Database Query Results : Silver-NanoParticles, ,

SNP, Silver-NanoParticles: Click to Expand ⟱
Features:
Silver NanoParticles
Summary:
1. Smaller sizes desirable due to greater surface area, and cell penetration (enhanced permeability and retention (EPR) effect)
2. Two main types: AgNP and silver ions (big debate on uses: Ag+ turning to AgCl in stomach but AgCl also effective. Take sodium-bicarbonate?
3. Dose example 80kg person: 1.12-2mg/day, which can be calculated based on ppm and volume taken (see below) target < 10ppm and 120mL per day (30ppm and 1L per day caused argyria 30mg/day ) (Case Report: 9‐15 ppm@120mL, i.e. 1.1mg/L to 1.8mg/L per day)
Likely 10ppm --> 10mg/L, hence if take 100mL, then 1mg/day? (for Cancer)
The current Rfd for oral silver exposure is 5 ug/kg/d with a critical dose estimated at 14 ug/kg/d for the average person.
Seems like the Cancer target range is 14ug/kg/day to 25ug/kg/day. 80Kg example: 1.12mg to 2mg “1.4µg/kg body weight. If I would have 70kg, I would want to use 100µg/day. However, for fighting active disease, I would tend to explore higher daily dose, as I think this may be too low.”
4. AntiOxidants/NAC can counter act the effect of Silver NanoParticles from producing reactive oxygen species (ROS) and mitochondrial damage . NAC is a supplement form of cysteine, an amino acid that helps make glutathione, a powerful antioxidant.
5. In vitro most reports indicate AgNPs increase ROS in both cancer and normal cell (but in vivo improved antioxidant system of normal may create selectivity)
6. Pathways/mechanisms of action/:
-” intracellular ROS was increased...reduction in levels of glutathione (GSH)”
-”AgNPs affect the function of the vascular endothelial growth factor (VEGF)” (likely reducing levels)
-”expression of BAX and BCL2 genes was increased”
-”upregulation of proapoptotic genes (p53, p21, Bax, and caspases) and downregulation of antiapoptotic genes (Bcl-2)”
-” upregulation of AMPK and downregulation of mTOR, MMP-9, BCL-2, and α-SMA”
-”p53 is a key player...proapoptotic genes p53 and Bax were significantly increased... noticeable reduction in Bcl-2 transcript levels”
-” p53 participates directly in the intrinsic apoptosis pathway by regulating the mitochondrial outer membrane permeabilization”
- “Proapoptotic markers (BAX/BCL-XL, cleaved poly(ADP-ribose) polymerase, p53, p21, and caspases 3, 8 and 9) increased.”
-”The antiapoptotic markers, AKT and NF-kB, decreased in AgNP-treated cells.”

Silver NanoParticles and Magnetic Fields
Summary:
1. “exposure to PMF increased the ability of AgNPs uptake”
2. 6x improvement from AgNPs alone

could glucose capping of SilverNPs work as trojan horse?

Sodium selenite might protect against toxicity of AgNPs in normal cells.

-uncoated AgNPs can degrade the gut microbiome. PVP, citrate, green-synthesized, chitosan coating, may reduce the effect.
Also may be true for Selenium(Sodium selenite) becuase of antioxidant properties, slowing oxidation of Ag0 to Ag+.
co-ingestion with food (higher pH) favors reduction and lower Ag+ levels.
-action mechanisms of AgNPs: the release of silver ions (Ag+), generation of reactive oxygen species (ROS), destruction of membrane structure.


Scientific Papers found: Click to Expand⟱
3579- CUR,  SNP,    Metal–Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin
- Review, NA, NA
*IronCh↑, It is well established that curcumin strongly chelates several metal ions, including boron, cobalt, copper, gallium, gadolinium, gold, lanthanum, manganese, nickel, iron, palladium, platinum, ruthenium, silver, vanadium, and zinc.
*BioAv↑, Metal–curcumin complexes increase the solubility, cellular uptake, and bioavailability and improve the antioxidant, anti-inflammatory, antimicrobial, and antiviral effects of curcumin.
*antiOx↑,
*Inflam↓,
*BioAv↑, complexes of curcumin with transition metals may provide another approach to overcome the issues associated with curcumin.
ROS↑, curcumin–metal complexes with liposomes present enhanced cellular uptake and ROS generation in cancer cells and thus cause increased cytotoxicity
*neuroP↑, Since curcumin has the ability to cross the blood–brain barrier due to its hydrophobic nature, it can strongly chelate the metal ions in the brain and prevent metal-induced neurotoxicity.
*eff↑, Curcumin with silver nanoparticle formates also increases the solubility and stability of curcumin in complexes. Curcumin reduces and caps the silver nanoparticles, which increases its stability and solubility in water

664- EGCG,  SNP,    Epigallocatechin-3-gallate-capped Ag nanoparticles: preparation and characterization
- Analysis, NA, NA
other↑, polyphenolic groups of epigallocatechin-3-gallate (EGCG) are responsible for the rapid reduction of Ag+ ions into metallic Ag0

2833- FIS,  SNP,    Glucose-capped fisetin silver nanoparticles induced cytotoxicity and ferroptosis in breast cancer cells: A molecular perspective
- in-vitro, BC, MDA-MB-231
MMP↓, MDA-MB-231 cells treated with glucose-capped fisetin silver nanoparticles showed signs of apoptosis, decreased mitochondrial membrane potential, and elevated Reactive oxygen species (ROS) production.
ROS↑,
NRF2↑, upregulation of SLC7A11, SLC40A1, NRF2F, NOX2, and NOX5 genes that are associated with various crucial cellular events
NOX↑,
selectivity↑, Glucose nanoparticles selectively deliver cytotoxic agents to cancer cells by targeting the glucose transporters overexpressed in cancer cells, resulting in minimal toxicity to healthy tissues

1904- GoldNP,  SNP,    Unveiling the Potential of Innovative Gold(I) and Silver(I) Selenourea Complexes as Anticancer Agents Targeting TrxR and Cellular Redox Homeostasis
- in-vitro, Lung, H157 - in-vitro, BC, MCF-7 - in-vitro, Colon, HCT15 - in-vitro, Melanoma, A375
TrxR↓, selectively inhibit the redox‐regulating enzyme Thioredoxin Reductase (TrxR), being even more effective than auranofin
selectivity↑, Innovative Au(I) and Ag(I) NHC‐based selenourea complexes exhibit a prominent anticancer effect by selectively targeting TrxR in human cancer cells
eff↑, [AuCl{Se(SIMes)}] being the most effective derivative, and able to almost completely abolish TrxR1 activity even at 0.5 nM
eff↝, These results, highlighting the superior activity of gold with respect to silver complexes
ROS↑, treatment of H157 cells with either Au(I) or Ag(I) complexes determined a substantial time‐dependent increase in cellular basal ROS production
MMP↓, collapse of mitochondrial membrane potential (MMP) as well as loss of mitochondrial shape and integrity (swelling), possibly leading to the induction of cell apoptosis.
Apoptosis↑,
eff↑, both Ag(I) and Au(I) selenourea complexes were found to selectively and strongly inhibit mammalian TrxR, being even much more effective than the reference metallodrug auranofin

848- Gra,  SNP,    Synthesis, Characterization and Evaluation of Antioxidant and Cytotoxic Potential of Annona muricata Root Extract-derived Biogenic Silver Nanoparticles
- in-vitro, CRC, HCT116
ROS↑,
PUMA↝,
Casp3↑,
Casp8↑,
Casp9↑,
Apoptosis↑,

854- Gra,  SNP,    Green Synthesis of Silver Nanoparticles Using Annona muricata Extract as an Inducer of Apoptosis in Cancer Cells and Inhibitor for NLRP3 Inflammasome via Enhanced Autophagy
- vitro+vivo, AML, THP1 - in-vitro, AML, AMJ13 - vitro+vivo, lymphoma, HBL
TumCP↓, THP-1 and AMJ-13
TumAuto↑,
IL1↓, IL-1b
NLRP3↓,
Apoptosis↑,
mtDam↑,
P53↑,
LDH↓, ability of AgNPs in increasing of LDH release.

853- Gra,  SNP,    Solid lipid nanoparticles of Annona muricata fruit extract: formulation, optimization and in vitro cytotoxicity studies
other↑, SLNs showed a notable apoptotic effect and better efficacy to kill MCF7 cancer cells as compared to free extract.

861- Lae,  Chit,  SNP,    Synthesis of polygonal chitosan microcapsules for the delivery of amygdalin loaded silver nanoparticles in breast cancer therapy
other↑, potential of chitosan microcapsules loaded with amygdalin in breast cancer therapy

323- Sal,  SNP,    Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy
- in-vitro, BC, MDA-MB-231 - in-vitro, Ovarian, A2780S
TumCD↑, Sal and AgNPs enhanced the cell death (81%)
LDH↓, Sal increased LDH release and MDA levels
MDA↑,
SOD↓,
ROS↑,
GSH↓,
Catalase↓,
MMP↓, loss of Mitochondrial membrane potential
P53↑, 1.5x combined treatment
P21↑, 25x combined treatment
BAX↑,
Bcl-2↓,
Casp3↑,
Casp9↑,
Apoptosis↑,
TumAuto↑, upregulates autophagy genes that are involved in autophagosome formation

4440- Se,  SNP,    Selenium, silver, and gold nanoparticles: Emerging strategies for hepatic oxidative stress and inflammation reduction
- Review, NA, NA
*hepatoP↑, This review focuses on the hepatoprotective potential of selenium (SeNPs), silver (AgNPs), and gold nanoparticles (AuNPs), emphasizing their antioxidant, anti-inflammatory, and immunomodulatory mechanisms.
*antiOx↑,
*Inflam↓,
*ROS↓, SeNPs enhance antioxidant defenses by scavenging reactive oxygen species (ROS) and upregulating key enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx).
*SOD↑,
*GPx↑,
*lipid-P↓, AgNPs exhibit anti-inflammatory effects by modulating cytokine expression, reducing lipid peroxidation, and preserving hepatic architecture.

4539- SNP,  VitC,  Citrate,    Investigating the Anti-cancer Potential of Silver Nanoparticles Synthesized by Chemical Reduction of AgNO3 Using Trisodium Citrate and Ascorbic Acid
- in-vitro, Nor, L929 - in-vitro, Ovarian, SKOV3
AntiCan↑, Significant cytotoxicity was observed in SKOV-3 ovarian cancer cells

4547- SNP,  GoldNP,  VitC,    Exploration of Biocompatible Ascorbic Acid Reduced and Stabilized Gold Nanoparticles, as Sensitive and Selective Detection Nanoplatform for Silver Ion in Solution
- Study, NA, NA
*eff↑, the addition of Ag+ to AA-AuNPs solution (pH 10) resulted in naked-eye color transitions from red to orange and yellow, with a blue shift in the absorption maximum from 522 to 400 nm

4546- SNP,    Chapter 2 - Silver nanoparticles in cancer therapy
- Study, Var, NA
AntiTum↑, In recent years, numerous studies have claimed that silver nanoparticles can be successfully used as antitumor agents due to their antiproliferative and apoptosis-inducing properties.
Apoptosis↑,

4545- SNP,  VitC,  Citrate,    Ascorbic Acid-assisted Green Synthesis of Silver Nanoparticles: pH and Stability Study
- Study, NA, NA
*other↝, The synthesis of AgNPs was primarily identified by the appearance of yellow colour and confirmed by showing λmax =409 nm in UV-visible spectroscopy.
*other↝, In this study, the bottom-up strategy was used to synthesize AgNPs using ascorbic acid as a reductive agent and citric acid as a potent complex stabilizer, effectively.
*eff↑, It clearly explained that the reaction mixture having a pH at 10 is most appropriate to reduce Ag+ ions into AgNPs and stable over a month.
*eff↑, The FTIR results indicate that the citric acid is directly involved in the stabilization and capping of AgNPs, whereas ascorbic acid reduces Ag+ ions to Ag0.

4544- SNP,  VitC,    Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications
- Review, Nor, NA
*Bacteria↓, lity. The antimicrobial properties of Ag NPs are finding their application in enhancing the activity of drugs (like Amphotericin B, Nystatin, Fluconazole) and composite scaffolds for controlled release of drugs and targeted delivery of drugs due to t
*eff↑, 2]. However, mild reducing agents like ascorbic acid leads to the controlled growth of the Ag NP : ascorbic acid was added to reduce the remaining Ag + ions

4543- SNP,    Biogenic synthesis of silver nanoparticles using Zaleya pentandra and investigation of their biological activities
- Study, Nor, NA
*Bacteria↓, The green-synthesized AgNPs displayed potent antibacterial efficacy,

4542- SNP,    Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity─A 2024 Update
- Review, NA, NA
AntiCan↑, cytotoxicity against human colon carcinoma (HT-29) cells. The MTT assay confirmed their anticancer potential, with an IC50 value of 150.8 μg/mL.
DNAdam↑, Ag-NPs, accumulating in the nucleus, may cause genotoxicity, DNA damage, and chromosomal aberrations
ATP↓, Ag-NP exposure disrupts calcium homeostasis, leading to mitochondrial dysfunction, ATP depletion, and apoptosis.
Apoptosis↑,
ROS↓, induce cytotoxicity through numerous mechanisms viz., oxidative stress, mitochondrial dysfunction, DNA damage, cell cycle arrest, and subsequent apoptosis.
TumCCA↑,
*Bacteria↓, effectiveness as an antibacterial agent.
*BMD↑, Bone Repair Applications

4541- SNP,  RosA,    Eco-friendly synthesis of silver nanoparticles: multifaceted antioxidant, antidiabetic, anticancer, and antimicrobial activities
- in-vitro, Nor, WI38 - in-vitro, BC, MDA-MB-231 - in-vitro, PC, PANC1
*antiOx↑, Potent antioxidant activity was observed with an EC₅₀ of 7.81 µg mL⁻1, close to ascorbic acid (3.27 µg mL⁻1).
TumCD↓, Ag-NPs showed selective cytotoxicity against MDA and PANC-1 cells (IC₅₀: 177.2 and 115.3 µg mL⁻1), with lower toxicity toward Vero and Wi38 normal cells (IC₅₀: 233 and 207 µg mL⁻1).
selectivity↑,

4540- SNP,  VitC,    Silver nanoparticles from ascorbic acid: Biosynthesis, characterization, in vitro safety profile, antimicrobial activity and phytotoxicity
- in-vitro, Nor, NA
*Bacteria↓, AgNPs showed antibacterial activity against Gram-positive and Gram-negative strains.
*selectivity↑, AgNPs did not show cytotoxicity on VERO cells ranging from 0.5 to 150 μg mL−1 with a good gemoprotection.

4548- SNP,  Chit,    Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines
- in-vitro, BC, MCF-7
AntiCan↑, anti-cancer efficacy was observed against MCF-7 breast cancer cells having IC50 values of 53.36 ± 0.36 μg/mL (chitosan–ascorbic acid–glucose
EPR↑, we hypothesize that the nanoformulations can be up-taken readily by the cancer cells
pH↝, cancer cells are known to be acidic therefore the chitosan matrix can readily dissolve releasing the encapsulated components thereby triggering the subsequent death process in the cancerous cells

4447- SNP,    Anti-inflammatory action of silver nanoparticles in vivo: systematic review and meta-analysis
- Review, Nor, NA
*Inflam↓, Qualitative analysis showed a reduction in pro-inflammatory proteins and in the COX-2 pathway.
*COX2↓,
*ROS↓, Its in vitro mechanism of action shows potential to eliminate free radicals
*Dose↝, The method of synthesizing nanoparticles (NPs) influences parameters such as size, shape, topography, stability, concentration, purity and release of Ag + ions, which in turn influences their anti-inflammatory activity
*eff↑, In vitro studies have compared the ingestion of AgNPs at low concentrations (0.012 % per kg) with gold standard drugs (glucocorticoids; 0.1 % per kg) and observed higher efficacy of NPs in promoting therapeutic effect
*toxicity↓, another study has shown that chronic in vivo application of AgNPs at the minimum concentration necessary to promote therapeutic effect does not cause toxic effects
*IL4↑, AgNPs and mitoxantrone increased levels of anti-inflammatory cytokines (IL4, IL5, IL10, IL13, and IFNα) and decreased pro-inflammatory cytokines (IL1, IL6, IL12, IL18, IFNY and TNFα).
*IL5↑,
*IL10↑,
*IL1↓,
*IL6↓,
*TNF-α↓,
*NF-kB↓, AgNPs selectively inhibit COX-2 and the NF-kB pathway.
*MDA↓, AgNPs reduce biomarkers of oxidative stress [55], such as malondialdehyde (MDA) and cell membrane peroxidation [19,31] and increase intracellular GSH
*GSH↑,

4439- SNP,    Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA)
- in-vitro, Cerv, HeLa
ROS↑, significant increase in ROS and lipid peroxidation (LPO), along with a decrease in MMP and glutathione (GSH) levels.
lipid-P↑,
MMP↓,
GSH↓,
TumCCA↑, significant increase in ROS and lipid peroxidation (LPO), along with a decrease in MMP and glutathione (GSH) levels.
Apoptosis↑,
Necroptosis↑,
TumCD↑, AgNPs-induced cell death in HeLA cells suggested the anticancer potential of ND-AgNPs.
Dose↝, ND-AgNPs at 10, 25, and 50 µg/ml concentration

4438- SNP,  ART/DHA,    Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancer
- in-vitro, Lung, A549
EPR↑, cellular uptake of the AgNPs results indicated that the AgNPs accumulated within the cell.
BAX↑, Bax, Bcl-2, caspase-3 (CASP3), caspase-9 (CASP9)
Bcl-2↑,
Casp3↑,
Casp9↑,
DNAdam↑, apoptotic effects of the AgNPs through DNA fragmentation test, flow cytometry and cell cycle analysis indicated the induction of apoptosis in the A549 cell line.
TumCCA↑,
Apoptosis↑,

4437- SNP,    Green Fabrication of silver nanoparticles by leaf extract of Byttneria Herbacea Roxb and their promising therapeutic applications and its interesting insightful observations in oral cancer
- in-vitro, Oral, NA
TumCP↓, anti-proliferative and cytotoxic studies in KB oral cancer cells

4436- SNP,    Silver Nanoparticles (AgNPs) as Enhancers of Everolimus and Radiotherapy Sensitivity on Clear Cell Renal Cell Carcinoma
- in-vitro, Kidney, 786-O
ROS↑, AgNPs are cytotoxic to 786-O cells, a ccRCC cell line, entering through endocytosis, increasing ROS, depolarizing mitochondrial membrane, and blocking the cell cycle, leading to a reduction of proliferation capacity and apoptosis.
MMP↑,
TumCCA↑,
TumCP↓,
Apoptosis↑,
RadioS↑, 786-O is intrinsically resistant to radiation, but after AgNPs’ administration, radiation induces cytotoxicity through mitochondrial membrane depolarization and S phase blockage.

