| Features: |
| Silver NanoParticles Summary: 1. Smaller sizes desirable due to greater surface area, and cell penetration (enhanced permeability and retention (EPR) effect) 2. Two main types: AgNP and silver ions (big debate on uses: Ag+ turning to AgCl in stomach but AgCl also effective. Take sodium-bicarbonate? 3. Dose example 80kg person: 1.12-2mg/day, which can be calculated based on ppm and volume taken (see below) target < 10ppm and 120mL per day (30ppm and 1L per day caused argyria 30mg/day ) (Case Report: 9‐15 ppm@120mL, i.e. 1.1mg/L to 1.8mg/L per day) Likely 10ppm --> 10mg/L, hence if take 100mL, then 1mg/day? (for Cancer) The current Rfd for oral silver exposure is 5 ug/kg/d with a critical dose estimated at 14 ug/kg/d for the average person. Seems like the Cancer target range is 14ug/kg/day to 25ug/kg/day. 80Kg example: 1.12mg to 2mg “1.4µg/kg body weight. If I would have 70kg, I would want to use 100µg/day. However, for fighting active disease, I would tend to explore higher daily dose, as I think this may be too low.” 4. AntiOxidants/NAC can counter act the effect of Silver NanoParticles from producing reactive oxygen species (ROS) and mitochondrial damage . NAC is a supplement form of cysteine, an amino acid that helps make glutathione, a powerful antioxidant. 5. In vitro most reports indicate AgNPs increase ROS in both cancer and normal cell (but in vivo improved antioxidant system of normal may create selectivity) 6. Pathways/mechanisms of action/: -” intracellular ROS was increased...reduction in levels of glutathione (GSH)” -”AgNPs affect the function of the vascular endothelial growth factor (VEGF)” (likely reducing levels) -”expression of BAX and BCL2 genes was increased” -”upregulation of proapoptotic genes (p53, p21, Bax, and caspases) and downregulation of antiapoptotic genes (Bcl-2)” -” upregulation of AMPK and downregulation of mTOR, MMP-9, BCL-2, and α-SMA” -”p53 is a key player...proapoptotic genes p53 and Bax were significantly increased... noticeable reduction in Bcl-2 transcript levels” -” p53 participates directly in the intrinsic apoptosis pathway by regulating the mitochondrial outer membrane permeabilization” - “Proapoptotic markers (BAX/BCL-XL, cleaved poly(ADP-ribose) polymerase, p53, p21, and caspases 3, 8 and 9) increased.” -”The antiapoptotic markers, AKT and NF-kB, decreased in AgNP-treated cells.” Silver NanoParticles and Magnetic Fields Summary: 1. “exposure to PMF increased the ability of AgNPs uptake” 2. 6x improvement from AgNPs alone could glucose capping of SilverNPs work as trojan horse? Sodium selenite might protect against toxicity of AgNPs in normal cells. -uncoated AgNPs can degrade the gut microbiome. PVP, citrate, green-synthesized, chitosan coating, may reduce the effect. Also may be true for Selenium(Sodium selenite) becuase of antioxidant properties, slowing oxidation of Ag0 to Ag+. co-ingestion with food (higher pH) favors reduction and lower Ag+ levels. -action mechanisms of AgNPs: the release of silver ions (Ag+), generation of reactive oxygen species (ROS), destruction of membrane structure. AgNP anticancer effects come from three overlapping mechanisms: -Nanoparticle–cell interaction (uptake, membrane effects) -Intracellular ROS generation -Controlled Ag⁺ release inside cancer cells Comparison adding Citrate Capping | Property | Uncapped AgNPs | Citrate-capped AgNPs | | --------------------- | -------------- | -------------------- | | Stability | Poor | Excellent | | Free Ag⁺ | High | Low | | Normal cell toxicity | Higher | Lower | | Cancer selectivity | Lower | **Higher** | | Mechanism specificity | Crude | **Targeted** | | Storage behavior | Degrades | Stable | |
