3BP, 3-bromopyruvate: Click to Expand ⟱
Features:
3BP, a small molecule, results in a remarkable therapeutic effect when it comes to treating cancers exhibiting a "Warburg effect."
Overall, 3BP attacks cancer cells by “starving” them of energy, leading to energetic collapse, oxidative damage, and eventual cell death.

- 3BP is known to inhibit enzymes involved in glycolysis, such as hexokinase II (HKII). Many cancer cells overexpress HKII and rely on glycolysis for ATP production. Inhibiting HKII leads to decreased ATP levels and energy depletion.
- Fermentation inhibitor:(inhibits conversion of pyruvate to lactate) NAD+ is compromised slowing Glycolysis leading to reduced ATP
- By depleting ATP, 3BP can impair mitochondrial functions indirectly.
- LDH converts pyruvate to lactate. In many cancers, lactate production is high (the Warburg effect). Inhibition of LDH disrupts lactate production and may contribute to an intracellular buildup of toxic metabolites.
- There is evidence indicating that, by interfering with glycolysis, 3BP might also indirectly affect the PPP. This reduces the production of NADPH, weakening the cancer cell’s ability to manage oxidative stress.
- Impairing energy metabolism, 3BP can indirectly affect mitochondrial function, potentially leading to an increase in ROS production.

Although 3BP shows promise as a metabolic inhibitor with anticancer properties, its transition from preclinical studies to approved clinical therapy has not yet been realized.

-Combining metabolic inhibitors like 3BP with agents that modulate ROS levels could represent a synergistic approach in cancer therapy. By simultaneously disrupting energy production and exacerbating oxidative stress, such combinations may more effectively induce cancer cell death while sparing normal cells.

In advanced cancer it has been known to kill the cancer too fast, causing liver failure and death.


Scientific Papers found: Click to Expand⟱
1340- 3BP,    Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study
- Review, NA, NA
Glycolysis↓, inhibiting key glycolysis enzymes
HK2↓,
LDH↓,
OXPHOS↓, inhibits mitochondrial oxidative phosphorylation
angioG↓,
H2O2↑, induces hydrogen peroxide generation in cancer cells (oxidative stress effect)
eff↑, Concurrent use of a GSH depletor(paracetamol) with 3BP killed resistant melanoma cells

1341- 3BP,    The HK2 Dependent “Warburg Effect” and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate
- Review, NA, NA
Glycolysis↓, second-generation glycolysis inhibitor.
OXPHOS↓,
*toxicity↓, Normal cells remain unharmed
ROS↑, well known that this compound generates ROS
GSH↓,
eff↑, 3BP demonstrates synergistic activity with other compounds that reduce intracellular levels of GSH


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
angioG↓,1,   eff↑,2,   Glycolysis↓,2,   GSH↓,1,   H2O2↑,1,   HK2↓,1,   LDH↓,1,   OXPHOS↓,2,   ROS↑,1,  
Total Targets: 9

Results for Effect on Normal Cells:
toxicity↓,1,  
Total Targets: 1

Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:20  Target#:%  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page