4435- SNP,  Gluc,    Glucose-Functionalized Silver Nanoparticles as a Potential New Therapy Agent Targeting Hormone-Resistant Prostate Cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, DU145
selectivity↑, Both AgNPs and G-AgNPs were cytotoxic only to CRPC cells and not to hormone-sensitive ones and their effect was higher after functionalization showing the potential of glucose to favor AgNPs’ uptake by cancer cells.
ROS↑, NPs increased the ROS, inducing mitochondrial damage, and arresting cell cycle in S Phase, therefore blocking proliferation, and inducing apoptosis.
mtDam↑,
TumCCA↑,
TumCP↓,
Apoptosis↑,
MMP↓, AgNPs were able to depolarize the cells’ mitochondria to 32.74% and 10.36%, respectively

4556- SNP,    Biofilm Impeding AgNPs Target Skin Carcinoma by Inducing Mitochondrial Membrane Depolarization Mediated through ROS Production
- in-vitro, Melanoma, A431
MMP↓, The depolarization of mitochondrial membrane potential ΔΨm through excess ROS production was deduced to be the triggering force behind the apoptotic cell death mechanism of the skin carcinoma
ROS↑,
*toxicity↓, AgNPs provides an economic, nontoxic, specific approach for targeting skin carcinoma with additional benefits of antibacterial activities.
Bacteria↓,

4564- SNP,  GoldNP,  Cu,  Chemo,  PDT  Cytotoxicity and targeted drug delivery of green synthesized metallic nanoparticles against oral Cancer: A review
- Review, Var, NA
ROS↑, graphical abstract
DNAdam↑, inducing cell death through apoptotic signaling pathways, and inducing excess reactive oxygen species (ROS) in tumor cells, which leads to oxidative damage and increased production of proapoptotic enzymes
TumCCA↑,
eff↑, Metallic nanoparticles, especially those derived from metals, improve the effectiveness of anticancer agents by facilitating targeted delivery and sustained release at tumor sites.
Apoptosis↑,
eff↓, Au NPs are notable for their biocompatibility and are utilized in photothermal therapy to convert light into heat, effectively destroying cancer cells
ChemoSen↑, Magnesium oxide nanoparticles (MgO NPs) induce apoptosis through ROS production and enhance the impact of chemotherapy drugs, synthesized with plant extracts as reducing agents.

4563- SNP,  Rad,    Silver nanoparticles enhance neutron radiation sensitivity in cancer cells: An in vitro study
- in-vitro, BC, MCF-7 - in-vitro, Ovarian, SKOV3 - in-vitro, GBM, U87MG - in-vitro, Melanoma, A431
RadioS↑, Here, we, for the first time, present the results of the radiosensitizing properties of silver nanoparticles (AgNPs) (possessing low toxicity towards human body) against cancer cells under neutron irradiation.
ROS↑, The mechanism of AgNPs anticancer (intrinsic) effect includes oxidative stress, cell cycle arrest and apoptosis, activate endoplasmic reticulum stress, modulate various signaling pathways, etc
TumCCA↑,
Apoptosis↑,
ER Stress↑,

4562- SNP,  VitC,    Eco-friendly Synthesis of Silver Nanoparticles using Ascorbic Acid and its Optical Characterization
- Study, NA, NA
*other↑, The Vitamin C (Ascorbic Acid) acts as a chemical reductant to successfully reduce silver ions into silver nanoparticles
*other↝, The optimized synthetic method utilizes higher pH conditions, sodium citrate as a silver ion stabilizer, hydrogen peroxide as an etching agent, and ascorbic acid as a reducing agent, allowing nanoscale-sized silver particles to be achieved even at t

4561- SNP,  VitC,    Cellular Effects Nanosilver on Cancer and Non-cancer Cells: Potential Environmental and Human Health Impacts
- in-vitro, CRC, HCT116 - in-vitro, Nor, HEK293
NRF2↑, Nanosilver increased Nrf2 protein expression and disrupted the cell cycle at the G1 and G2/M phases.
TumCCA↑, AgNPs interact with DNA to stop the cell cycle and lead to apoptosis
ROS↑, Nanosilver induced significant mitochondrial oxidative stress in HCT116, whereas it did not in the non-cancer HIEC-6 and nanosilver/sodium ascorbate co-treatment was preferentially lethal to HCT116 cells,
selectivity↑,
*AntiViral↑, AgNPs are effective antiviral agents against various viruses such as human immunodeficiency virus, hepatitis B virus, and monkey pox virus through interaction with surface glycoproteins on the virus
*toxicity↝, Citrate and PVP-coated AgNPs have been found to be less toxic than non-coated AgNPs
ETC↓, AgNPs affects mitochondrial function through the disruption of the electron transport chain2,24,26,33,39–41
MMP↓, Studies have shown that exposure to AgNPs resulted in a decrease of mitochondrial membrane potential (MMP) in various in vitro and in vivo experiments
DNAdam↑, AgNPs has also been shown to interact with and induce damage to DNA, DNA strand breaks, DNA damage
Apoptosis↑, apoptosis induced by AgNPs were through membrane lipid peroxidation, ROS, and oxidative stress
lipid-P↑,
other↝, Several studies have showed AgNPs interact with various proteins such as haemoglobin, serum albumin, metallothioneins, copper transporters, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), malate dehydrogenase (MDH), and bacterial proteins.
UPR↑, Studies have shown exposure to AgNPs induces activation of the UPR
*GRP78/BiP↑, AgNPs induced increased levels of GRP78, phosphorylated PERK, phosphorylated eIF2-α, and phosphorylated IRE1α, spliced XBP1, cleaved ATF-6, CHOP, JNK and caspase 12
*p‑PERK↑,
*cl‑eIF2α↑,
*CHOP↑,
*JNK↑,
Hif1a↓, One study showed AgNPs inhibits HIF-1 accumulation and suppresses expression of HIF-1 target genes in breast cancer cells (MCF-7) and also found the protein levels of HIF-1α and HIF-1β decreased
AntiCan↑, Many studies have shown that ascorbic acid, on its own, has anti-cancer effects
*toxicity↓, However, when the rats were treated with both ascorbic acid and AgNPs, a decrease in toxic effects was observed in non-cancer parotid glands in rats
eff↑, Studies have shown both AgNPs and ascorbic acid have greater effects and toxicity in cancer cells relative to non-cancer cells

4560- SNP,    Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2)
- in-vitro, Liver, HepG2 - in-vitro, Diabetic, NA
AntiCan↑, The PGE-AgNPs showed a dose-dependent response against human liver cancer cells (HepG2) (IC50; 70 μg/mL) indicating its greater efficacy in killing cancer cells.
Dose↝, surface charge of synthesized AgNPs was highly negative (−26.6 mV) and particle size distribution was ranging from ∼35 to 60 nm and the average particle size was about 48 nm determined by dynamic light scattering (DLS)
*antiOx↑, literature suggests that AgNPs display considerable antioxidant activity in vitro
*AntiDiabetic↑, Antidiabetic potential of biosynthesized AgNPs
*Bacteria↓, Synergistic antibacterial potential of AgNPs with standard antibiotics

4559- SNP,    Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation
- in-vitro, BC, SkBr3 - in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116 - in-vitro, Colon, Caco-2
MMP2↓, AgNPs-EPSaer induced a significant decrease of cell motility and MMP-2 and MMP-9 activity and a significant increase of ROS generation
MMP9↓,
ROS↑, remarkable ROS increase in a concentration-dependent manner. Compared to the control cells, a maximum of 2.25 and 1.75 fold increases in ROS generation was observed with 10 µg/ml concentration of AgNPs-EPSaer treatment
TumAuto↑, supported cell death mainly through autophagy and in a minor extend through apoptosis.
Apoptosis↑,
ER Stress↑, highlighted important pathways involved in AgNPs-EPSaer toxicity, including endoplasmic reticulum stress, oxidative stress and mitochondrial impairment triggering cell death trough apoptosis and/or autophagy activation.

4558- SNP,    Role of Oxidative and Nitro-Oxidative Damage in Silver Nanoparticles Cytotoxic Effect against Human Pancreatic Ductal Adenocarcinoma Cells
- in-vitro, PC, PANC1
ROS↑, it is known that AgNPs may induce an accumulation of ROS and alteration of antioxidant systems in different type of tumors, and they are indicated as promising agents for cancer therapy.
selectivity↑, We found that the increase was lower in noncancer cells.
NO↑, PANC-1 cells with 0.5–5 μg/mL of 2.6 nm AgNPs or 5–100 μg/mL of 18 nm AgNPs caused an increase of NO level in a concentration-dependent manner
SOD↓, We observed a significant reduction in cytosolic and mitochondrial SOD and GPX-4 at protein level
GPx4↓,
Catalase↓, we showed that 2.6 nm AgNPs caused a higher decrease in SOD1, SOD2, and CAT at mRNA level after 24 h incubation than 18 nm AgNPs
TumCCA↑, 2.6 nm and 18 nm AgNPs, we noticed a decrease of G0/G1 phase cell population in a concentration-dependent manner compared with control
MMP↓, increase of the percentage of cells with low mitochondrial membrane potential (Δψm), compared to the untreated cells

4557- SNP,    The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells
- in-vitro, NA, NIH-3T3 - in-vitro, CRC, HCT116
Cyt‑c↑, Treatment with nanosilver induced the release of cytochrome c into the cytosol and translocation of Bax to mitochondria, indicating that nanosilver-mediated apoptosis is mitochondria-dependent.
ROS↑, Nanosilver-induced apoptosis was associated with the generation of reactive oxygen species (ROS) and JNK activation, and inhibition of either ROS or JNK attenuated nanosilver-induced apoptosis.
JNK↑,

4434- SNP,  Se,    Sodium Selenite Ameliorates Silver Nanoparticles Induced Vascular Endothelial Cytotoxic Injury by Antioxidative Properties and Suppressing Inflammation Through Activating the Nrf2 Signaling Pathway
- vitro+vivo, Nor, NA
*ROS↓, Se showed the capacity against AgNP with biological functions in guiding the intracellular reactive oxygen species (ROS) scavenging and meanwhile exhibiting anti-inflammation effects
*Inflam↓,
*NLRP3↓, Se supplementation decreased the intracellular ROS release and suppressed NOD-like receptor protein 3 (NLRP3) and nuclear factor kappa-B (NF-κB
*NF-kB↓,
*NRF2↑, by activating the Nrf2 and antioxidant enzyme (HO-1) signal pathway
*HO-1↑,
*toxicity↓, Several studies have reported that Se was capable of protection against the toxicity of heavy metals, including its role against AgNP-induced toxication.

4555- SNP,    Silver nanoparticles from Dendropanax morbifera Léveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cells
- in-vitro, Lung, A549 - in-vitro, Liver, HepG2
*Bacteria↓, silver nanoparticles synthesized from Dendropanax morbifera Léveille leaves (D-AgNPs) exhibit antimicrobial activity and reduce the viability of cancer cells without affecting the viability of RAW 264.7 macrophage-like cells
tumCV↓,
selectivity↑,
ROS↑, enhanced the production of ROS in both cell lines.
Apoptosis↑, An increase in cell apoptosis and a reduction in cell migration in A549 cells were also observed after D-AgNP treatment.
TumCMig↓,
AntiCan↑, potential of D-AgNPs as a possible anticancer agent, particularly for the treatment of non-small cell lung carcinoma.

4554- SNP,    Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects
- in-vitro, Cerv, HeLa
Telomerase↓, AgNPs could inhibit telomerase activity and lead to telomere shortening and dysfunction.
eff↝, Overexpression of telomerase attenuated the anticancer activity of AgNPs, whereas downregulation of telomerase activity or dysfunction of the telomere enhanced the cytotoxicity of AgNPs in HeLa cells.

4553- SNP,    Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types
- in-vitro, Nor, RAW264.7
*Wound Healing↑, unique antimicrobial properties silver nanocrystallites have garnered substantial attention and are used extensively for biomedical applications as an additive to wound dressings, surgical instruments and bone substitute materials.
*eff↝, cytotoxicity was dependent on various factors such as surface charge and coating materials used in the synthesis, particle aggregation, and the cell-type for the different silver nanoparticles that were investigated.
*toxicity↝, uncoated or colloidal silver nanoparticles were found to be the least toxic to both macrophage and lung epithelial cells

4552- SNP,  ART/DHA,    Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS)
- in-vitro, GC, AGS
AntiCan↑, iologically synthesized silver nanoparticles induced apoptosis, and showed a cytotoxic and anti-cancer effect against gastric cancer cell lines in a dose- and time-dependent manner.
Apoptosis↑,
eff↑, Biologically synthesized nanoparticles may possess higher anti-cancer properties than commercial silver

4551- SNP,  Fenb,    Ångstrom-Scale Silver Particles as a Promising Agent for Low-Toxicity Broad-Spectrum Potent Anticancer Therapy
- in-vivo, Lung, NA
eff↑, Here, a pure physical method is used to efficiently fabricate very small silver particles even approaching the Ångstrom (Ång) dimension.
eff↑, Fructose is used as a dispersant and stabilizer to coat the Ång-scale silver particles (AgÅPs).
Apoptosis↑, (F-AgÅPs) can enter and accumulate in multiple cultured cancer cell lines to induce apoptotic death, whereas most normal cells are resistant to the efficacious dose of F-AgÅPs;
selectivity↓,
TumCG↓, intravenous administration of F-AgÅPs potently inhibits the growth of pancreatic and lung cancer xenografts in nude mice, without inducing notable toxic effects on the healthy tissues.

4550- SNP,    The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study
- Study, Nor, NA
*Bacteria↓, Although the positively charged nanoparticles showed the highest level of effectiveness against the organisms tested, the neutrally charged particles were also potent against most bacterial species.