| 3579- | CUR, | SNP, | Metal–Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin |
| - | Review, | NA, | NA |
| 664- | EGCG, | SNP, | Epigallocatechin-3-gallate-capped Ag nanoparticles: preparation and characterization |
| - | Analysis, | NA, | NA |
| 2833- | FIS, | SNP, | Glucose-capped fisetin silver nanoparticles induced cytotoxicity and ferroptosis in breast cancer cells: A molecular perspective |
| - | in-vitro, | BC, | MDA-MB-231 |
| 1904- | GoldNP, | SNP, | Unveiling the Potential of Innovative Gold(I) and Silver(I) Selenourea Complexes as Anticancer Agents Targeting TrxR and Cellular Redox Homeostasis |
| - | in-vitro, | Lung, | H157 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Colon, | HCT15 | - | in-vitro, | Melanoma, | A375 |
| 848- | Gra, | SNP, | Synthesis, Characterization and Evaluation of Antioxidant and Cytotoxic Potential of Annona muricata Root Extract-derived Biogenic Silver Nanoparticles |
| - | in-vitro, | CRC, | HCT116 |
| 854- | Gra, | SNP, | Green Synthesis of Silver Nanoparticles Using Annona muricata Extract as an Inducer of Apoptosis in Cancer Cells and Inhibitor for NLRP3 Inflammasome via Enhanced Autophagy |
| - | vitro+vivo, | AML, | THP1 | - | in-vitro, | AML, | AMJ13 | - | vitro+vivo, | lymphoma, | HBL |
| 853- | Gra, | SNP, | Solid lipid nanoparticles of Annona muricata fruit extract: formulation, optimization and in vitro cytotoxicity studies |
| 861- | Lae, | Chit, | SNP, | Synthesis of polygonal chitosan microcapsules for the delivery of amygdalin loaded silver nanoparticles in breast cancer therapy |
| 4575- | RT, | SNP, | Rutin-Loaded Silver Nanoparticles With Antithrombotic Function |
| - | in-vivo, | NA, | NA |
| 323- | Sal, | SNP, | Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Ovarian, | A2780S |
| 4607- | Se, | SNP, | A Review on synthesis and their antibacterial activity of Silver and Selenium nanoparticles against biofilm forming Staphylococcus aureus |
| - | Review, | NA, | NA |
| 4604- | Se, | SNP, | Chit, | The ameliorative effect of selenium-loaded chitosan nanoparticles against silver nanoparticles-induced ovarian toxicity in female albino rats |
| - | in-vivo, | Nor, | NA |
| 4602- | Se, | SNP, | GoldNP, | Advances in nephroprotection: the therapeutic role of selenium, silver, and gold nanoparticles in renal health |
| - | NA, | Nor, | NA |
| 4601- | Se, | SNP, | Antioxidant and hepatoprotective role of selenium against silver nanoparticles |
| - | in-vivo, | Nor, | NA |
| 4440- | Se, | SNP, | Selenium, silver, and gold nanoparticles: Emerging strategies for hepatic oxidative stress and inflammation reduction |
| - | Review, | NA, | NA |
| 4574- | SNP, | Advances in nano silver-based biomaterials and their biomedical applications |
| - | Review, | NA, | NA |
| 4559- | SNP, | Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation |
| - | in-vitro, | BC, | SkBr3 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Colon, | Caco-2 |
| 4560- | SNP, | Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2) |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Diabetic, | NA |
| 4561- | SNP, | VitC, | Cellular Effects Nanosilver on Cancer and Non-cancer Cells: Potential Environmental and Human Health Impacts |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Nor, | HEK293 |
| 4562- | SNP, | VitC, | Eco-friendly Synthesis of Silver Nanoparticles using Ascorbic Acid and its Optical Characterization |
| - | Study, | NA, | NA |
