil phase

3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, reduced the vitality of KON cells and had minimal effect on MRC cells.
selectivity↑, Owing to the appropriate dosages of quercetin needed to treat these diseases, normal cells do not exhibit any overtly harmful side effects.
TumCCA↑, quercetin increased the percentage of dead cells and cell cycle arrests in the S and G2/M phases.
TumCMig↓, quercetin inhibited KON cells’ capacity for migration and invasion in addition to their effects on cell stability and structure
TumCI↓,
Apoptosis↑, inducing apoptosis and preventing metastasis, quercetin was found to downregulate the expression of BCL-2/BCL-XL while increasing the expression of BAX.
TumMeta↓,
Bcl-2↓,
BAX↑,
TIMP1↑, TIMP-1 expression was upregulated while MMP-2 and MMP-9 were downregulated.
MMP2↓,
MMP9↓,
*Inflam↓, anti-inflammatory, anti-cancer, antibacterial, antifungal, anti-diabetic, antimalarial, neuroprotective, and cardioprotective properties.
*neuroP↑,
*cardioP↑,
p38↓, MCF-7 cells, quercetin successfully decreased the expression of phosphor p38MAPK, Twist, p21, and Cyclin D1
MAPK↓,
Twist↓,
P21↓,
cycD1↓,
Casp3↑, directly aided by the significant increase in caspase-3 and − 9 levels and activities
Casp9↑,
p‑Akt↓, High quercetin concentrations also caused an inhibition of Akt and ERK phosphorylation
p‑ERK↓,
CD44↓, reduced cell division and triggered apoptosis, albeit to a lesser degree in CD44+/CD24− cells.
CD24↓,
ChemoSen↑, combination of quercetin and doxorubicin caused G2/M arrest in T47D cells, and to a lesser amount in cancer stem cells (CSCs) that were isolate
MMP↓, (lower levels of ΔΨ m), which is followed by the release of Cyto C, AIF, and Endo G from mitochondria, which causes apoptosis and ultimately leads to cell death.
Cyt‑c↑,
AIF↑,
ROS↑, Compared to the control group, quercetin administration significantly raised ROS levels at 25, 50, 100, 200, and 400 µg/mL.
Ca+2↑, increased production of reactive oxygen species and Ca2+, decreased levels of mitochondrial membrane potential (ΔΨ m),
Hif1a↓, Quercetin treatment resulted in a considerable downregulation of HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels in HOS cells.
VEGF↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
AIF↑,1,   Akt↓,1,   p‑Akt↓,2,   AntiAg↓,1,   Apoptosis↑,2,   BAX↑,2,   Bcl-2↓,1,   Ca+2↑,1,   cardioP↑,1,   Casp3↓,1,   Casp3↑,2,   Casp9↑,2,   CD24↓,1,   CD44↓,1,   CDK6↓,1,   cFLIP↓,1,   chemoP↑,1,   ChemoSen↑,5,   CLDN2↓,1,   cMyc↓,1,   COX2↓,1,   CXCL12↓,1,   CXCR4↓,1,   cycD1↓,2,   Cyt‑c↑,2,   Diablo↑,1,   DNMTs↓,1,   E-cadherin↑,1,   eff↑,4,   EGFR↓,1,   EMT↓,1,   ER Stress↑,1,   p‑ERK↓,2,   ac‑H3↑,1,   ac‑H4↑,1,   HDAC↓,1,   hepatoP↑,1,   Hif1a↓,3,   IL10↓,1,   IL6↓,1,   iNOS↓,1,   Ki-67↓,1,   MAPK↓,1,   MDR1↓,1,   MMP↓,2,   MMP2↓,2,   MMP9↓,2,   MMPs↓,2,   p‑mTOR↓,1,   N-cadherin↓,1,   NADPH↓,1,   NO↓,1,   OS↑,2,   P21↓,1,   p38↓,1,   P53↑,1,   PARP1↑,1,   PCNA↓,1,   PI3K↓,1,   PKCδ↓,1,   PTEN↑,1,   RadioS↑,1,   ROS↓,1,   ROS↑,2,   selectivity↑,2,   Snail↓,1,   STAT3↓,1,   TGF-β↓,1,   TIMP1↑,1,   TIMP2↑,1,   TSP-1↑,1,   TumCCA↑,2,   TumCG↓,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,1,   tumCV↓,1,   TumMeta↓,3,   TumVol↓,1,   Twist↓,1,   uPA↓,1,   VEGF↓,2,   VEGFR2↓,1,   Vim↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 85

Results for Effect on Normal Cells:
AChE↓,1,   AntiCan↑,1,   antiOx↑,2,   AP-1↓,1,   BioAv↑,5,   BP↓,1,   cardioP↑,2,   cognitive↑,1,   COX2↓,1,   CRP↓,1,   eff↑,1,   Hif1a↑,1,   HO-1↑,1,   ICAM-1↓,1,   IFN-γ↑,1,   IL1β↓,1,   IL6↓,1,   Inflam?,1,   Inflam↓,2,   lipid-P↓,1,   MAPK↓,1,   memory↑,1,   neuroP↑,2,   NF-kB↓,1,   NLRP3↓,1,   NRF2↑,1,   PKCδ↓,1,   ROS↓,1,   TLR4↑,1,   TNF-α↓,1,  
Total Targets: 30

Scientific Paper Hit Count for: ChemoSen, chemo-sensitization
5 Quercetin
1 doxorubicin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:140  Target#:1106  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page