Database Query Results : Coenzyme Q10, ,

CoQ10, Coenzyme Q10: Click to Expand ⟱
Features:
Coenzyme Q10 (CoQ10), also known as ubiquinone, is a fat-soluble antioxidant and a critical component of the mitochondrial electron transport chain, essential for ATP production. Its potential role in Alzheimer’s disease (AD) and cancer has been increasingly studied, mainly due to its effects on oxidative stress, mitochondrial function, and cellular energy metabolism.

Two types: ubiquinone(standard) vs ubiquinol(more bioavailable)

-high content in beef heart -Acts as an antioxidant, reducing ROS
-Some preclinical studies suggest CoQ10 may reduce Aβ-induced neurotoxicity
-CoQ10 is sometimes used with chemotherapy to reduce cardiotoxicity (especially with doxorubicin).
-Essential for ATP (energy) production.

-CoQ10 levels may drop by 25–40% in people taking statins.
-May support mitochondrial function in neurodegenerative diseases, including Alzheimer’s and Parkinson’s

Coenzyme Q10 exists in three redox states:
Form	         Name	          Abbreviation	Redox state
Oxidized	Ubiquinone	    CoQ10	Oxidized (labeled “Coenzyme Q10”, “CoQ10”)
Semiquinone	Ubiquinol radical   CoQ10•–	Intermediate (labeled “Ubiquinol”, “Reduced CoQ10”)
Reduced	        Ubiquinol	    CoQ10H₂	Reduced

Most supplements = ubiquinol (reduced, antioxidant)
  Ubiquinol is often preferred for cardiovascular, aging, and antioxidant-focused use.
BPM31510 = ubiquinone (oxidized) (might raise ROS in cancer cells)

>80–95% of circulating CoQ10 is ubiquinol, regardless of whether ubiquinone or ubiquinol was ingested

-CoQ10 is fat-soluble, so take it alongside meals that include nutrient-dense fats like coconut oil, butter or tallow in moderation
-initial 200-300mg/day (split during day) down to 100mg after 21 days

BPM31510: Pharmaceutical oxidized CoQ10
BPM31510 = oxidized CoQ10 (ubiquinone) in a specialized lipid formulation.
BPM31510 increases Mitochondrial ROS in cancer cells. That increase is intentional, central to its mechanism, and relatively selective for tumor cells.
BPM31510 Studies report in cancer cells:
↑ mitochondrial ROS
↑ lipid peroxidation
↓ NADPH/NADP⁺ ratio
↓ GSH/GSSG ratio
Activation of oxidative stress pathways
Cell death without classic antioxidant rescue
Importantly: Trolox, NAC, or GSH can partially blunt BPM31510 effects, confirming ROS dependence