4549- SNP,    Silver nanoparticles: Synthesis, medical applications and biosafety
- Review, Var, NA - Review, Diabetic, NA
ROS↑, action mechanisms of AgNPs, which mainly involve the release of silver ions (Ag+), generation of reactive oxygen species (ROS), destruction of membrane structure.
eff↑, briefly introduce a new type of Ag particles smaller than AgNPs, silver Ångstrom (Å, 1 Å = 0.1 nm) particles (AgÅPs), which exhibit better biological activity and lower toxicity compared with AgNPs.
other↝, This method involves reducing silver ions to silver atoms 9, and the process can be divided into two steps, nucleation and growth
DNAdam↑, antimicrobial mechanisms of AgNPs includes destructing bacterial cell walls, producing reactive oxygen species (ROS) and damaging DNA structure
EPR↑, Due to the enhanced permeability and retention (EPR) effect, tumor cells preferentially absorb NPs-sized bodies than normal tissues
eff↑, Large surface area may lead to increased silver ions (Ag+) released from AgNPs, which may enhance the toxicity of nanoparticles.
eff↑, Our team prepared Ångstrom silver particles, capped with fructose as stabilizer, can be stable for a long time
TumMeta↓, AgNPs can induce tumor cell apoptosis through inactivating proteins and regulating signaling pathways, or blocking tumor cell metastasis by inhibiting angiogenesis
angioG↓, Various studies support that AgNPs can deprive cancer cells of both nutrients and oxygen via inhibiting angiogenesis
*Bacteria↓, Rather than Gram-positive bacteria, AgNPs show a stronger effect on the Gram-negative ones. This may be due to the different thickness of cell wall between two kinds of bacteria
*eff↑, In general, as particle size decreases, the antibacterial effect of AgNPs increases significantly
*AntiViral↑, AgNPs with less than 10 nm size exhibit good antiviral activity 185, 186, which may be due to their large reaction area and strong adhesion to the virus surface.
*AntiFungal↑, Some studies confirm that AgNPs exhibit good antifungal properties against Colletotrichum coccodes, Monilinia sp. 178, Candida spp.
eff↑, The greater cytotoxicity and more ROS production are observed in tumor cells exposed to high positive charged AgNPs
eff↑, Nanoparticles exposed to a protein-containing medium are covered with a layer of mixed protein called protein corona. formation of protein coronas around AgNPs can be a prerequisite for their cytotoxicity
TumCP↓, Numerous experiments in vitro and in vivo have proved that AgNPs can decrease the proliferation and viability of cancer cells.
tumCV↓,
P53↝, gNPs can promote apoptosis by up- or down-regulating expression of key genes, such as p53 242, and regulating essential signaling pathways, such as hypoxia-inducible factor (HIF) pathway
HIF-1↓, Yang et al. found that AgNPs could disrupt the HIF signaling pathway by attenuating HIF-1 protein accumulation and downstream target genes expression
TumCCA↑, Cancer cells treated with AgNPs may also show cell cycle arrest 160, 244
lipid-P↑, Ag+ released by AgNPs induces oxidation of glutathione, and increases lipid peroxidation in cellular membranes, resulting in cytoplasmic constituents leaking from damaged cells
ATP↓, mitochondrial function can be inhibited by AgNPs via disrupting mitochondrial respiratory chain, suppressing ATP production
Cyt‑c↑, and the release of Cyt c, destroy the electron transport chain, and impair mitochondrial function
MMPs↓, AgNPs can also inhibit the progression of tumors by inhibiting MMPs activity.
PI3K↓, Various studies support that AgNPs can deprive cancer cells of both nutrients and oxygen via inhibiting angiogenesis
Akt↓,
*Wound Healing↑, AgNPs exhibit good properties in promoting wound repair and bone healing, as well as inhibition of inflammation.
*Inflam↓,
*Bone Healing↑,
*glucose↓, blood glucose level of diabetic rats decreased when treated with AgNPs for 14 days and 21 days without significant acute toxicity.
*AntiDiabetic↑,
*BBB↑, The small-sized AgNPs are easy to penetrate the body and cross biological barriers like the blood-brain barrier and the blood-testis barrier

4406- SNP,    Silver nanoparticles achieve cytotoxicity against breast cancer by regulating long-chain noncoding RNA XLOC_006390-mediated pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
TumCD↑, AgNPs showed potent cytotoxicity in breast cancer cells, no matter whether they were tamoxifen sensitive or resistant.
other↓, Next, we found that a long noncoding RNA, XLOC_006390, was decreased in AgNPs-treated breast cancer cells, coupled to inhibited cell proliferation, altered cell cycle and apoptotic phenotype.
P53↑, According to the literature, AgNPs may induce cancer cells apoptosis by activating p53, so as to achieve the antitumor effect
TumCCA↑, We found that AgNPs treatment at 150 μg/ml could induce G0/G1 cell cycle arrest
Apoptosis↑, and promote both early apoptosis and late apoptosis/necrosis rate
ChemoSen↑, AgNPs-based approaches provided a potential way to fight drug resistance and reduce the toxicity related to chemotherapy drugs
tumCV↓, One of the highlights of this study is that AgNPs have strong cytotoxicities on all the breast cancer cell lines and clinically isolated breast cancer cells, with the IC50s at about 150 μg/ml for all
γH2AX↑, early apoptosis markers (γH2AX), was also significantly upregulated by AgNPs treatment
SOX4↓, AgNPs can inhibit the SOX4 expression by regulating XLOC_006390/miR-338-3p axis.

4414- SNP,    Silver nanoparticles: Forging a new frontline in lung cancer therapy
- Review, Lung, NA
tumCV↑, AgNPs exhibit significant cytotoxic and apoptotic effects in lung cancer cell lines through mechanisms involving gene regulation, reactive oxygen species (ROS) production, and mitochondrial depolarization.
ROS↑,
MMP↓,
TumCCA↑, dose-dependent reductions in cell viability, cell cycle arrest, and apoptosis induction.
Apoptosis↑,
angioG↓, inhibit angiogenesis

4413- SNP,  Anzaroot,    Green synthesis of silver nanoparticles from plant Astragalus fasciculifolius Bioss and evaluating cytotoxic effects on MCF7 human breast cancer cells
- in-vitro, BC, MCF-7
chemoP↑, These compounds have been shown to effectively treat heart diseases and inhibit cancer cell growth while also alleviating chemotherapy side effects.
TumCG↓,
eff↑, anzroot plant can be effectively used as a reducing agent for AgNPs synthesis, and AgNPs have the potential to be used effectively in cancer therapy methods and to inhibit the growth of cancer cells.
CellMemb↑, As the AgNPs concentration increased, the permeability of the membrane increased
selectivity↑, Cancer cells exhibit higher permeability and retention, allowing for preferential interaction with SNPs due to their nanoscale size
ROS↑, AgNPs respond to intracellular signaling through ROS activation, and p53-mediated apoptosis is notably effective when using AgNPs
P53↑,

4412- SNP,    Biosynthesis and characterization of silver nanoparticles from Asplenium dalhousiae and their potential biological properties
- in-vitro, CRC, HCT116 - in-vitro, Melanoma, A2780S
Bacteria↓, The antioxidant activity of the synthesized AgNPs was assessed using the DPPH method, which confirmed their significant antioxidant properties alongside their antibacterial activity.
antiOx↑, AgNPs but also exhibits substantial antioxidant properties
AntiCan↑, anticancer activities
eff↑, The combination of Asplenium dalhousiae leaf methanolic extracts and synthesized silver nanoparticles (AgNPs: aqueous, n-hexane, and CHCl3 fractions) exhibits varied apoptotic activity against ovarian and colorectal cancer cells.

4411- SNP,    Eco-friendly synthesis of silver nanoparticles using Anemone coronaria bulb extract and their potent anticancer and antibacterial activities
- in-vitro, Lung, A549 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, PC3 - in-vitro, Nor, HEK293
AntiCan↑, (AgNPs) have emerged as promising multifunctional agents in biomedical applications due to their notable antimicrobial and anticancer properties.
selectivity↑, demonstrated significant cytotoxic effects on cancer cells while sparing normal cells
Apoptosis↑, Apoptosis induction, cell cycle arrest, and gene expression analyses further validated their anticancer efficacy.
TumCCA↑,
Bacteria↓, Figure 6a,b show the inhibition zones of 10 µg ampicillin and 10, 50, 100, and 150 μg/mL AgNPs against bacteria on agar for two repeated tests.
tumCV↓, AgNPs at concentrations of 6.3, 6.8, 7.5, 8.3, 9.4, 10.7 and 12.5 µg/mL for 24 h. After treatment, a significant decrease in cell viability was observed in different cancer cell types,
selectivity↑, The toxic effect was weaker in healthy cells than in cancer cells
Apoptosis↑, Fig. 8a–c, a significant increase (p < 0.01; p < 0.001) in the rate of early and late apoptotic cells was observed in A549, MIA PaCa-2 and PC-3 cells.
TumCCA↑, accompanied by arrest in the S phase and, particularly, the G2/M phase.

4410- SNP,    Green-synthesized silver nanoparticles: a sustainable nanoplatform for targeted colon cancer therapy
- Review, Colon, NA
AntiCan↑, AgNPs exert potent anticancer effects against colon cancer cell lines primarily by inducing cell death through mechanisms including reactive oxygen species (ROS) generation
ROS↑,
mtDam↑, mitochondrial dysfunction, and apoptosis modulation, leading to significant reductions in cell viability.
tumCV↓,
selectivity↑, effectively targeting cancer cells while sparing healthy counterparts, thereby emphasizing their safety profile and potential for minimizes ng systemic toxicity.

4409- SNP,    Plant-based synthesis of gold and silver nanoparticles using Artocarpus heterophyllus aqueous leaf extract and its anticancer activities
- in-vitro, BC, MCF-7
tumCV↓, , AuNPs had no anticancer activity. In contrast, AgNPs showed potent anticancer effects, with inhibitory concentration (IC50) values of 124.626 and 54.981 µg/mL at 48 and 72 hours, respectively.
TumCCA↑, The AgNPs treatment increased the proportion of cells in G2/M phase, indicating the induction of mitotic catastrophe leading to cell death
cycD1↓, AgNPs downregulated the expression of several oncogenes associated with cancer cell proliferation and survival (cyclin D1, COX-2, HER-2, and miR622
COX2↓,
HER2/EBBR2↓,

4408- SNP,    Chitosan-coated silver nanoparticles synthesized using Moringa oleifera flower extract: A potential therapeutic approach against triple-negative breast cancer
- in-vitro, BC, MDA-MB-231
tumCV↓, The F-Ch-AgNPs had a half-maximal inhibitory concentration (IC50) of 27 ± 0.5 μg/mL

4407- SNP,    Green Synthesis and Characterization of Silver Nanoparticles from Eclipta alba and Its Activity Against Triple-Negative Breast Cancer Cell Line (MDA-MB-231)
- in-vitro, BC, MDA-MB-231
antiOx↑, Further in vitro anti-oxidant analysis results revealed that green synthesized AgNPs showed 2.6-fold higher anti-oxidant potential (IC50 15.70 g/ml) than that of aqueous plant leaf extract (IC50 39.80 g/ml).
TumCG↓, Eclipta alba leaf extract actively bonded with silver nanoparticles suppresses the MDA-MB-231 cells growth through high antioxidant characters and anti-leishmanial activity.

4415- SNP,  SDT,  CUR,    Examining the Impact of Sonodynamic Therapy With Ultrasound Wave in the Presence of Curcumin-Coated Silver Nanoparticles on the Apoptosis of MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7
tumCV↓, Curcumin-coated silver nanoparticles (Cur@AgNPs) have shown potential as a sensitizer, demonstrating adverse effects on cancer cell survival.
BAX↑, proapoptotic genes, such as Bax and Caspase-3, increased, while the expression of the antiapoptotic gene Bcl-2 decreased in MCF7 cells treated with the SDT.
Casp3↑,
Bcl-2↓,
eff↑, effect of SDT in the presence of Cur@AgNPs decreases cell viability dependence on US mode
ROS↑, Combined treatment increased the amount of ROS induction
sonoS↑, Higher concentrations of AgNPs (100 μg/ml) acted as acoustic sensitizers and enhanced ROS production
eff↑, Using curcumin as a biological coating reduced the toxicity of AgNPs and improved their significant effects with SDT
MMP↓, reduction in mitochondrial membrane potential (MMP) and the opening of mitochondrial permeability transition pores (mPTPs)
Cyt‑c↑, ultimately facilitating the release of cytochrome c from the mitochondria into the cytosol.

4405- SNP,    Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis
- in-vitro, OS, NA
Apoptosis↑, According to our findings AgNPs are able to kill osteosarcoma cells independently from their actual p53 status and induce p53-independent cancer cell apoptosis.
other↑, AgNPs kill cells through a Trojan-horse type mechanism, suggesting that the intracellularly accumulated nanoparticles release toxic silver ions
ROS↑, Those ions induce the generation of reactive oxygen species (ROS)
eff↑, t has been reported that 5 nm AgNPs were more toxic compared to 20 nm and 50 nm particles in four different cell lines
P53↝, Nearly 50% of all human cancers have been characterised by impaired p53 function which attenuates therapeutic efficacy. The level of p53 protein increased markedly upon 20 μM of 5 nm and 85 μM of 35 nm sized AgNP treatments
Apoptosis↑, Induction of apoptosis was verified by immunostaining U2Os and Saos-2 cells with cleaved caspase 3 specific antibody after treatments with 20 μM of 5 nm and with 85 μM of 35 nm sized AgNPs for 24 h
cl‑Casp3↑,
survivin↓, as decreased survivin and elevated caspase 3 mRNA levels were measured
MMP↓, Decreased mitochondrial membrane potential was detected in 5 nm and 35 nm AgNPs treated U2Os (a) and Saos-2
Cyt‑c↑, Elevated levels of cytoplasmic cytochrome c was detected in 5 nm and 35 nm AgNP-treated U2Os and Saos-2 cells

4404- SNP,  Rad,    Main Approaches to Enhance Radiosensitization in Cancer Cells by Nanoparticles: A Systematic Review
- Review, Var, NA
eff↑, Asharani et al compared the toxicity between 3–10 nm Pt, 5–35 nm Ag, and 15–35 nm Au NPs covered with PVA, and concluded that Ag NPs were the most toxic,
ROS↑, been suggested by different biological studies that they can produce ROS, and therefore can affect the concentration of intracellular calcium, activate transcription factors, and induce cytokine production

4403- SNP,    Silver Nanoparticles Decorated UiO-66-NH2 Metal-Organic Framework for Combination Therapy in Cancer Treatment
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vitro, GBM, GL26 - in-vitro, Cerv, HeLa - in-vitro, CRC, RKO
AntiCan↑, Among the various NPs, silver nanoparticles (AgNPs) have garnered attention due to their cytotoxic and genotoxic properties in cancer cells.
eff↑, Our results demonstrate that UiO-66-NH2@AgNPs@Cis-Pt and its combinations exhibit enhanced cytotoxicity compared to individual components such as AgNPs and Cis-Pt.
EPR↑, Their nanometric structure allows them to easily penetrate and accumulate in tumour tissues either actively, via targeting systems [6,7,8], or passively, by taking advantage of tumour angiogenesis and the enhanced permeation and retention (EPR) effe
selectivity↑,
ROS↑, Once inside, AgNPs induce an increase in the production of reactive oxygen species (ROS) and cause mitochondrial dysfunctions, caspases activation, apoptosis, autophagy, and DNA damage
Casp↑,
Apoptosis↑,
DNAdam↑,
tumCV↓, figure 8
eff↑, One of the primary characteristics of AgNPs is their ability to release Ag+ ions from their surface in response to low pH or oxidation.

4402- SNP,    Enhancement of Triple-Negative Breast Cancer-Specific Induction of Cell Death by Silver Nanoparticles by Combined Treatment with Proteotoxic Stress Response Inhibitors
- in-vitro, BC, BT549 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
TumCD↑, Our findings provide additional support for proteotoxic stress as a mechanism by which AgNPs selectively kill TNBCs
selectivity↑,
*toxicity↝, Failure to separate dissolved silver cations (Ag+) from AgNPs before toxicity testing likely contributes to the lack of a definitive answer. Ag+ is highly toxic and has a distinct cytotoxic mechanism of action compared to AgNPs;
Dose↝, doses in the range of 4–6 mg/kg delivered systemically for multiple weeks induced therapeutic responses
OS↑, 40 patients were injected intravenously with 1.8 mg of AgNPs for 3 consecutive days (combined with standard COVID-19 treatments), and the group receiving AgNPs had significantly greater survival rate

4401- SNP,  Rad,    Metformin-loaded chitosan nanoparticles augment silver nanoparticle-induced radiosensitization in breast cancer cells during radiation therapy
- in-vitro, BC, NA
RadioS↑, silver nanoparticles (AgNPs) as radiation sensitizers and chitosan as a nanocarrier to deliver metformin to breast cancer cells.
DNAdam↑, 1.8-fold increase in DNA damage in cells pretreated with Met NPs and Ag NPs upon exposure to radiation.

4400- SNP,  Rad,    Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, BC, MDA-MB-231
ROS↑, AgNPs is known to cause dose-dependent toxicities, including induction of oxidative stress and DNA damage, which can lead to cell death.
DNAdam↑,
selectivity↑, We show that AgNPs are highly cytotoxic toward TNBC cells at doses that have little effect on nontumorigenic breast cells or cells derived from liver, kidney, and monocyte lineages.
TumCG↓, reduce TNBC growth and improve radiation therapy.
RadioS↑,
Dose↝, s 23±14 nm: particles were diluted to 40 μg/mL. 25 μg/mL AgNP dilution for 24 hours. zeta potential of AgNPs in water at pH 7 was approximately −36 mV, indicating good colloidal stability.
selectivity↑, Depending on AgNP dose, all three TNBC cell lines were 5- to 10-fold more sensitive to AgNP exposure than the nontumorigenic breast cells.
other↝, this study demonstrate that the cytotoxicity was dependent on exposure of cells to intact AgNPs and not due to Ag+ ions
eff↓, toxicity of AgNPs was significantly reduced in MDA-MB-231, MCF-7, and MCF-10A cells following pretreatment with GSH
eff↑, Selective depletion of GSH by BSO resulted in increased AgNP toxicity in all cell lines.
γH2AX↑, AgNPs significantly increased γH2AX in these cells compared to radiation alone.
Dose↓, Strikingly, an AgNP dose of as little as 1 μg/mL resulted in a dose enhancement of IR treatment (approximately 2-fold at the 2 Gy dose) f
eff↑, Moreover, intratumoral injection of AgNPs with or without radiation treatment can inhibit the growth of TNBC xenografts in mice

4399- SNP,  Chit,    Silver nanoparticles impregnated alginate-chitosan-blended nanocarrier induces apoptosis in human glioblastoma cells
- in-vitro, GBM, U87MG
DNAdam↑, extensive DNA damage.
ROS↑, Elevation in reactive oxygen species level indicates induction of oxidative stress in treated cells.
MMP↓, Mitochondrial dysfunction in cell death is evident from the depolarization of mitochondrial membrane potential (ΔΨm ).
eff↑, induction of apoptosis at low concentration of Ag NPs present in Ag NPs-Alg-Chi NC in comparison with free Ag NPs makes it a promising tool for cancer therapy.

4424- SNP,    Understanding the prospective of nano-formulations towards the treatment of psoriasis
- in-vivo, PSA, NA
*eff↑, nano-formulations remain established as a promising modality for treating psoriasis treatment as they propose better penetration, targeted delivery, enhanced safety, and efficacy

4433- SNP,    Advancements in metal and metal oxide nanoparticles for targeted cancer therapy and imaging: Mechanisms, applications, and safety concerns
- in-vitro, Liver, HepG2 - in-vitro, Nor, L02
selectivity↑, we evaluated the cytotoxicity of different-sized AgNPs and found that the cancerous liver cells were generally more sensitive than the normal liver cells
selectivity↓, HepG2 cells respond to stresses by adapting energy metabolism, upregulating metallothionein expression and increasing the expression of antioxidants, while L02 cells protect themselves by increasing DNA repair and macro-autophagy.
mt-ROS↑, mitochondrial ROS has been identified as one of the causes of AgNPs-induced hepatotoxicity.

4432- SNP,    Emerging nanostructure-based strategies for breast cancer therapy: innovations, challenges, and future directions
- Review, NA, NA
ROS↑, This review focus on the abilities of nanoparticles to induce oxidative stress, prevent proliferation, and trigger apoptosis in cancer cells.
TumCP↓,
Apoptosis↑,

4431- SNP,  doxoR,    Oxidative Stress-Induced Silver Nano-Carriers for Chemotherapy
- in-vitro, BC, 4T1 - in-vivo, BC, 4T1 - in-vitro, Nor, 3T3
AntiCan↑, AgNPs have been demonstrated to exhibit anti-tumor effects through cell apoptosis.
ROS↑, ox-carried PA-AgNPs generate reactive oxidation species intensively beside 4T1 cells.
TumVol↓, in vivo study confirms that PA-AgNPs with Dox successfully inhibit tumors, which are about four times smaller than the control group and have high biosafety that can be applied for chemotherapy.
EPR↑, While all normal cells need enough vitamins to survive, cancer cells require a considerable number of vitamins to proliferate rapidly. As a result, the receptors on the cancer cell surface are overexpressed to capture as many vitamins as possible.
selectivity↑, PA-AgNPs (without/with Dox) concentrations ranging from 0 to 100 μg mL−1 did not seem to impair 3T3 cell viability due to poor uptake by normal cells.
ChemoSen↑, These results suggested that Dox-carried PA-AgNPs were both safer and more effective for cancer prevention.

4430- SNP,    Evaluation of the Genotoxic and Oxidative Damage Potential of Silver Nanoparticles in Human NCM460 and HCT116 Cells
- in-vitro, Colon, HCT116 - in-vitro, Nor, NCM460
*Bacteria↓, Nano Ag has excellent antibacterial properties and is widely used in various antibacterial materials, such as antibacterial medicine and medical devices, food packaging materials and antibacterial textiles
ROS↑, intracellular reactive oxygen species (ROS) increased
p‑p38↑, Ag NPs can promote the increase in P38 protein phosphorylation levels in two colon cells and promote the expression of P53 and Bax.
BAX↑,
Bcl-2↓, Ag NPs can promote the down-regulation of Bcl-2, leading to an increased Bax/Bcl-2 ratio and activation of P21, further accelerating cell death
BAX↑,
P21↑,
TumCD↑,
toxicity↝, low concentration of nano Ag has no obvious toxic effect on colon cells, while nano Ag with concentrations higher than 15 μg/mL will cause oxidative damage to colon cells.

4429- SNP,    Comparative proteomic analysis reveals the different hepatotoxic mechanisms of human hepatocytes exposed to silver nanoparticles
- in-vitro, Liver, HepG2
*toxicity↝, As the liver is one of the largest accumulation and deposition sites of circulatory AgNPs, it is important to evaluate the hepatotoxicity induced by AgNPs
selectivity↑, cancerous liver cells were generally more sensitive than the normal liver cells.
mt-ROS↑, mitochondrial ROS has been identified as one of the causes of AgNPs-induced hepatotoxicity

4428- SNP,    p38 MAPK Activation, DNA Damage, Cell Cycle Arrest and Apoptosis As Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T Cells
- in-vitro, AML, Jurkat
toxicity↝, The effect of Ag ions was also investigated and compared with that of AgNPs, as it is anticipated that Ag ions will be released from AgNPs, which may be responsible for their toxicity.
tumCV↓, Cell viability tests indicated high sensitivity of Jurkat T cells when exposed to AgNPs compared to Ag ions
ROS↑, AgNPs and Ag ions induce similar levels of cellular reactive oxygen species during the initial exposure period and; after 24 h, they were increased on exposure to AgNPs compared to Ag ions, which suggest that oxidative stress may be an indirect caus
p38↑, AgNPs exposure activates p38 mitogen-activated protein kinase through nuclear factor-E2-related factor-2 and nuclear factor-kappaB signaling pathways, subsequently inducing DNA damage, cell cycle arrest and apoptosis.
NRF2↓,
NF-kB↝,
DNAdam↑,
Apoptosis↑,

4427- SNP,    Silver nanoparticles induce apoptosis and G2/M arrest via PKCζ-dependent signaling in A549 lung cells
- in-vitro, Lung, A549
tumCV↓, Ag NPs reduced cell viability, increased LDH release, and modulated cell cycle distribution through the accumulation of cells at G2/M and sub-G1 phases (cell death)
LDH↑,
TumCCA↑, G2/M and sub-G1 phases (
BAX↑, Ag NP treatment increased Bax and Bid mRNA levels and downregulated Bcl-2 and Bcl-w mRNAs in a dose-dependent manner.
BID↑,
Bcl-2↓,
PKCδ↓, Ag NPs induce strong toxicity and G2/M cell cycle arrest by a mechanism involving PKCζ downregulation in A549 cells.

4426- SNP,    Antiangiogenic properties of silver nanoparticles
- Study, NA, NA
angioG↑, Ag-NPs might have the ability to inhibit angiogenesis, the pivotal step in tumor growth, invasiveness, and metastasis.
TumCG↓,
TumCI↓,
TumMeta↓,
VEGF↓, demonstrated that Ag-NPs could also inhibit vascular endothelial growth factor (VEGF) induced cell proliferation, migration, and capillary-like tube formation of bovine retinal endothelial cells like PEDF.
PI3K↓, inhibition of the PI3K/Akt cell-survival signal in a similar pattern of PEDF.
Akt↓,

4398- SNP,    Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier
- in-vitro, Colon, HT29
Apoptosis↑, The involvement of mitochondrial pathway of cell death in the Ag-CS NCs induced apoptosis was evident from the depolarization of mitochondrial membrane potential (ΔΨ(m)).
MMP↓,
Casp3↑, up-regulation of caspase 3 expression
ROS↑, increased production of intracellular ROS due to Ag-CS NCs treatment indicated that the oxidative stress could augment the induction of apoptosis in HT 29 cells
eff↑, use of significantly low concentration of Ag NPs impregnated in chitosan nanocarrier is a much superior approach in comparison to the use of free Ag NPs in cancer therapy.

4423- SNP,    Pongamia pinnata seed extract-mediated green synthesis of silver nanoparticle loaded nanogel for estimation of their antipsoriatic properties
- in-vivo, PSA, NA
*eff↑, Pongamia pinnata seed extracts loaded with nanogel formulations (AgNPs CUD NG) to improve the retention, accumulation, and the penetration of AgNPs into the epidermal layer of psoriasis.
*other↑, AgNPs CUD NG enhanced the retention of AgNPs on the psoriatic skin compared to normal skin

4422- SNP,    Bioengineering of Piper longum L. extract mediated silver nanoparticles and their potential biomedical applications
- in-vitro, Cerv, HeLa
AntiCan↑, Anticancer activity revealed the strong and dose-dependent cytotoxic effect of AgNPs against the HeLa cells showing maximum IC50 value being 5.27 μg/mL after 24 h
selectivity↑, was also found to be non-toxic to normal cells (HEK)

4421- SNP,    Effect of Biologically Synthesized Silver Nanoparticles on Human Cancer Cells
- in-vitro, Cerv, NA
selectivity↑, IC50: ≤4.25 μg/ml for normal and ≤32.5 μg/ml cerival cancer cells
eff↝, in vitro cytotoxicity assessment of the AgNPs has significant correlation with the total protein concentration in treated cells.
other↝, In the present study, silver nanoparticles were biologically synthesized using pure enzyme α-amylase and the other one by using soluble proteins of neem leaf extracts.

4419- SNP,    Tackling the various classes of nano-therapeutics employed in topical therapy of psoriasis
- NA, PSA, NA
IL1α↓, berry extracts in silver nanoparticles instead to obtain a particle size ranging from 20 to 80 nm and a significantly reduced production of IL-1 α compared to the control cells
other↝, hyperproliferation of keratinocytes as the psoriatic skin cell lifetime is more than six times shorter than that of normal skin cells, this is thought to be due to hyperactivity of growth factors

4418- SNP,    Nanocarriers for the topical treatment of psoriasis - pathophysiology, conventional treatments, nanotechnology, regulatory and toxicology
- Human, PSA, NA
*Inflam↓, results showed a greater anti-inflammatory effect in the treatment with AgNPs, with a greater decrease in skin thickness when compared with the use of 1% hydrocortisone cream.
*EPR↑, higher permeability and retention of the nanoparticles in the edema area.

4417- SNP,    Caffeine-boosted silver nanoparticles target breast cancer cells by triggering oxidative stress, inflammation, and apoptotic pathways
- in-vitro, BC, MDA-MB-231
ROS↑, Caf-AgNPs significantly increased ROS, malondialdehyde, COX-2, IL-1β, and TNF-α level in BC cells, which was accompanied by a decrease in glutathione levels.
MDA↑,
COX2↑,
IL1β↑,
TNF-α↑,
GSH↓,
Cyt‑c↑, increased levels of cytosolic cytochrome c, caspase-3, and Bax proteins, as well as a significant decrease in Bcl-2 expression and Bcl-2/Bax ratio
Casp3↑,
BAX↑,
Bcl-2↓,
LDH↓, Cancer cells subjected to Caf-AgNPs demonstrated elevated lactate dehydrogenase (LDH) membrane leakage
cycD1↓, notable downregulation of cyclin D1 and cyclin-dependent kinase 2 (CDK2) mRNA expression
CDK2↓,
TumCCA↑, several mechanisms for cellular destruction, including cell cycle arrest, oxidative stress induction, modulation of the inflammatory response, and mitochondrial apoptosis
mt-Apoptosis↑,

4416- SNP,    Efficacy of curcumin-synthesized silver nanoparticles on MCF-7 breast cancer cells
- in-vitro, BC, MCF-7
TumCMig↓, Our results showed that C-AgNPs significantly inhibited MCF-7 cell migration
Apoptosis↑, gene expression analysis indicated the induction of apoptosis by upregulation of pro-apoptotic genes BAX and P53 and downregulation of Bcl-2.
BAX↑,
P53↑,
Bcl-2↓,

2286- SNP,    Short-term changes in intracellular ROS localisation after the silver nanoparticles exposure depending on particle size
- in-vitro, Nor, 3T3
*eff↑, These results indicate that the smaller silver particles were more cytotoxic and are consistent with the tentative theory that smaller AgNPs are more cytotoxi
*mt-ROS↑, increased mitochondrial ROS production in the presence of smaller AgNPs
*eff↑, smaller AgNPs particles induced higher levels of mitochondrial ROS

1907- SNP,  GoldNP,  Cu,    In vitro antitumour activity of water soluble Cu(I), Ag(I) and Au(I) complexes supported by hydrophilic alkyl phosphine ligands
- in-vitro, Lung, A549 - in-vitro, BC, MCF-7 - in-vitro, Melanoma, A375 - in-vitro, Colon, HCT15 - in-vitro, Cerv, HeLa
TrxR↓, In particular, [Au(PTA)4]PF6 was able to decrease by 50% TrxR activity at 4.2 nM
eff↓, C 50 value calculated for [Ag(PTA) 4]PF6 was 10.3 nM.
eff↓, Conversely, [Cu(PTA)4]PF6 was found to be much less effective in inhibiting this cytosolic selenoenzyme, with an IC50 value of 89.5 nM, roughly from 9 to 21 times higher than those calculated for silver and gold derivatives,
other∅, To the best of our knowledge, this is the first example of a phosphino silver complex acting as TrxR inhibitor.

1908- SNP,    Exposure to Silver Nanoparticles Inhibits Selenoprotein Synthesis and the Activity of Thioredoxin Reductase
- in-vitro, Lung, A549
TrxR↓, Exposure likewise inhibited TrxR activity in cultured cells, and Ag ions were potent inhibitors of purified rat TrxR isoform 1 (cytosolic) (TrxR1) enzyme.
TrxR1↓, Exposure to AgNPs leads to the inhibition of selenoprotein synthesis and inhibition of TrxR1
ROS↑, likely mechanism underlying increases in oxidative stress
ER Stress↑, increases endoplasmic reticulum stress,
TumCP↓, reduced cell proliferation during exposure to Ag.
selenoP↓, Exposure to AgNPs inhibits incorporation of selenium into selenoproteins.

2836- SNP,  Gluc,    Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells
- in-vitro, Cerv, HeLa
eff↝, AgNPs synthesized are stable up to 10 days without silver and glucose dissolution.
TumCCA↑, AgNPs block the cells in S and G2/M phases, and increase the subG1 cell population.
eff↑, HeLa cells take up abundantly and rapidly AgNPs-G resulting toxic to cells in amount and incubation time dependent manner.
eff↑, The dissolution experiments demonstrated that the observed effects were due only to AgNPs-G since glucose capping prevents Ag+ release.
ROS↑, AgNPs cause toxic responses via induction of oxidative stress as consequence of the generation of intracellular (ROS), depletion of glutathione (GSH), reduction of the superoxide dismutase (SOD) enzyme activity, and increased lipid peroxidation
GSH↓,
SOD↓,
lipid-P↑,
LDH↑, significant LDH levels increase with the highest amount of AgNPs-G and maximum of toxicity was seen at 12 h.

