condition found tbRes List
QC, Quercetin: Click to Expand ⟱
Features:
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries.
Quercetin is thought to contribute to anticancer effects through several mechanisms:
-Antioxidant Activity:
-Induction of Apoptosis:modify Bax:Bcl-2 ratio
-Anti-inflammatory Effects:
-Cell Cycle Arrest:
-Inhibition of Angiogenesis and Metastasis: (VEGF)

Cellular Pathways:
-PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism.
-MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis.
-NF-κB Pathway: downregulate NF-κB
-JAK/STAT Pathway: interfere with the activation of STAT3
-Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways

Quercetin has been used at doses around 500–1000 mg per day
Quercetin’s bioavailability from foods or standard supplements can be low.

-Note half-life 11 to 28 hours.
BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC.
Pathways:
- induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox"
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓,
- some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCG, Tumor cell growth: Click to Expand ⟱
Source:
Type:
Normal cells grow and divide in a regulated manner through the cell cycle, which consists of phases (G1, S, G2, and M).
Cancer cells often bypass these regulatory mechanisms, leading to uncontrolled proliferation. This can result from mutations in genes that control the cell cycle, such as oncogenes (which promote cell division) and tumor suppressor genes (which inhibit cell division).


Scientific Papers found: Click to Expand⟱
2303- QC,  doxoR,    Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells
- in-vitro, BC, 4T1 - in-vivo, NA, NA
cardioP↑, Quercetin had better cardioprotective and hepatoprotective activities.
hepatoP↑,
TumCG↓, In vivo, quercetin suppressed tumor growth and prolonged survival in BALB/c mice bearing 4T1 breast cancer.
OS↑,
ChemoSen↑, quercetin enhanced therapeutic efficacy of DOX and simultaneously reduced DOX-induced toxic side effects
chemoP↑, IC50 of DOX in combination with quercetin 10 or 25 uM was increased by three- and fourfold, respectively, compared with that of DOX alone
Hif1a↓, Further study showed that quercetin suppressed intratumoral HIF-1α in a hypoxia-dependent way but increased its accumulation in normal cells
*Hif1a↑,
selectivity↑, quercetin could improve therapeutic index of DOX by its opposing effects on HIF-1α in tumor and normal cells
TumVol↓,
OS↑,

2340- QC,    Oral Squamous Cell Carcinoma Cells with Acquired Resistance to Erlotinib Are Sensitive to Anti-Cancer Effect of Quercetin via Pyruvate Kinase M2 (PKM2)
- in-vitro, OS, NA
TumCG↓, At a concentration of 5 μM, quercetin effectively arrested cell growth, reduced glucose utilization, and inhibited cellular invasiveness
GlucoseCon↓,
TumCI↓,
GLUT1↓, Quercetin also prominently down-regulated GLUT1, PKM2, and lactate dehydrogenase A (LDHA) expression of erlotinib-resistant HSC-3 cells
PKM2↓,
LDHA↓,
Glycolysis↓, Moreover, quercetin (30 μM) suppressed glycolysis in the MCF-7 and MDA-MB-231 breast cancer cells, as evidenced by decreased glucose uptake and lactate production with a concomitant decrease in the levels of the GLUT1, PKM2, and LDHA proteins [29].
lactateProd↓,
HK2↓, Hexokinase 2 (HK2)-mediated glycolysis was also shown to be inhibited following quercetin treatment (25~50 μM) in Bel-7402 and SMMC-7721 hepatocellular carcinoma (HCC) cells
eff↑, Downregulation of PKM2 also potently restored sensitivity to the inhibitory effect of erlotinib on cell growth and invasion

911- QC,  SFN,    Pilot study evaluating broccoli sprouts in advanced pancreatic cancer (POUDER trial) - study protocol for a randomized controlled trial
TumCG↓,
Risk↓, decreased risk of extra-prostatic manifestation of prostate cancer: cruciferous vegetables, in particular broccoli which is rich in sulforaphane and quercetin

3371- QC,    Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways
- in-vitro, GBM, T98G
TIMP2↑, MMP2, and MMP9 was significantly decreased by quercetin treatment, while TIMP1 and TIMP2 were upregulated (
TumCG↓, Quercetin significantly suppressed the growth and migration of human GBM T98G cells, induced apoptosis, and arrested cells in the S-phase cell cycle
TumCMig↓,
Apoptosis↑,
TumCCA↑,
MMP↓, collapse of mitochondrial membrane potential, ROS generation, enhanced Bax/Bcl-2 ratio, and strengthened cleaved-Caspase 9 and cleaved-Caspase 3 suggested the involvement of ROS-mediated mitochondria-dependent apoptosis in the process
ROS↑,
Bax:Bcl2↑,
cl‑Casp9↑,
cl‑Casp3↑,
DNAdam↑, quercetin-induced apoptosis was accompanied by intense DNA double-strand breaks (DSBs), γH2AX foci formation, methylation of MGMT promoter, increased cleaved-PARP, and reduced MGMT expression
γH2AX↑,
MGMT↓,
cl‑PARP↑,

380- SNP,  QC,  CA,  Chit,    Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities
- in-vitro, MG, U118MG
TumCG↓, cell viability has constantly decreased by increasing the concentration


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
Apoptosis↑,1,   Bax:Bcl2↑,1,   cardioP↑,1,   cl‑Casp3↑,1,   cl‑Casp9↑,1,   chemoP↑,1,   ChemoSen↑,1,   DNAdam↑,1,   eff↑,1,   GlucoseCon↓,1,   GLUT1↓,1,   Glycolysis↓,1,   hepatoP↑,1,   Hif1a↓,1,   HK2↓,1,   lactateProd↓,1,   LDHA↓,1,   MGMT↓,1,   MMP↓,1,   OS↑,2,   cl‑PARP↑,1,   PKM2↓,1,   Risk↓,1,   ROS↑,1,   selectivity↑,1,   TIMP2↑,1,   TumCCA↑,1,   TumCG↓,5,   TumCI↓,1,   TumCMig↓,1,   TumVol↓,1,   γH2AX↑,1,  
Total Targets: 32

Results for Effect on Normal Cells:
Hif1a↑,1,  
Total Targets: 1

Scientific Paper Hit Count for: TumCG, Tumor cell growth
5 Quercetin
1 doxorubicin
1 Sulforaphane (mainly Broccoli)
1 Silver-NanoParticles
1 Caffeic acid
1 chitosan
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:140  Target#:323  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page