| 4563- | SNP, | Rad, | Silver nanoparticles enhance neutron radiation sensitivity in cancer cells: An in vitro study |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | GBM, | U87MG | - | in-vitro, | Melanoma, | A431 |
| 4564- | SNP, | GoldNP, | Cu, | Chemo, | PDT | Cytotoxicity and targeted drug delivery of green synthesized metallic nanoparticles against oral Cancer: A review |
| - | Review, | Var, | NA |
| 4573- | SNP, | Bioactive silver nanoparticles derived from Carica papaya floral extract and its dual-functioning biomedical application |
| - | in-vitro, | Var, | MCF-7 | - | NA, | NA, | HEK293 |
| 4557- | SNP, | The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells |
| - | in-vitro, | NA, | NIH-3T3 | - | in-vitro, | CRC, | HCT116 |
| 4576- | SNP, | Nanosilver, Next-Generation Antithrombotic Agent |
| - | Study, | NA, | NA |
| 4577- | SNP, | Characterization of Antiplatelet Properties of Silver Nanoparticles |
| - | vitro+vivo, | Stroke, | NA |
| 4558- | SNP, | Role of Oxidative and Nitro-Oxidative Damage in Silver Nanoparticles Cytotoxic Effect against Human Pancreatic Ductal Adenocarcinoma Cells |
| - | in-vitro, | PC, | PANC1 |
| 4580- | SNP, | Biogenic Synthesis of Antibacterial, Hemocompatible, and Antiplatelets Lysozyme Functionalized Silver Nanoparticles through the One-Step Process for Therapeutic Applications |
| - | in-vitro, | NA, | NA |
| 4556- | SNP, | Biofilm Impeding AgNPs Target Skin Carcinoma by Inducing Mitochondrial Membrane Depolarization Mediated through ROS Production |
| - | in-vitro, | Melanoma, | A431 |
| 4555- | SNP, | Silver nanoparticles from Dendropanax morbifera Léveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 |
| 4554- | SNP, | Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects |
| - | in-vitro, | Cerv, | HeLa |
| 4553- | SNP, | Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types |
| - | in-vitro, | Nor, | RAW264.7 |
| 4552- | SNP, | ART/DHA, | Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS) |
| - | in-vitro, | GC, | AGS |
| 4551- | SNP, | Fenb, | Ångstrom-Scale Silver Particles as a Promising Agent for Low-Toxicity Broad-Spectrum Potent Anticancer Therapy |
| - | in-vivo, | Lung, | NA |
| 4550- | SNP, | The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study |
| - | Study, | Nor, | NA |
| 4549- | SNP, | Silver nanoparticles: Synthesis, medical applications and biosafety |
| - | Review, | Var, | NA | - | Review, | Diabetic, | NA |
| - | in-vitro, | BC, | MCF-7 |
| 4589- | SNP, | Chit, | Synthesis and Characterization of Chitosan–Silver Nanocomposite Film: Antibacterial and Cytotoxicity Study |
| - | in-vitro, | NA, | NA |
| 4661- | SNP, | Silver nanoparticles induces apoptosis of cancer stem cells in head and neck cancer |
| - | in-vitro, | HNSCC, | NA |
| 4600- | SNP, | Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model |
| - | in-vivo, | Nor, | NA |
| 4599- | SNP, | ProBio, | Impacts of dietary silver nanoparticles and probiotic administration on the microbiota of an in-vitro gut model |
| - | in-vivo, | Nor, | NA |
| 4598- | SNP, | In vivo human time-exposure study of orally dosed commercial silver nanoparticles |
| - | in-vivo, | Nor, | NA |
| 4596- | SNP, | Oral administration of silver nanomaterials affects the gut microbiota and metabolic profile altering the secretion of 5-HT in mice |
| - | in-vivo, | NA, | NA |
| 4595- | SNP, | ORAL DELIVERY OF SILVER NANOPARTICLES – A REVIEW |
| - | Review, | NA, | NA |
| 4594- | SNP, | Citrate, | Bioavailability and Toxicokinetics of citrate-coated silver nanoparticles in rats |
| - | in-vivo, | Nor, | NA |