1909- SNP,    The Antibacterial Drug Candidate SBC3 is a Potent Inhibitor of Bacterial Thioredoxin Reductase
- in-vivo, Nor, NA
TrxR↓, Our results show that SBC3 is a promising antibiotic drug candidate targeting bacterial TrxR

2205- SNP,    Potential protective efficacy of biogenic silver nanoparticles synthesised from earthworm extract in a septic mice model
- in-vivo, Nor, NA
*Dose↝, The treated group received a single oral dose of 5.5 mg/kg of Ag NPs. 5 to 12 nm
*eff↑, Ag NPs treatment in septic mice significantly decreased liver enzyme activities, total protein, and serum albumin.
*RenoP↑, Ag NPs significantly enhanced kidney function, as indicated by a significant decrease in the levels of creatinine, urea, and uric acid.
*antiOx↑, Ag NPs showed a powerful antioxidant effect via the considerable reduction of malondialdehyde and nitric oxide levels and the increase in antioxidant content.
*MDA↓,
*NO↓,
*hepatoP↑, hepatoprotective effect of Ag NPs may be attributed to their antioxidant properties
*toxicity↝, The Ag NPs dose is 1/10 of LD50, which is 5.5 mg/kg.
*GSH↑, GSH, SOD, GST, and CAT of the septic group. Meanwhile, the Ag NPs-treated mice showed a significant (p < 0.05) increase in all four parameters.
*SOD↑,
*GSTs↑,
*Catalase↑,

2206- SNP,  RES,    ENHANCED EFFICACY OF RESVERATROL-LOADED SILVER NANOPARTICLE IN ATTENUATING SEPSIS-INDUCED ACUTE LIVER INJURY: MODULATION OF INFLAMMATION, OXIDATIVE STRESS, AND SIRT1 ACTIVATION
- in-vivo, Nor, NA
*hepatoP↑, AgNPs + RV treatment significantly reduced pro-inflammatory cytokines, NF-κB activation, presepsin, PCT, 8-OHDG, and VEGF levels compared with the CLP group, indicating attenuation of sepsis-induced liver injury.
*Inflam↓,
*NF-kB↓,
*VEGF↓,
*SIRT1↑, Both RV and AgNPs + RV treatments increased SIRT1 levels, suggesting a potential role of SIRT1 activation in mediating the protective effects.
*ROS↓, alleviating sepsis-induced liver injury by modulating inflammation, oxidative stress, and endothelial dysfunction, potentially mediated through SIRT1 activation.
*Dose↝, 30 mg/kg of AgNPs + RV was given intraperitoneally to the rats
*Catalase↑, AgNPs + RV treatment exhibited a robust effect in bolstering CAT activity
*MDA↓, AgNPs + RV treatment effectively ameliorates sepsis-induced oxidative stress and inflammation in rat livers by reducing MDA, MPO, and NO levels
*MPO↓,
*NO↓,
*ALAT↓, AgNPs + RV effectively reduced the ALT and AST levels, returning them to values similar to those observed in the Sham group
*AST↓,
*antiOx↑, corroborates the antioxidant potential of RV and AgNPs observed in earlier studies

2207- SNP,  TQ,    Protective effects of Nigella sativa L. seeds aqueous extract-based silver nanoparticles on sepsis-induced damages in rats
- in-vivo, Nor, NA
*eff↑, Treatment with AgNPs led to a notable reduction in damages of liver, kidney, lung, stomach and duodenum.
*RenoP↑,
*hepatoP↑,
*MDA↓, AgNPs treated groups reduced the levels of tissues MDA and increased the levels of tissues SOD and GSH.
*SOD↑,
*GSH↑,
*TNF-α↓, The expression levels of TNF-α mRNA and IL-1β mRNA were reduced in the rats treated by silver nanoparticles.
*IL1β↓,

2208- SNP,    Sepsis diagnosis and treatment using nanomaterials
- Review, NA, NA
Bacteria↓, AuNP/AgNPs were known to have antimicrobial effects.

2538- SNP,  SDT,  Z,    Dual-functional silver nanoparticle-enhanced ZnO nanorods for improved reactive oxygen species generation and cancer treatment
- Study, Var, NA - vitro+vivo, NA, NA
ROS↑, This study introduces zinc oxide (ZnO) nanorods (NRs) in situ loaded with silver nanoparticles (ZnO@Ag NRs), designed to optimize ROS production under ultrasound irradiation and offer significant advantages in tumor specificity and biosafety
eff↑, In conclusion, our findings confirmed that the ROS production ability of ZnO@Ag exceeded that of ZnO and is highly depended on the duration of US treatment in this study.
eff↑, The ZnO@Ag group had the most effective cell-killing effects under ultrasound (1.5 W/cm2, 50% duty cycle, 1 MHz, 5 min) than any of the other five groups
TumCP↓, ZnO@Ag significantly inhibited tumor cell proliferation, consistent with earlier tumor growth curve findings
toxicity↓, None of the intervention groups showed significant organ toxicity

2835- SNP,  Gluc,    Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake
- in-vitro, Liver, HepG2
Dose↝, Values found were between 3.2 and 3.9 molecules sugar/nm2.
eff↑, glucose and citrate coated nanoparticles show a similar toxicity, galactose and mannose functionalized nanoparticles were significant less toxic towards both cell lines.
ROS↑, suggesting that the toxicity is mainly caused by oxidative stress related to ROS formation
eff↝, Many authors have argued that in fact the toxicity of nanosilver is only caused by the ionic form [24]
eff↑, Trojan-horse mechanism has been often discussed in literature as a responsible for toxicity of silver nanoparticles.
eff↝, although mannose and glucose-functionalized nanoparticles present similar cellular uptakes, observed toxicities were considerably different.
eff↑, Actually, in this study, glucose-capped nanoparticles present the highest toxicity as well as protein carbonylation, despite their moderate cellular uptake, compared with other nanoparticles.
eff↝, Observed toxicity was strongly correlated with intracellular oxidative stress, measured as protein carbonylation, but not to cellular uptake.

2834- SNP,  Gluc,    Electrochemical oxidation of glucose on silver nanoparticle-modified composite electrodes
- Study, NA, NA
Dose?, glucose concentration was examined by varying the concentration of glucose from 0.001 to 0.01 M in 0.1 M NaOH at the scan rate of 50 mV/s. The charges increased with increasing the glucose concentration up to 7 mM, and then leveled off

1903- SNP,    Novel Silver Complexes Based on Phosphanes and Ester Derivatives of Bis(pyrazol-1-yl)acetate Ligands Targeting TrxR: New Promising Chemotherapeutic Tools Relevant to SCLC Managemen
- in-vitro, Lung, U1285
TrxR↓, accumulate into cancer cells and to selectively target Thioredoxin (TrxR),
eff↝, 2 µM was able to decrease TrxR enzyme activity by about 68%, compared with auranofin, which at the same concentration
ROS↑, cellular production of reactive oxygen species (ROS)

2539- SNP,  SDT,    Combined effect of silver nanoparticles and therapeutical ultrasound on ovarian carcinoma cells A2780
- in-vitro, Melanoma, A2780S
tumCV↓, Experimental results indicate a significant decrease of viability of cell, which was affected by the combined action of ultrasound field and silver nanoparticles, compared to the separate exposure of silver nanoparticles or ultrasonic field.
sonoP↑, One of the characteristic effects of sonodynamic therapy is the loosening of cell membranes, thus causing their increased porosity
BioEnh↑,

2287- SNP,    Silver nanoparticles induce endothelial cytotoxicity through ROS-mediated mitochondria-lysosome damage and autophagy perturbation: The protective role of N-acetylcysteine
- in-vitro, Nor, HUVECs
*TumCP↓, AgNPs affects the morphology and function of endothelial cells which manifests as decreased cell proliferation, migration, and angiogenesis ability
*ROS↑, AgNPs can induce excessive cellular production of reactive oxygen species (ROS), leading to damage to cellular sub-organs such as mitochondria and lysosomes
*eff↓, treatment with ROS scavenger-NAC can effectively suppress AgNP-induced endothelial damage.
*MDA↑, exposure to AgNPs increased MDA levels and decreased GSH levels.
*GSH↓,
*MMP↓, significantly reduced both MMP and ATP levels (Fig. 7) in HUVECs,
*ATP↓,
*LC3II↑, expression levels of LC3-II and p62 were significantly increase
*p62↑,
*Bcl-2↓, the anti-apoptotic protein expression level of Bcl-2 in HUVECs decreased, while the pro-apoptotic protein expression levels of Bax and Caspase-3 increased significantly.
*BAX↑,
*Casp3↑,

2288- SNP,    Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model
- Review, Var, NA
*ROS↑, Several studies have reported that AgNPs induce genotoxicity and cytotoxicity in both cancer and normal cell lines
Akt↓, high ROS levels, and reduced Akt and ERK signaling.
ERK↓,
DNAdam↑, increased ROS production, leading to oxidative DNA damage and apoptosis
Ca+2↑, The damage caused to the cell membrane is due to intracellular calcium overload, and further causes ROS overproduction and mitochondrial membrane potential variation
ROS↑,
MMP↓,
Cyt‑c↑, AgNPs induce apoptosis through release of cytochrome c into the cytosol and translocation of Bax to the mitochondria, and also cause cell cycle arrest in the G1 and S phases
TumCCA↑,
DNAdam↑, main result of AgNP toxicity is direct and oxidative DNA damage, ultimately causing apoptosis
Apoptosis↑,
P53↑, AgNPs induce apoptosis in spermatogonial stem cells through increased levels of ROS; mitochondrial dysfunction; upregulation of p53 expression; pErk1/2;
p‑ERK↑,
ER Stress↑, endoplasmic reticulum (ER) stress-induced apoptosis caused by AgNPs has attracted much research interest
cl‑ATF6↑, cleavage of activating transcription factor 6 (ATF6), and upregulation of glucose-regulated protein-78 and CCAAT/enhancer-binding protein-homologous protein (CHOP/GADD153)
GRP78/BiP↑,
CHOP↑,
UPR↑, In order to protect the cells against nanoparticle-mediated toxicity, the ER rapidly responds with the unfolded protein response (UPR), an important cellular self-protection mechanism

403- SNP,  RF,    Synergetic effects of silver and gold nanoparticles in the presence of radiofrequency radiation on human kidney cells
- in-vitro, NA, HNK
Apoptosis↝, no improvement compared to AuNP and RF

393- SNP,    Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity
- in-vitro, NA, HCT116
mtDam↑,
ROS↑,
TumCCA↑,
Casp3↑,
BAX↑,
Bcl-2↓,
P53↑,

395- SNP,    The apoptotic and genomic studies on A549 cell line induced by silver nitrate
- in-vitro, Lung, A549
BAX↑,
MMP↓, depolarized
NA↑,

396- SNP,    Systemic Evaluation of Mechanism of Cytotoxicity in Human Colon Cancer HCT-116 Cells of Silver Nanoparticles Synthesized Using Marine Algae Ulva lactuca Extract
- in-vitro, Colon, HCT116
P53↑,
BAX↑,
P21↑,
Bcl-2↓,

397- SNP,  GEM,    Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment
- in-vitro, Ovarian, A2780S
P53↑,
P21↑,
BAX↑,
Bak↑,
Cyt‑c↑,
Casp3↑,
Casp9↑,
Bcl-2↓,
ROS↑,
MMP↓,

398- SNP,    Silver nanoparticles induced testicular damage targeting NQO1 and APE1 dysregulation, apoptosis via Bax/Bcl-2 pathway, fibrosis via TGF-β/α-SMA upregulation in rats
- in-vivo, Testi, NA
Bcl-2↓,
Casp3↑,
GSH↓,
MDA↑,
NO↑,
H2O2↑,
SOD↓,

399- SNP,  SIL,    Cytotoxic potentials of silibinin assisted silver nanoparticles on human colorectal HT-29 cancer cells
- in-vitro, CRC, HT-29
P53↑,

400- SNP,  MF,    Polyvinyl Alcohol Capped Silver Nanostructures for Fortified Apoptotic Potential Against Human Laryngeal Carcinoma Cells Hep-2 Using Extremely-Low Frequency Electromagnetic Field
- in-vitro, Laryn, HEp2
TumCP↓, especially in the G0/G1 and S phases.
Casp3↑,
P53↑,
Beclin-1↑,
TumAuto↑,
GSR↑, oxidative stress biomarker
ROS↑, oxidative stress biomarker
MDA↑, oxidative stress biomarker
ROS↑,
SIRT1↑,
Ca+2↑, induce apoptosis in osteoclasts by increasing intracellular and nucleus Ca2+ concentration
Endon↑, increases endonuclease activity
DNAdam↑,
Apoptosis↑,
NF-kB↓,

402- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7
P53↑,
iNOS↑,
NF-kB↑,
Bcl-2↓,
miR-125b↓,
ROS↑, 2.9x for 2hr
SOD↑, 2.4x for 2hr

1906- SNP,  GoldNP,  Cu,    Current Progresses in Metal-based Anticancer Complexes as Mammalian TrxR Inhibitors
- Review, Var, NA
TrxR↓, 183(Au) was able to decrease TrxR activity by 50% at 4.20 nM
eff↓, IC 50 value calculated for 184(Ag) was 10.30 nM
eff↓, Conversely, 185(Cu) was found to be much less effective in inhibiting TrxR activity, with an IC 50 value of 89.50 nM

887- SNP,    Antibacterial potential of silver nanoparticles against isolated urinary tract infectious bacterial pathogens
- in-vitro, UTI, NA
Bacteria↓, effective, but not against the predominat E. coli

888- SNP,    Antibacterial Effects of Silver Nanoparticles on the Bacterial Strains Isolated from Catheterized Urinary Tract Infection Cases
- in-vivo, UTI, NA
Bacteria↓, fabrication of immobilized Ag-NPs on device such as catheters

1406- SNP,    The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo condition
- in-vivo, Nor, NA
*ROS↓, (AuNP) as an antioxidant agent by inhibiting the formation of reaction oxygen species (ROS) and scavenging the free radicals.
*GPx↑,
*Catalase↑,
*ROS↑, AgNPs have toxic effect on the mitochondria of liver and result in the production of ROS and they decrease glutathione in the liver

1594- SNP,  Citrate,    Silver Citrate Nanoparticles Inhibit PMA-Induced TNFα Expression via Deactivation of NF-κB Activity in Human Cancer Cell-Lines, MCF-7
- in-vitro, BC, MCF-7
TNF-α↓, AgNPs-CIT inhibited TNFα expression via deactivation of the NF-κB signaling event
NF-kB↓,
antiOx↑, best antioxidant activity of AgNPs-CIT was found at >40% (~ 42%) radicals inhibitions at 10 mg/mL concentration
TumCP↓, cancer cell proliferation was significantly decreased when pretreated with AgNPs-CIT for 2 h and then stimulated with PMA for 24 h

1902- SNP,    Modulation of the mechanism of action of antibacterial silver N-heterocyclic carbene complexes by variation of the halide ligand
- in-vitro, NA, NA
TrxR↓, antibacterial silver NHC complexes with halide ligands of the general type (NHC)AgX (X = Cl, Br or I) that showed potent inhibition of purified bacterial thioredoxin reductase (TrxR) and glutathione reductase (GR
GSR↓,
GSH↓, glutathione (GSH) depletion

394- SNP,    Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction
- in-vitro, Cerv, HeLa
ROS↑,

1905- SNP,    Evaluation of the effect of silver and silver nanoparticles on the function of selenoproteins using an in-vitro model of the fish intestine: The cell line RTgutGC
- in-vivo, Nor, NA
*TrxR↓, TrxR activity was inhibited by AgNO3 (0.4 µM) and cit-AgNP (1, 5 µM).
*ROS∅, Oxidative stress was not observed at any of the doses of AgNO3 or cit-AgNP tested
GPx↑, In this study, we show that dissolved and nano Ag can inhibit selenoenzymes activity (GPx and TrxR) in fish intestinal cells (RTgutGC).

4388- SNP,    Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells
- in-vitro, Cerv, NA
tumCV↓, the numbers of A2780 (bulk cells) and ALDH+/CD133+ colonies were significantly reduced
CSCs↓,
selectivity↑, induced apoptosis in pancreatic CSCs and cancer cell lines, but had no effect on human normal pancreatic epithelial cells
Apoptosis↑,
ROS↑, figure 5, AgNPs induces apoptosis by oxidative stress
LDH↓, figure 5 (leakage outside the cell increases)
Casp3↑, AgNPs treated cells shows up-regulation of caspase-3, bax, bak, and c-myc, genes
BAX↑,
Bak↑,
cMyc↑,
MMP↓, and loss of mitochondrial membrane potential.

4378- SNP,    Exploring silver nanoparticles for cancer therapy and diagnosis
- Review, Var, NA
AntiTum↑, AgNPs show great promise for cancer therapy due to their antitumoral effects demonstrated by several in vitro and in vivo studies (Table 1)
ROS↑, well known that their toxicity relies on the generation of reactive oxygen species (ROS)
eff↑, synergic combination of AgNPs and chemotherapy drugs
RadioS↑, in vitro studies have highlighted the ability of AgNPs to enhance cell/tissue sensitivity to radiotherapy (RT).

