condition found
Features: |
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries. Quercetin is thought to contribute to anticancer effects through several mechanisms: -Antioxidant Activity: -Induction of Apoptosis:modify Bax:Bcl-2 ratio -Anti-inflammatory Effects: -Cell Cycle Arrest: -Inhibition of Angiogenesis and Metastasis: (VEGF) Cellular Pathways: -PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism. -MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis. -NF-κB Pathway: downregulate NF-κB -JAK/STAT Pathway: interfere with the activation of STAT3 -Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways Quercetin has been used at doses around 500–1000 mg per day Quercetin’s bioavailability from foods or standard supplements can be low. -Note half-life 11 to 28 hours. BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC. Pathways: - induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox" - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary) - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, - some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
SP2 (Specificity Protein 2) and SP3 (Specificity Protein 3) are also members of the Sp/KLF (Sp1/Krüppel-like factor) family of transcription factors, similar to SP1. They share some functional similarities but also have distinct roles in cellular processes and cancer biology. -Sp proteins are a family of transcription factors that play a crucial role in regulating gene expression. -SP1 is often overexpressed in various types of cancer, including breast, prostate, and lung cancers. However, expression levels of Sp in normal cells and tissues are low to undetectable. SP inhibitors: -Curcumin, Resveratrol, EGCG, Genistein, Piperlongumine, Betulinic acid |
923- | QC,  |   | Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health |
- | Review, | Var, | NA |
104- | RES,  | QC,  |   | Resveratrol and Quercetin in Combination Have Anticancer Activity in Colon Cancer Cells and Repress Oncogenic microRNA-27a |
- | in-vitro, | Colon, | HT-29 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:140 Target#:506 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid