condition found tbRes List
QC, Quercetin: Click to Expand ⟱
Features:
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries.
Quercetin is thought to contribute to anticancer effects through several mechanisms:
-Antioxidant Activity:
-Induction of Apoptosis:modify Bax:Bcl-2 ratio
-Anti-inflammatory Effects:
-Cell Cycle Arrest:
-Inhibition of Angiogenesis and Metastasis: (VEGF)

Cellular Pathways:
-PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism.
-MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis.
-NF-κB Pathway: downregulate NF-κB
-JAK/STAT Pathway: interfere with the activation of STAT3
-Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways

Quercetin has been used at doses around 500–1000 mg per day
Quercetin’s bioavailability from foods or standard supplements can be low.

-Note half-life 11 to 28 hours.
BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC.
Pathways:
- induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox"
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓,
- some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


AMPKα, AMP-activated protein kinase: Click to Expand ⟱
Source:
Type:
AMPK is a heterotrimeric protein complex consisting of three subunits: AMPKα, AMPKβ, and AMPKγ. AMPKα is expressed in two isoforms, AMPKα1 and AMPKα2, and these isoforms are encoded by the genes PRKAA1 and PRKAA2, respectively.
In many cancers, AMPKα acts as a tumor suppressor, and its downregulation is often associated with worse clinical outcomes.


Scientific Papers found: Click to Expand⟱
914- QC,    Quercetin and Cancer Chemoprevention
- Review, NA, NA
GSH↓, high Qu concentration, causes a reduction in GSH content
ROS↑, in tumor cells
TumCCA↑, Depending on the cell type and tumor origin, Qu is able to block the cell cycle at G2/M or at the G1/S transition
Ca+2↑, Qu treatment increases cytosolic Ca2+ levels
MMP↓,
Casp3↑,
Casp8↑,
Casp9↑,
β-catenin/ZEB1↓,
AMPKα↑,
ASK1↑,
p38↑,
TRAIL↑, Qu is a potent enhancer of TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, through the induction of the expression of death receptor (DR)-5, a phenomenon that specifically occurs in prostate cancer cells
DR5↑,
cFLIP↓,
Apoptosis↑, tumor cell lines are prone to cell-cycle arrest and apoptosis at Qu concentrations that have no or little effect on non-transformed cells ****

919- QC,    Quercetin Regulates Sestrin 2-AMPK-mTOR Signaling Pathway and Induces Apoptosis via Increased Intracellular ROS in HCT116 Colon Cancer Cells
- in-vitro, CRC, HCT116
Apoptosis↑,
ROS↑,
SESN2↑,
P53↑,
AMPKα↑,
mTOR↓,

82- QC,  AG,    Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells
- in-vitro, Pca, NA
AR↓,
PI3K/Akt↓,
miR-21↓,
STAT3↓,
BAD↓,
PRAS40↓,
GSK‐3β↓,
PSA↓,
NKX3.1↑,
Bax:Bcl2↑,
miR-19b↓,
miR-148a↓,
AMPKα↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
AMPKα↓,1,   AMPKα↑,2,   Apoptosis↑,2,   AR↓,1,   ASK1↑,1,   BAD↓,1,   Bax:Bcl2↑,1,   Ca+2↑,1,   Casp3↑,1,   Casp8↑,1,   Casp9↑,1,   cFLIP↓,1,   DR5↑,1,   GSH↓,1,   GSK‐3β↓,1,   miR-148a↓,1,   miR-19b↓,1,   miR-21↓,1,   MMP↓,1,   mTOR↓,1,   NKX3.1↑,1,   p38↑,1,   P53↑,1,   PI3K/Akt↓,1,   PRAS40↓,1,   PSA↓,1,   ROS↑,2,   SESN2↑,1,   STAT3↓,1,   TRAIL↑,1,   TumCCA↑,1,   β-catenin/ZEB1↓,1,  
Total Targets: 32

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: AMPKα, AMP-activated protein kinase
3 Quercetin
1 Arctigenin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:140  Target#:475  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page