4379- SNP,    Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells
- in-vitro, CRC, LoVo
eff↑, uptake of silver nanoparticles in cells of the human intestinal LoVo cell line was dependent on size.
TumCD↑, Silver nanoparticles in sizes of 10–100 nm induced cytotoxicity in a size- and dose-dependent manner via ROS generation.
ROS↑,
Bacteria↓, antimicrobial properties of silver nanoparticles (AgNPs)

4380- SNP,    Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways
- in-vitro, Lung, A549
ROS↑, AgNPs caused ROS formation in the cells
tumCV↓, reduction in their cell viability
MMP↓, and mitochondrial membrane potential (MMP)
TumCCA↑, increase in the proportion of cells in the sub-G1 (apoptosis) population, S phase arrest
PCNA↓, down-regulation of the cell cycle associated proliferating cell nuclear antigen (PCNA) protein
eff↓, Pretreatment of the A549 cells with N-acetyl-cysteine (NAC), an antioxidant, decreased the effects of AgNPs

4381- SNP,    Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells
- in-vitro, Liver, HepG2
eff↓, toxicity of AgNPs was prevented by use of the antioxidant N-acetylcysteine, and AgNP-induced DNA damage was also prevented by N-acetylcysteine.
ROS↑, AgNP cytotoxicity is primarily the result of oxidative stress and is independent of the toxicity of Ag+ ions.
other↑, Ag exposure is associated with specific clinical symptoms, such as argyria, which causes an irreversible gray coloration of the skin

4382- SNP,    Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism
- in-vitro, Nor, RAW264.7
*GSH↓, AgNPs decreased intracellular glutathione level, increased NO secretion, increased TNF-α in protein and gene level
*NO↑,
*TNF-α↑,
*MMP3↑, increased gene expression of matrix metalloproteinases (MMP-3, MMP-11, and MMP-19).
*MMP11↑,

4383- SNP,    Exploring the Potentials of Silver Nanoparticles in Overcoming Cisplatin Resistance in Lung Adenocarcinoma: Insights from Proteomic and Xenograft Mice Studies
- in-vitro, Lung, A549 - in-vivo, Lung, A549
Apoptosis↑, Silver nanoparticles (AgNPs) have shown great potential as therapeutic agents due to their ability to cause apoptotic cell death in cancer cells.
VEGF↓, suppressing the VEGF signaling pathway, repressing p53-mediated pathways, promoting cell cycle arrest,
P53↓,
TumCCA↑,
ROS↑, we found that AgNPs induced ROS generation
AntiTum↑, AgNPs exhibit similar antitumoral effects on both A549 and A549/DDP-bearing mice.
eff↑, AgNPs are internalized by cells far more effectively than free Ag+ under identical exposure conditions
ATP↓, AgNPs exposure also decreased basal respiration (52.3 ± 4.6 pmol/min/106 cells), maximal respiration (109.2 ± 12.2 pmol/min/106 cells), ATP production (
eff↑, These results explain why AgNPs remain effective against cisplatin-resistant A549 cells.
CTR1↑, recent studies have shown that AgNPs treatment significantly upregulates CTR1

4385- SNP,    Hepatoprotective effect of engineered silver nanoparticles coated bioactive compounds against diethylnitrosamine induced hepatocarcinogenesis in experimental mice
- in-vitro, Liver, NA
hepatoP↑, hepatoprotective activity of silver nanoparticles (AgNPs) synthesized using aqueous extracts of Andrographis paniculata leaves (ApAgNPs) and Semecarpus anacardium nuts (SaAgNPs) against diethylnitrosamine (DEN) induced liver cancer in mice model
*AST↓, decreased level of aspartate amino transferase (AST), alanine amino transferase (ALT), serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) activity
*ALAT↓,
*Catalase↑, and elevated level of catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and superoxide dismutase (SOD) activity
*GPx↑,
*GSTA1↑,
*SOD↑,

4386- SNP,    Evaluation of hepatic cancer stem cells (CD73+, CD44+, and CD90+) induced by diethylnitrosamine in male rats and treatment with biologically synthesized silver nanoparticles
hepatoP↑, AgNPs may be considered as a therapeutic agent for liver related malignancies.
CD44↓,
CSCs↓, in DEN + AgNPs and AgNPs groups it were similar to control group

4387- SNP,    Attenuation of diethylnitrosamine (DEN) - Induced hepatic cancer in experimental model of Wistar rats by Carissa carandas embedded silver nanoparticles
- in-vitro, Liver, NA
IL6↓, diminish the levels of inflammatory markers (IL-6, TNF-α, and IL-1β) via NF-κB pathway
TNF-α↓,
IL1β↓,
hepatoP↑, CCAgNPs significantly down-regulated the serum marker enzymes of hepatic and non-hepatic parameter, elevated the levels of enzymatic and non-enzymatic antioxidant profile, elevation in membrane bound enzymes

4377- SNP,    Interaction between silver nanoparticles of 20 nm (AgNP20 ) and human neutrophils: induction of apoptosis and inhibition of de novo protein synthesis by AgNP20 aggregates
- in-vitro, NA, NA
eff↑, electronic microscopy experiments revealed that AgNP20 can rapidly interact with the cell membrane, penetrate neutrophils, localize in vacuole-like structures, and be randomly distributed in the cytosol after 24 h.
Apoptosis↑, AgNP20 induced apoptosis

4389- SNP,    Graphene Oxide-Silver Nanocomposite Enhances Cytotoxic and Apoptotic Potential of Salinomycin in Human Ovarian Cancer Stem Cells (OvCSCs): A Novel Approach for Cancer Therapy
- in-vitro, Ovarian, NA
tumCV↓, Ag was toxic to OvCSCs and reduced cell viability by mediating the generation of reactive oxygen species, leakage of lactate dehydrogenase, reduced mitochondrial membrane potential
ROS↑,
LDH↓,
MMP↑,
CSCs↓, rGO–Ag may be a novel nano-therapeutic molecule for specific targeting of highly tumorigenic ALDH+CD133+ cells
AntiCan↑, Overall, these results suggest that the rGO–Ag is a promising material for inhibiting the cell viability of ovarian cancer cells and ovarian cancer stem cells.

4390- SNP,    Therapeutic Potential of Cucumis melo (L.) Fruit Extract and Its Silver Nanopartciles Against DEN-Induced Hepatocellular Cancer in Rats
- in-vivo, Liver, NA
hepatoP↑, Treatment with crude extract and silver nanoparticles of Cucumis melo fruit indicates that Cucumis melo fruit could have exerted its protective effect.
AST↓, AST ALT, ALP, LDH, GGT
ALAT↓,
ALP↓,

4391- SNP,    Silver Nanoparticles Induce Apoptosis in HepG2 Cells through Particle-Specific Effects on Mitochondria
- NA, Liver, HepG2
Apoptosis↑, AgNPs induced apoptosis in HepG2 cells through the particle-specific effects on mitochondria.

4392- SNP,    Hepatocurative activity of biosynthesized silver nanoparticles fabricated using Andrographis paniculata
- in-vivo, LiverDam, NA
*antiOx↑, strong antioxidant effect of the AgNPs compared to 5% aqueous leaf extract.
*eff?, effective in revival of all biological parameters to near normal in all intoxicated groups indicating the curing effects on CCl(4) induced liver injury.

4393- SNP,    Nanotoxic Effects of Silver Nanoparticles on Normal HEK-293 Cells in Comparison to Cancerous HeLa Cell Line
- in-vitro, Cerv, HeLa - in-vitro, Nor, HEK293
selectivity↓, The nanoparticles were three-fold toxic towards the HEK-293 cells in comparison to the HeLa cells

4394- SNP,    Silver nanoparticles provoke apoptosis of Dalton's ascites lymphoma in vivo by mitochondria dependent and independent pathways
- in-vivo, lymphoma, NA
OS↑, Results indicate that the AgNPs were efficient in prolongation of life span, reduction of tumor volume and body weight in tumor animals.
TumVol↓,
Weight↑,
AntiTum↑, AgNPs are potent in antitumor activity and the molecular mechanism is by the induction of apoptosis through the mitochondrial dependent and independent pathways.
Apoptosis↑,
mtDam↑,

4395- SNP,    Hepatoprotective effect of silver nanoparticles synthesized using aqueous leaf extract of Rhizophora apiculata
- in-vivo, LiverDam, NA
*hepatoP↑, silver nanoparticles were effective in protecting the liver from damages induced by carbon tetrachloride
*LDH↓, LDH is a prominent indicator and a diagnostic tool for tissue injury.45 LDH levels were elevated in the control group, but were effectively restored to normal in groups treated with test (AgNPs)

4396- SNP,    Identification of possible reductants in the aqueous leaf extract of mangrove plant Rhizophora apiculata for the fabrication and cytotoxicity of silver nanoparticles against human osteosarcoma MG-63 cells
- in-vitro, OS, MG63
AntiCan↑, Tannins have been known to reduce silver ions into silver nanoparticles which in particular are known to possess cytotoxic effects against a variety of cancer cells.
tumCV↓, nanoparticles possessed significant cytotoxic effects against MG-63 cells which could be possibly attributed to the antioxidant activity of silver nanoparticles.

4397- SNP,    Synthesis and Characterization of Silver Nanoparticles from Rhizophora apiculata and Studies on Their Wound Healing, Antioxidant, Anti-Inflammatory, and Cytotoxic Activity
- NA, Wounds, NA
selectivity↑, The cytotoxicity cell viability assay revealed that the AgNPs were less toxic (IC50 105.5 µg/mL) compared to the R. apiculata extract (IC50 47.47 µg/mL) against the non-cancerous fibroblast L929 cell line.
tumCV↓, AgNPs showed considerable cytotoxic effect, and the percentage of cell viability against skin cancer, lung cancer, and oral cancer cell lines was 31.84%, 56.09% and 22.59%, respectively.
antiOx↑, AgNPs exhibited potential antioxidant, anti-inflammatory, wound healing, and cytotoxic properties
Inflam↓,

4367- SNP,    Effects of Prolonged Silver Nanoparticle Exposure on the Contextual Cognition and Behavior of Mammals
- in-vivo, Nor, NA
*other↝, after 1 month of washing them up with distilled water, 75% and 80% of the silver was eliminated from the liver and the blood, respectively, and just 5% of the silver was eliminated from the brain

4358- SNP,  HPT,  Rad,    Silver nanocrystals mediated combination therapy of radiation with magnetic hyperthermia on glioma cells
- in-vitro, GBM, U251
RadioS↑, AgNPs showed both radio and thermo sensitivity on U251 cells from the surviving fraction curve.
eff↑, both X-rays and heat could enhance the content of cells uptake of AgNPs.
TumCD↑, potential application in enhancing effect of RT with MHT combination therapy induced killing of cancer cells.

4359- SNP,    Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends
- NA, Wounds, NA
*Bacteria↓, broad-spectrum antimicrobial efficacy, silver nanoparticles have opened new horizons towards novel approaches in the control of infections in wound healing.
*eff↑, It is accepted that Ag nanoparticles with small diameter have a superior antimicrobial effect than those with a larger diameter, and their antibacterial activity is higher than their bulk equivalents
*other↝, Today, due to their broad-spectrum antibacterial capability, silver-based creams and ointments, as well as AgNPs-based biomedical products, such as wound dressings, are commercially available for different medical applications
*toxicity↓, In low concentrations, silver has been indicated as non-toxic material to humans, and it has been assessed as a promising material in pharmaceutical and biomedical fields

4360- SNP,    Silver Nanoparticles as Real Topical Bullets for Wound Healing
- Study, Nor, NA
*other↝, Silver therapy, in principle, has many benefits, such as (1) a multilevel antibacterial effect on cells, which considerably reduces the organism's chances of developing resistance; (2) effectiveness against multi-drug-resistant organisms;
*toxicity↓, (3) low systemic toxicity.
*eff↑, Decreasing the dimension of nanoparticles has a pronounced effect on their physical properties, which significantly differ from those of the bulk material
*eff↑, Bacterial resistance to elemental silver is extremely rare
*Inflam↓, Anti-inflammatory properties of silver nanoparticles also promote wound healing by reducing cytokine release,56 decreasing lymphocyte and mast cell infiltration.
*IL6↓, Levels of IL-6 mRNA in the wound areas treated with silver nanoparticles were maintained at statistically significantly lower levels throughout the healing process,
*TGF-β↑, mRNA levels of TGF-β1 were higher during the initial period of healing in the site treated with silver nanoparticles
*MMP9↓, Nanocrystalline silver dressings significantly reduced MMP-9 levels in a porcine mode
*eff↑, Wounds treated with silver nanoparticles completely healed in 25.2 ± 0.72 days after injury, whereas those treated with antibiotics required 28.6 ± 1.02 days (P < .01).

4361- SNP,  GoldNP,    Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: in vitro and in vivo perspectives
- in-vivo, Liver, HepG2
TumCD↑, IC50 values of the AgNPs, AuNPs and Ag/AuNPs on HepG2 cells were determined as 38.42 μg ml-1, 43.25 μg ml-1 and 39.20 μg ml-1
TumVol↓, tumour reduction (∼45 to 65%) was observed in the nanoparticle-treated animal
*toxicity↝, The No-Observed-Adverse-Effect-Level (NOAEL) for the AgNPs was determined to be 2000 mg per kg of body weight (bw) from an acute toxicity test.
hepatoP↑, (Ag/AuNPs) for hepatoprotective activity against diethylnitrosamine (DEN)-induced liver cancer in a Sprague Dawley (SD) rat model

4362- SNP,    Enhancing Colorectal Cancer Radiation Therapy Efficacy using Silver Nanoprisms Decorated with Graphene as Radiosensitizers
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vivo, NA, NA
eff↑, large surface area-to-volume ratio, which can be exploited in cancer radiotherapy to locally enhance the radiation dose deposition in tumors
TumCG↓, Treatment with nanoparticles and a single radiation dose of 10 Gy significantly reduces the growth of colorectal tumors
OS↑, increases the survival time as compared to treatment with radiation only
RadioS↑, combine standard-dose radiotherapy with radiosensitizers to enhance the radiation therapy efficacy locally within tumors while sparing adjacent healthy tissues
eff↑, suggested that graphene enhances the cellular uptake when combined with metals in nanocomposites
ROS↑, ROS, the most potent of these free radicals, can travel to and indirectly damage DNA
DNAdam↑,
eff↝, PEGylated GQD-decorated Silver Nanoprisms (pGAgNPs) show better intracellular uptake as compared to PEGylated Silver Nanoprisms (pAgNPs)

4363- SNP,    Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma
- in-vivo, fibroS, NA
TumVol↓, incidence and size of fibrosarcoma were reduced or delayed when murine fibrosarcoma groups were treated by AgNP-MSA
TNF-α↓, TNF-α, IL-6 and IL-1β these cytokines were found to be downregulated after treatment with AgNP-MSA
IL6↓,
IL1β↓,
*toxicity↝, liver sections were found to have normal architecture in all treated groups except those treated at the 9 and 10 mg/kg b.w. doses
TumCG↓, treatment with AgNPs, the logistic growth of the tumor incidence was significantly lower (
selectivity↑, MSA-AgNPs aggregated instantly in response to the acidic extracellular pH of solid tumors, leading to greatly enhanced uptake by cancer cells
selectivity↑, Because the particle size in the study was approximately 10 nm, any AgNP that escaped entry into the tumor microenvironment and entered the systemic circulation was effectively cleared from the body.
Weight↑, AgNP-MSA not only inhibited the tumor incidence but also helped to overcome the progressive body weight loss of tumor-bearing mice.
ROS↑, anticancer property demonstrated by AgNP can be attributed to this increase in oxidative stress in the tumor microenvironment.
NO↑, AgNPs significantly increased the oxygen free radical and NO levels in the tumor microenvironment, which oppose hypoxia.

4364- SNP,    Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties
- in-vitro, BC, MCF-7
TumCD↑, AgNPs and the extract exhibited 70% and 40% cytotoxicity against MCF-7 cancerous cells, respectively, while CSN caused 56% cell death (at the concentration of 60 µg/mL)
selectivity↑, It was observed that AgNPs were much less cytotoxic when tested against a noncancerous cell line (L-929)
*antiOx↑, These include antioxidant, antifungal, anti-inflammatory, antiviral, anti-angiogenesis, and antimicrobial effects
*Inflam↓,
AntiTum↑, antitumor properties of AgNPs
ROS↑, AgNPs interact with mitochondria and disrupt the cellular electron transfer chain function leading to an increase in the ROS level. oxidative stress generated by ROS could be considered as a main toxicity mechanism of AgNPs against cells

4365- SNP,    Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview
- Review, Var, NA
ROS↑, the most remarkable mechanistic mode of AgNP-based antimicrobial effects is represented by their adhesion to microbial cells, ROS and free-radical generation, microbial wall piercing and penetration inside cells, and modulation and modification of mi
*toxicity↓, high intrinsic antimicrobial efficiency and non-toxic nature
*Bacteria↓,
*Inf↓, silver-based compounds and materials were used for the unconventional and effective control of distinctive infections
*Diff↑, Previous studies reported that AgNPs naturally improve the differentiation process of MC3T3-1 pre-osteoblast cells and subsequent bone-like tissue mineralization,
*eff↑, studies showed that AgNP-implanted titanium displayed improved antibacterial ability,
RadioS↑, making them suitable candidates for detection and dose-enhancement purposes in X-ray irradiation applications
selectivity↑, selective uptake into cancerous cells, AgNP-derived scattered light can be used for imaging purposes, whereas absorbed light can be used for selective hyperthermia

4366- SNP,    Gut Dysbiosis and Neurobehavioral Alterations in Rats Exposed to Silver Nanoparticles
- in-vivo, Nor, NA
*GutMicro↝, Findings suggest short-term exposure to AgNS or AgNC can lead to behavioral and gut microbiome changes.

2837- SNP,    Trojan-Horse Mechanism in the Cellular Uptake of Silver Nanoparticles Verified by Direct Intra- and Extracellular Silver Speciation Analysis
- in-vitro, NA, NA
eff↑, Evidence we found indicates that the Trojan-horse mechanism really exists

4368- SNP,    Silver nanoparticles crossing through and distribution in the blood-brain barrier in vitro
- NA, Nor, NA
*BBB↑, SNPs crossed the BBB and accumulated inside BMVECs, while the SMPs did not.

4369- SNP,    Silver nanoparticles induce p53-mediated apoptosis in human bronchial epithelial (BEAS-2B) cells
- in-vitro, Nor, BEAS-2B
*ROS↑, we observed oxidative stress in BEAS-2B cells exposed to Ag-NPs.

4370- SNP,    Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line
- in-vitro, Liver, HepG2
tumCV↓, decreased cell viability in a concentration-dependent manner and the IC50 of 75 μg/mL for Ag NPs
ROS↑, Ag NPs cytotoxicity was associated with induction of ROS and cell apoptosis in HepG2 cell line
Apoptosis↑,

4371- SNP,    Effects of Green Silver Nanoparticles on Apoptosis and Oxidative Stress in Normal and Cancerous Human Hepatic Cells in vitro
- in-vitro, Liver, HUH7
ROS↑, The gAgNPs induced more ROS in the HuH-7 cells than in the CHANG cells.
selectivity↑, HuH-7 cells showed an increased sensitivity to gAgNPs than the CHANG cells.
DNAdam↑, higher concentrations of gAgNPs may induce significant cytotoxicity and cause DNA damage and apoptosis.
Apoptosis↑,
GSH↓, The level of glutathione was decreased (Figure 4B) and lipid peroxide was increased in HuH-7 cells than CHANG cells (Figure 4A).
lipid-P↑,
MMP↓, indicating loss of MMP
DNAdam↑, higher DNA damage was seen in HuH-7 cells than CHANG cells

4372- SNP,    Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol
- in-vitro, Cerv, HeLa - in-vitro, Lung, A549
TumCD↑, Cell death following the application of AgNPs is dose-dependent, and it is mostly due to Ag+ ions.

4373- SNP,    In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells
- in-vitro, Liver, HepG2
TumCD↑, both "nanosized particle of Ag" as well as "ionic Ag+" contribute to the toxic effects of Ag-NPs.

4374- SNP,    Enhancing antitumor activity of silver nanoparticles by modification with cell-penetrating peptides
- in-vitro, BC, MCF-7
eff↑, Peptides-modified AgNPs showed significant enhancement in killing tumor cells by increasing the uptake of AgNP into cell lines
TumCD↑,

4375- SNP,    The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells
- in-vitro, AML, K562
eff↑, AgNPs were demonstrated to be able to enter K562 cells (a CML cell line) in a dose-dependent manner and locate in endosomes
ROS↑, Reactive oxygen species (ROS) could be generated upon AgNPs exposure and cause cytotoxicity and apoptosis.
Apoptosis↑,
eff↓, alterations caused by AgNPs exposure could be reversed by the addition of Vitamin C (an antioxidant).

4376- SNP,    Interaction of multi-functional silver nanoparticles with living cells
- in-vitro, Nor, L929 - in-vitro, Lung, A549
eff↑, significant increase in the rate of lactose-modified AgNPs into the A549 cells is observed
selectivity↑,

343- SNP,    Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma
- in-vitro, PC, PANC1
BAX↑,
Bcl-2↓,
P53↑,
TumAuto↑,

334- SNP,    Silver-Based Nanoparticles Induce Apoptosis in Human Colon Cancer Cells Mediated Through P53
- in-vitro, Colon, HCT116
Bax:Bcl2↑,
P53↑,
P21↑,
Casp3↑,
Casp8↑,
Casp9↑,
Akt↓,
NF-kB↓,
DNAdam↑,

335- SNP,  PDT,    Biogenic Silver Nanoparticles for Targeted Cancer Therapy and Enhancing Photodynamic Therapy
- Review, NA, NA
ROS↑,
GSH↓,
GPx↑,
Catalase↓,
SOD↓,
p38↑,
BAX↑,
Bcl-2↓,

336- SNP,  PDT,    Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell lines
- in-vitro, BC, MCF-7
Apoptosis↑,

337- SNP,  immuno,    Silver nanoparticle induced immunogenic cell death can improve immunotherapy
- Review, NA, NA
PD-L1↓, deliver therapeutic agents

338- SNP,    Biogenic silver nanoparticles: In vitro and in vivo antitumor activity in bladder cancer
- vitro+vivo, Bladder, 5637
TumCD↑, 57% tumor regression
Apoptosis↑,
TumCMig↓,
TumCP↓,

339- SNP,    Cancer cell specific cytotoxic potential of the silver nanoparticles synthesized using the endophytic fungus, Penicillium citrinum CGJ-C2
- in-vitro, BC, MCF-7 - in-vitro, Melanoma, A431 - in-vitro, HCC, HepG2
TumCD↑, concentration-dependent cytotoxicity

340- SNP,    Screening bioactivities of Caesalpinia pulcherrima L. swartz and cytotoxicity of extract synthesized silver nanoparticles on HCT116 cell line
- in-vitro, CRC, HCT116
TumCD↑, cytotoxicity effect of 77.5%

341- SNP,    Bioprospecting a native silver-resistant Bacillus safensis strain for green synthesis and subsequent antibacterial and anticancer activities of silver nanoparticles
- in-vitro, Liver, HepG2
TumCD↑, viability of the cancer HepG2 cell line was 84.42, 65.25, 48.76 and 36.25%, respectively, at 5, 10, 15 and 20 µg mL−1 AgNPs concentrations
ROS↑,

342- SNP,    Silver nanoparticles; a new hope in cancer therapy?
- Review, NA, NA
ROS↑,
DNAdam↑,
Apoptosis↑,
mtDam↑,

333- SNP,  HPT,    Enhancement effect of cytotoxicity response of silver nanoparticles combined with thermotherapy on C6 rat glioma cells
- in-vivo, GBM, NA
OS↑,

344- SNP,    Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells
- in-vitro, Liver, HepG2
ROS↑,
GSH↓,

345- SNP,    Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model
- vitro+vivo, lymphoma, NA
OS↑, up 50%
ascitic↓, down 65%

346- SNP,  RSQ,    Investigating Silver Nanoparticles and Resiquimod as a Local Melanoma Treatment
- in-vivo, Melanoma, SK-MEL-28 - in-vivo, Melanoma, WM35
ROS↑,
Ca+2↝, disrupt mitochondrial homeostasis of Ca2+
Casp3↑, x2-4
Casp8↑, x2-4
Casp9↑, x4-14
CD4+↑,
CD8+↑,
tumCV↓,
eff↓, NAC, an ROS scavenger, could efficiently protect B16.F10 cells from the cytotoxic effects of Ag+ even when exposed to high concentrations of Ag+ (250 μg/ml)
*toxicity↓, non-toxic in mice as evidenced by: 1) no significant change in weights during the study period and 2) no significant increases in the levels of liver enzymes, (ALP), (AST), and ALT

347- SNP,    The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future?
- Review, NA, NA
ROS↑,
Apoptosis↑,
ER Stress↑,

348- SNP,    Induction of p53 mediated mitochondrial apoptosis and cell cycle arrest in human breast cancer cells by plant mediated synthesis of silver nanoparticles from Bergenia ligulata (Whole plant)
- in-vitro, BC, MCF-7
Apoptosis↑,
ROS↑,
MMP↓, loss of mitochondrial membrane potential (MMP)
P53↑,
BAX↑,
cl‑Casp3↑,

349- SNP,    Insight into the molecular mechanism, cytotoxic, and anticancer activities of phyto-reduced silver nanoparticles in MCF-7 breast cancer cell lines
- in-vitro, BC, MCF-7
Apoptosis↑,
ROS↑,
CellMemb↑, damage

350- SNP,    Cytotoxic and Apoptotic Effects of Green Synthesized Silver Nanoparticles via Reactive Oxygen Species-Mediated Mitochondrial Pathway in Human Breast Cancer Cells
- in-vitro, BC, MCF-7
ROS↑,
MMP↓,
P53↑,
BAX↑,
Casp3↑,
Casp9↑,
Bcl-2↓,

351- SNP,    Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D
Casp9↑,
Casp3↑,
Casp7↑,
Bcl-2↓,

352- SNP,    Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum
- in-vitro, BC, MCF-7
TumCD↑, significant anticancer activity

322- SNP,  Cisplatin,    Heterogeneous Responses of Ovarian Cancer Cells to Silver Nanoparticles as a Single Agent and in Combination with Cisplatin
- in-vitro, Ovarian, A2780S - in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, OVCAR-3
ROS↑,
DNAdam↑,
GSH/GSSG↓,

306- SNP,    Cancer Therapy by Silver Nanoparticles: Fiction or Reality?
- Analysis, NA, NA
EPR↝, takes advantage of EPR
ROS↑, silver ions drive the formation of ROS, which triggers massive oxidative stress, thereby activating the cellular pathways leading to cell death
IL1↑, IL-1b
IL8↑, IL-8 mRNA levels
ER Stress↑,
MMP9↑, it has been shown that 20 nm AgNPs increase the MMP-9 secretion
MMP↓, loss of mitochondrial membrane potential and mitochondrial structural disorganization, were reported to accompany the AgNP-induced stres
Cyt‑c↑, cytochrome c release from the mitochondria into the cytoplasm and finally to apoptosis
Apoptosis↑,
Hif1a↑, AgNPs were shown to induce HiF-1α activation, thereby ultimately activating autophagy through the AMPK-mTOR pathway in PC-3 prostate cancer cells [89
BBB↑, AgNPs can affect the integrity of the blood–brain barrier and can cross this barrier in vitro through transcytosis
GutMicro↝, AgNP treatments might influence the composition of the gut microbiota,
eff↑, AgNPs are promising tools for targeted delivery
eff↑, the joint application of the nanoparticles and the HDAC inhibitor caused significantly increased ROS levels,
RadioS↑, idea to use AgNPs as radiosensitizers came along with the phenomenon that metals with high atomic numbers are capable of enhancing the effects of radiation

309- SNP,    Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells
- in-vitro, NA, A431
ROS↑,
Akt↓,
p‑ERK↓, Erk phosphorylation

312- SNP,  wortm,    Inhibition of autophagy enhances the anticancer activity of silver nanoparticles
- vitro+vivo, NA, HeLa
APA↑,
p62↓, decrease in the level of SQSTM1, similar to starvation treatment
PIK3CA↑, suggesting that Ag NPs induced autophagy by enhancing autophagosome formation through the PtdIns3K pathway.
TumVol↓, 61% decrease in tumor weight

316- SNP,    Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells
- in-vitro, BC, MCF-7
GRP78/BiP↑, AgNP treatment induced the expression of ER chaperons Grp94 and Grp78/Bip,
ER Stress↑, depleted endoplasmic reticulum (ER) calcium stores, caused notable ER stress and decreased plasma membrane positioning of Pgp
ROS↑,
mtDam↑,

317- SNP,    Autophagic effects and mechanisms of silver nanoparticles in renal cells under low dose exposure
- in-vitro, Kidney, HEK293
TumAuto↑,
p62↑, P62 was elevated in AgNPs-treated cells in an mTOR-independent manner.

318- SNP,    Silver nanoparticles regulate autophagy through lysosome injury and cell hypoxia in prostate cancer cells
- in-vitro, Pca, PC3
lysoM↓, decline of lysosomal membrane integrity
lysosome↓, decrease of lysosomal quantity
AMPKα↑,
TumAuto↑, autophagy activation
mTOR↑,

319- SNP,    Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis
Apoptosis↑,
Ca+2↑, mitochondrial Ca(2+) overloading
ER Stress↑,
PERK↑, ER stress marker
IRE1↑, ER stress marker
cl‑ATF6↑, ATF6, ER stress marker

320- SNP,    Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish
- vitro+vivo, NA, HUH7
ROS↑,
ER Stress↑,
TNF-α↑,

321- SNP,    I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery
- in-vivo, NA, NA
other↑, high accumulation fn AuNP in tumor tissues

353- SNP,    The mechanism of cell death induced by silver nanoparticles is distinct from silver cations
- in-vitro, BC, SUM159
lipid-P↑, caused by AgNPs not Ag+
H2O2↑, caused by Ag+
ROS↑,
Apoptosis↑,

324- SNP,  CPT,    Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells
- in-vitro, Cerv, HeLa
ROS↑,
Casp3↑,
Casp9↑,
Casp6↑,
GSH↓,
SOD↓,
GPx↓,
MMP↓, loss of
P53↑,
P21↑,
Cyt‑c↑,
BID↑,
BAX↑,
Bcl-2↓,
Bcl-xL↓,
Akt↓,
Raf↓,
ERK↓,
MAP2K1/MEK1↓,
JNK↑,
p38↑,

325- SNP,    Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer
Apoptosis↑,
ABC↓,

326- SNP,  TSA,    Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles
- in-vitro, Cerv, HeLa
Apoptosis↑,
ChrMod↝, effect on chromatin condensation
eff↑, combinational effect of HDAC inhibition and AgNP administration in HeLa cervical cancer cells

327- SNP,  MS-275,    Combination Effect of Silver Nanoparticles and Histone Deacetylases Inhibitor in Human Alveolar Basal Epithelial Cells
- in-vitro, Lung, A549
Apoptosis↑,
ROS↑,
LDH↓, leakage of lactate dehydrogenase (LDH);
TNF-α↑,
mtDam↑,
TumAuto↑,
Casp3↑,
Casp9↑,
DNAdam↑, induced DNA-fragmentation

328- SNP,  Rad,    Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma
- vitro+vivo, GBM, U251
Apoptosis↑, higher rate of apoptotic cell death
TumAuto↑,

329- SNP,  Rad,    Enhancement of radiotherapy efficacy by silver nanoparticles in hypoxic glioma cells
- in-vitro, GBM, U251
Apoptosis↑,
TumAuto↑, enhanced destructive autophagy

330- SNP,  Rad,    Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs
- in-vitro, GBM, U251
TumAuto↑,
ROS↑,

331- SNP,  Rad,    Silver nanoparticles: a novel radiation sensitizer for glioma?
- vitro+vivo, GBM, NA
OS↑, 500% improvement

332- SNP,  Rad,    Enhancement of Radiosensitization by Silver Nanoparticles Functionalized with Polyethylene Glycol and Aptamer As1411 for Glioma Irradiation Therapy
- in-vivo, GBM, NA
OS↑,

383- SNP,    In vitro and in vivo evaluation of anti-tumorigenesis potential of nano silver for gastric cancer cells
- in-vitro, GC, MKN45
Ki-67↓,
TumCP↓,
CD34↓,
BAX↑,

374- SNP,    Silver nanoparticles selectively treat triple‐negative breast cancer cells without affecting non‐malignant breast epithelial cells in vitro and in vivo
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
ER Stress↑,
DNAdam↑,
ROS↑,
Apoptosis↑,
GSH/GSSG↓, MDA‐MB‐231
NADPH/NADP+↓, MDA‐MB‐231
TumCG↓,
UPR↑, initiating UPR

375- SNP,  ALA,    Alpha-Lipoic Acid Prevents Side Effects of Therapeutic Nanosilver without Compromising Cytotoxicity in Experimental Pancreatic Cancer
- in-vitro, PC, Bxpc-3 - in-vitro, PC, PANC1 - in-vitro, PC, MIA PaCa-2 - in-vivo, NA, NA
mtDam↑, in cancer cells only. ALA protected normal cells
ROS↑, in cancer cells only. ALA protected normal cells
*toxicity↓, Nonmalignant CRL-4023 and LX-2 cells were treated with α-lipoic acid at concentrations of 0.5 mM, 1 mM, 2 mM and 3 mM, Both cell lines were largely resistant to any concentration
Dose∅, ALA dose: we used α-lipoic acid concentrations of 0.5 and 1 mM
selectivity↑, higher sensitivity of malignant cells to AgNPs.

376- SNP,    Antitumor activity of colloidal silver on MCF-7 human breast cancer cells
- in-vitro, BC, MCF-7
Apoptosis↑,
LDH↓, significantly decreased LDH (*P < 0.05) and significantly increased SOD (*P < 0.05) activities
SOD↑,
DNAdam↑,

377- SNP,    Anticancer Action of Silver Nanoparticles in SKBR3 Breast Cancer Cells through Promotion of Oxidative Stress and Apoptosis
- in-vitro, BC, SkBr3
ROS↑,
Apoptosis↑,
Bax:Bcl2↑,
VEGF↑, VEGF-A
Akt↓,
PI3K↓,
TAC↓,
TOS↑,
OSI↑,
MDA↑,
Casp3↑,
Casp7↑,

378- SNP,    Antitumor efficacy of silver nanoparticles reduced with β-D-glucose as neoadjuvant therapy to prevent tumor relapse in a mouse model of breast cancer
- ex-vivo, BC, 4T1
TumVol↓,
TumMeta↓,
Ki-67↓,

379- SNP,    Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo
- in-vivo, Lung, H1299
NF-kB↓,
Bcl-2↓,
Casp3↑,
survivin↑,
TumCG↓, suppressed tumor growth

380- SNP,  QC,  CA,  Chit,    Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities
- in-vitro, MG, U118MG
TumCG↓, cell viability has constantly decreased by increasing the concentration

381- SNP,    Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes Expression
- in-vitro, Bladder, 5637
ROS↑,
BAX↑,
Bcl-2↓,
Casp3↑,
Casp7↑,
Apoptosis↑,

382- SNP,    Investigation the apoptotic effect of silver nanoparticles (Ag-NPs) on MDA-MB 231 breast cancer epithelial cells via signaling pathways
- in-vitro, BC, MDA-MB-231
Apoptosis↑,
BAX↑,
Bcl-2↓,
P53↑,
PTEN↑,
hTERT↓,
p‑ERK↓, p-ERK/Total ERK
cycD1↓,

373- SNP,    Cytotoxic Potential and Molecular Pathway Analysis of Silver Nanoparticles in Human Colon Cancer Cells HCT116
- in-vitro, Colon, HCT116
LDH↓, Increased lactate dehydrogenase leakage (LDH),
ROS↑,
MDA↑,
ATP↓,
GSH↓,
MMP↓, loss of

384- SNP,    Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy
- in-vitro, Testi, F9
LDH↓, When the cells were treated with AgNPs and AgNO3, the amount of LDH leaked into the media increased in a dose-dependent manner
ROS↑,
mtDam↑,
DNAdam↑,
P53↑,
P21↑,
BAX↑,
Casp3↑,
Bcl-2↓,
Casp9↑,
Nanog↓,
OCT4↓,

385- SNP,    Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatment
- in-vitro, Hepat, HepG2 - in-vitro, Hepat, WI38
TNF-α↑, AgNPs induce an upregulation in the synthesis of inflammation-associated cytokines, including (TNF-α and IL-33), within HepG2 cells.
IL33↑,
mTOR↓,
MMP9↓,
Bcl-2↓,
ROS↑,
Apoptosis↑,

386- SNP,  Tam,    Synergistic anticancer effects and reduced genotoxicity of silver nanoparticles and tamoxifen in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
P53↑,
BAX↑,
Bcl-2↓,
Casp3↑,
DNAdam↑,
TumCCA↑,

387- SNP,    Silver nanoparticles induce mitochondria-dependent apoptosis and late non-canonical autophagy in HT-29 colon cancer cells
- in-vitro, Colon, HT-29
Cyt‑c↑,
P53↑,
BAX↑,
Casp3↑,
Casp9↑,
Casp12↑,
Beclin-1↑,
CHOP↑,
LC3s↑, LC3-II
XBP-1↑,

388- SNP,    Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells
- in-vitro, BC, MCF-7
ROS↑,
Casp3↑,
BAX↑,
P53↑,

389- SNP,  Citrate,    Silver Citrate Nanoparticles Inhibit PMA-Induced TNFα Expression via Deactivation of NF-κB Activity in Human Cancer Cell-Lines, MCF-7
- in-vitro, BC, MCF-7
TNF-α↓,
NF-kB↓,

390- SNP,    Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line
- in-vitro, BC, MDA-MB-231 - in-vivo, BC, NA
ROS↑,
TumVol↓,

391- SNP,    Silver nanoparticles inhibit VEGF-and IL-1β-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells
VEGF↓,
IL1↓, IL-1β-induced permeability

392- SNP,    Biogenic silver nanoparticles synthesized from Piper longum fruit extract inhibit HIF-1α/VEGF mediated angiogenesis in prostate cancer cells
VEGF↓,
HIF-1↓,

363- SNP,    Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
ROS↑,
lipid-P↑, lipid membrane peroxidation
Apoptosis↑,
BAX↑,
Bcl-2↓,
MMP↓, disruption
Cyt‑c↑, release from mitochondria
Casp3↑,
Casp9↑,
JNK↑,

354- SNP,    Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum- and mitochondrial pathways that lengthen endoplasmic reticulum-mitochondria contact sites and alter inositol-3-phosphate receptor function
- in-vitro, neuroblastoma, SH-SY5Y
TumCD↑, dose dependent manner
ER Stress↑,
GRP78/BiP↑,
p‑PERK↑, p-PERK
CHOP↑,
Ca+2↑, enhanced mitochondrial Ca2+ uptake
XBP-1↑,
p‑IRE1↑,

355- SNP,    Cytotoxicity and Genotoxicity of Biogenic Silver Nanoparticles in A549 and BEAS-2B Cell Lines
- in-vitro, Lung, A549 - in-vitro, NA, BEAS-2B
ROS↑,
DNAdam↑,
Apoptosis↑,

356- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7 - in-vitro, Bladder, HTB-22
Apoptosis↑,
P53↑, Up-regulation in the expression level of p53, iNOS and NF-kB genes as well as down-regulation of Bcl-2 and miRNA-125b genes were detected post treatment.
iNOS↑,
NF-kB↑,
Bcl-2↓,
ROS↑, the present study evaluated the levels of ROS as well as the antioxidant enzymes (SOD and CAT)
SOD↑,
TumCCA↑, S phase arrest and accumulation of cells in G2/M phase was observed following exposure to AgNPs and EMF, respectively.
eff↑, Apoptosis induction was obvious following exposure to either ELF-EMF or AgNPs, however their apoptotic potential was intensified when applied in combination
Catalase↑, Catalase (CAT)
other↑, swollen cells, swollen nuclei with mixed euchromatin and heterochromatin, ruptured cell membranes

357- SNP,    Hypoxia-mediated autophagic flux inhibits silver nanoparticle-triggered apoptosis in human lung cancer cells
- in-vitro, Lung, A549 - in-vitro, Lung, L132
mtDam↑,
ROS↑,
Hif1a↑, HIF-1α expression was upregulated after AgNPs treatment under both hypoxic and normoxic conditions HIF-1α knockdown enhances hypoxia induced decrease in cell viability
LC3s↑,
p62↑,
eff↓, Hypoxia decreases the effects of anticancer drugs in solid tumor cells through the regulation of HIF-1α

358- SNP,    Preparation of triangular silver nanoparticles and their biological effects in the treatment of ovarian cancer
- vitro+vivo, Ovarian, SKOV3
TumCCA↑, arrested the cell cycle in G0/G1 phase
ROS↑,
Casp3↑,
TumCG↓,
cycD1↓, and cyclinA2

359- SNP,    Anti-cancer & anti-metastasis properties of bioorganic-capped silver nanoparticles fabricated from Juniperus chinensis extract against lung cancer cells
- in-vitro, Lung, A549 - in-vitro, Nor, HEK293
Casp3↑,
Casp9↑,
P53↑,
ROS↑,
MMP2↓,
MMP9↓,
TumCCA↑, cessation in the G0/G1 phase
*toxicity↓, 9.87ug/ml(cancer cells) and 111.26 µg/ml(normal cells)
TumCMig↓,
TumCI↓,

360- SNP,  Moringa,    Cytotoxic and Genotoxic Evaluation of Biosynthesized Silver Nanoparticles Using Moringa oleifera on MCF-7 and HUVEC Cell Lines
- in-vitro, BC, MCF-7 - in-vitro, BC, HUVECs
DNAdam↑,

361- SNP,    Annona muricata assisted biogenic synthesis of silver nanoparticles regulates cell cycle arrest in NSCLC cell lines
- in-vitro, Lung, A549
Apoptosis↑,
Casp↑,
TumCCA↑,

362- SNP,    Comparative and Mechanistic Study on the Anticancer Activity of Quinacrine-Based Silver and Gold Hybrid Nanoparticles in Head and Neck Cancer
- vitro+vivo, SCC, SCC9
DNAdam↑,
TumVol↓, mice

305- SNP,    Activity and pharmacology of homemade silver nanoparticles in refractory metastatic head and neck squamous cell cancer
- Case Report, HNSCC, NA
OS↑, remission

364- SNP,    Differential Action of Silver Nanoparticles on ABCB1 (MDR1) and ABCC1 (MRP1) Activity in Mammalian Cell Lines
- in-vitro, Lung, A549 - in-vitro, Hepat, HepG2 - in-vitro, CRC, SW-620
TumCD↑,

365- SNP,    Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species
- in-vitro, Hepat, HepG2
ROS↑,
GlucoseCon↓,
TumCD↑,
NRF2↓, Decreased mRNA levels of Nrf2

366- SNP,    Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis
- in-vitro, BC, MCF-7
HIF-1↓,
Hif1a↓, also decreased HIF-2α protein accumulation
VEGF↓, VEGF-A
GLUT1↓,

367- SNP,    Presence of an Immune System Increases Anti-Tumor Effect of Ag Nanoparticle Treated Mice
- in-vivo, NA, NA
ROS↑,
mtDam↑,
TumCG↓,

368- SNP,    In vitro evaluation of silver nanoparticles on human tumoral and normal cells
- in-vitro, Var, NA
mtDam↑,
LDH↓, LDH leakage also increased in all cell lines exposed to AgNPs

369- SNP,    Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
- in-vitro, Liver, NA
ROS↑,
GSH↓,
DNAdam↑,
lipid-P↝, damage
Apoptosis↑,
BAX↑,
Bcl-2↓,
MMP↓, disruption
Casp9↑,
Casp3↑,
JNK↑,

370- SNP,    Differential genotoxicity mechanisms of silver nanoparticles and silver ions
- in-vitro, lymphoma, TK6
ROS↑,

371- SNP,    Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549
- in-vitro, Lung, A549
ROS↑,
mtDam↑,

372- SNP,    Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake
- in-vitro, Hepat, HepG2
NRF2↑,
GSH↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 230

Results for Effect on Cancer/Diseased Cells:
ABC↓,1,   Akt↓,7,   ALAT↓,1,   ALP↓,1,   AMPKα↑,1,   angioG↓,2,   angioG↑,1,   AntiCan↑,15,   antiOx↑,4,   AntiTum↑,5,   APA↑,1,   Apoptosis↑,63,   Apoptosis↝,1,   mt-Apoptosis↑,1,   ascitic↓,1,   AST↓,1,   cl‑ATF6↑,2,   ATP↓,4,   Bacteria↓,7,   Bak↑,2,   BAX↑,27,   Bax:Bcl2↑,2,   BBB↑,1,   Bcl-2↓,25,   Bcl-2↑,1,   Bcl-xL↓,1,   Beclin-1↑,2,   BID↑,2,   BioEnh↑,1,   Ca+2↑,4,   Ca+2↝,1,   Casp↑,2,   Casp12↑,1,   Casp3↑,28,   cl‑Casp3↑,2,   Casp6↑,1,   Casp7↑,3,   Casp8↑,3,   Casp9↑,15,   Catalase↓,3,   Catalase↑,1,   CD34↓,1,   CD4+↑,1,   CD44↓,1,   CD8+↑,1,   CDK2↓,1,   CellMemb↑,2,   chemoP↑,1,   ChemoSen↑,3,   CHOP↑,3,   ChrMod↝,1,   cMyc↑,1,   COX2↓,1,   COX2↑,1,   CSCs↓,3,   CTR1↑,1,   cycD1↓,4,   Cyt‑c↑,11,   DNAdam↑,28,   Dose?,1,   Dose↓,1,   Dose↝,5,   Dose∅,1,   eff↓,11,   eff↑,47,   eff↝,9,   Endon↑,1,   EPR↑,5,   EPR↝,1,   ER Stress↑,11,   ERK↓,2,   p‑ERK↓,2,   p‑ERK↑,1,   ETC↓,1,   GlucoseCon↓,1,   GLUT1↓,1,   GPx↓,1,   GPx↑,2,   GPx4↓,1,   GRP78/BiP↑,3,   GSH↓,13,   GSH/GSSG↓,2,   GSR↓,1,   GSR↑,1,   GutMicro↝,1,   H2O2↑,2,   hepatoP↑,5,   HER2/EBBR2↓,1,   HIF-1↓,3,   Hif1a↓,2,   Hif1a↑,2,   hTERT↓,1,   IL1↓,2,   IL1↑,1,   IL1α↓,1,   IL1β↓,2,   IL1β↑,1,   IL33↑,1,   IL6↓,2,   IL8↑,1,   Inflam↓,1,   iNOS↑,2,   IRE1↑,1,   p‑IRE1↑,1,   JNK↑,4,   Ki-67↓,2,   LC3s↑,2,   LDH↓,10,   LDH↑,2,   lipid-P↑,7,   lipid-P↝,1,   lysoM↓,1,   lysosome↓,1,   MAP2K1/MEK1↓,1,   MDA↑,6,   miR-125b↓,1,   MMP↓,26,   MMP↑,2,   MMP2↓,2,   MMP9↓,3,   MMP9↑,1,   MMPs↓,1,   mtDam↑,14,   mTOR↓,1,   mTOR↑,1,   NA↑,1,   NADPH/NADP+↓,1,   Nanog↓,1,   Necroptosis↑,1,   NF-kB↓,5,   NF-kB↑,2,   NF-kB↝,1,   NLRP3↓,1,   NO↑,3,   NOX↑,1,   NRF2↓,2,   NRF2↑,3,   OCT4↓,1,   OS↑,8,   OSI↑,1,   other↓,1,   other↑,7,   other↝,5,   other∅,1,   P21↑,7,   p38↑,3,   p‑p38↑,1,   P53↓,1,   P53↑,24,   P53↝,2,   p62↓,1,   p62↑,2,   PCNA↓,1,   PD-L1↓,1,   PERK↑,1,   p‑PERK↑,1,   pH↝,1,   PI3K↓,3,   PIK3CA↑,1,   PKCδ↓,1,   PTEN↑,1,   PUMA↝,1,   RadioS↑,9,   Raf↓,1,   ROS↓,1,   ROS↑,96,   mt-ROS↑,2,   selectivity↓,3,   selectivity↑,29,   selenoP↓,1,   SIRT1↑,1,   SOD↓,6,   SOD↑,3,   sonoP↑,1,   sonoS↑,1,   SOX4↓,1,   survivin↓,1,   survivin↑,1,   TAC↓,1,   Telomerase↓,1,   TNF-α↓,4,   TNF-α↑,4,   TOS↑,1,   toxicity↓,1,   toxicity↝,2,   TrxR↓,7,   TrxR1↓,1,   TumAuto↑,11,   TumCCA↑,27,   TumCD↓,1,   TumCD↑,20,   TumCG↓,12,   TumCI↓,2,   TumCMig↓,4,   TumCP↓,12,   tumCV↓,19,   tumCV↑,1,   TumMeta↓,3,   TumVol↓,8,   UPR↑,3,   VEGF↓,5,   VEGF↑,1,   Weight↑,2,   XBP-1↑,2,   γH2AX↑,2,  
Total Targets: 205

Results for Effect on Normal Cells:
ALAT↓,2,   AntiDiabetic↑,2,   AntiFungal↑,1,   antiOx↑,8,   AntiViral↑,2,   AST↓,2,   ATP↓,1,   Bacteria↓,11,   BAX↑,1,   BBB↑,2,   Bcl-2↓,1,   BioAv↑,2,   BMD↑,1,   Bone Healing↑,1,   Casp3↑,1,   Catalase↑,4,   CHOP↑,1,   COX2↓,1,   Diff↑,1,   Dose↝,3,   eff?,1,   eff↓,1,   eff↑,18,   eff↝,1,   cl‑eIF2α↑,1,   EPR↑,1,   glucose↓,1,   GPx↑,3,   GRP78/BiP↑,1,   GSH↓,2,   GSH↑,3,   GSTA1↑,1,   GSTs↑,1,   GutMicro↝,1,   hepatoP↑,5,   HO-1↑,1,   IL1↓,1,   IL10↑,1,   IL1β↓,1,   IL4↑,1,   IL5↑,1,   IL6↓,2,   Inf↓,1,   Inflam↓,9,   IronCh↑,1,   JNK↑,1,   LC3II↑,1,   LDH↓,1,   lipid-P↓,1,   MDA↓,4,   MDA↑,1,   MMP↓,1,   MMP11↑,1,   MMP3↑,1,   MMP9↓,1,   MPO↓,1,   neuroP↑,1,   NF-kB↓,3,   NLRP3↓,1,   NO↓,2,   NO↑,1,   NRF2↑,1,   other↑,2,   other↝,6,   p62↑,1,   p‑PERK↑,1,   RenoP↑,2,   ROS↓,5,   ROS↑,4,   ROS∅,1,   mt-ROS↑,1,   selectivity↑,1,   SIRT1↑,1,   SOD↑,4,   TGF-β↑,1,   TNF-α↓,2,   TNF-α↑,1,   toxicity↓,10,   toxicity↝,7,   TrxR↓,1,   TumCP↓,1,   VEGF↓,1,   Wound Healing↑,2,  
Total Targets: 83

Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:153  Target#:%  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page