Scientific Papers found: Click to Expand⟱
4774- 5-FU,  TQ,  CoQ10,    Exploring potential additive effects of 5-fluorouracil, thymoquinone, and coenzyme Q10 triple therapy on colon cancer cells in relation to glycolysis and redox status modulation
- in-vitro, CRC, NA
AntiCan↑, TumCCA↑, Apoptosis↑, eff↑, Bcl-2↓, survivin↓, P21↑, p27↑, BAX↑, Cyt‑c↑, Casp3↑, PI3K↓, Akt↓, mTOR↓, Hif1a↓, PTEN↑, AMPKα↑, PDH↑, LDHA↓, antiOx↓, ROS↑, AntiCan↑,
4763- CoQ10,  Chemo,  doxoR,    Effect of Coenzyme Q10 on Doxorubicin Cytotoxicity in Breast Cancer Cell Cultures
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549
ChemoSen∅, antiNeop∅, *cardioP↑, Dose↝, selectivity↑, TumCG∅, TumCG∅, Apoptosis∅,
4776- CoQ10,    Antitumor properties of Coenzyme Q0 against human ovarian carcinoma cells via induction of ROS-mediated apoptosis and cytoprotective autophagy
- vitro+vivo, Ovarian, SKOV3
ROS↑, eff↓, AntiCan↑, Apoptosis↑, tumCV↓, TumCG↓, TumCCA↑, LC3s↑, ERStress↑, Beclin-1↑, Bax:Bcl2↑, HER2/EBBR2↓, Akt↓, mTOR↓,
4775- CoQ10,  Chemo,    Chemotherapy induces an increase in coenzyme Q10 levels in cancer cell lines
- in-vitro, Var, NA
ChemoSen↓, *antiOx↑, *lipid-P?,
4773- CoQ10,    Coenzyme Q10 inhibits the activation of pancreatic stellate cells through PI3K/AKT/mTOR signaling pathway
- in-vitro, Nor, NA
*other↓, *PI3K↑, *Akt↑, *mTOR↑, *ROS↓,
4772- CoQ10,    The anti-tumor activities of coenzyme Q0 through ROS-mediated autophagic cell death in human triple-negative breast cells
- in-vitro, BC, MDA-MB-468 - in-vitro, BC, MDA-MB-231
TumCP↓, Apoptosis↑, Casp3↑, cl‑PARP↑, LC3II↑, eff↓, TumCG↓, Bax:Bcl2↑, Beclin-1↑, TumAuto↑, ROS↑,
4771- CoQ10,    Coenzyme Q10 Protects Astrocytes from ROS-Induced Damage through Inhibition of Mitochondria-Mediated Cell Death Pathway
- Review, Var, NA
*ROS↓,
4770- CoQ10,  VitK2,    Cancer cell stiffening via CoQ10 and UBIAD1 regulates ECM signaling and ferroptosis in breast cancer
- in-vitro, BC, MDA-MB-231
other↑, *antiOx↑, Risk↓, other↑, TumMeta↓, ECM/TCF↓, Akt2↓, Ferroptosis↑, eff↑,
4769- CoQ10,    CoQ10 Is Key for Cellular Energy and Cancer Support
- Review, Var, NA
Risk↓, TumCG↓, angioG↓, TumCD↑, *toxicity↓, *BioAv↑, MMPs↓, Inflam↓, chemoP↑, cardioP↑, *ROS↓, *toxicity↝, Dose?,
4768- CoQ10,    Role of coenzymes in cancer metabolism
- Review, Var, NA
Risk↓, *ROS↓, AntiCan↑, TumMeta↓, ROS↑, TumCG↓, Apoptosis↑, TumMeta↓, Wnt↓, β-catenin/ZEB1↓, TumCG↓, selectivity↑, RadioS↑, ChemoSen↑, H2O2↓, MMP2↓, cardioP↑, ChemoSen∅, Dose↝,
4767- CoQ10,    Efficacy of Coenzyme Q10 for Improved Tolerability of Cancer Treatments: A Systematic Review
- Review, Var, NA
chemoP↑, cardioP↑, hepatoP↑, eff↝,
4766- CoQ10,    Activities of Vitamin Q10in Animal Models and a Serious Deficiency in Patients with Cancer
- Review, Var, NA
Risk↓,
4764- CoQ10,  VitE,    Auxiliary effect of trolox on coenzyme Q10 restricts angiogenesis and proliferation of retinoblastoma cells via the ERK/Akt pathway
- in-vitro, RPE, Y79 - in-vitro, Nor, ARPE-19 - in-vivo, NA, NA
tumCV↓, Apoptosis↑, ROS↑, MMP↓, TumCCA↑, VEGF↓, ERK↓, Akt↓, ChemoSen↑, chemoP↑, toxicity↓, angioG↓,
3990- CoQ10,    Serum levels of coenzyme Q10 in patients with Alzheimer's disease
- Study, AD, NA
*other∅,
4762- CoQ10,    The role of coenzyme Q10 as a preventive and therapeutic agent for the treatment of cancers
- Review, Var, NA
*AntiCan↓, *ROS↓, chemoPv↑, TumCCA↑, Apoptosis↑, TumCP↓, angioG↓, MMPs↓, ChemoSen∅,
4761- CoQ10,    Elevated levels of mitochondrial CoQ10 induce ROS-mediated apoptosis in pancreatic cancer
- in-vitro, PC, NA - in-vivo, PC, NA
*ETC↝, ROS↑, *antiOx↑, ROS↑, OCR↓, MMP↓, TumCD↑, TumCG↓, other↝,
4258- CoQ10,    Neuroprotective effects of coenzyme Q10-loaded exosomes obtained from adipose-derived stem cells in a rat model of Alzheimer's disease
- in-vivo, AD, NA
*memory↑, *BDNF↑, *cognitive↑, *SOX2↑,
4257- CoQ10,    Dietary intake of coenzyme Q10 reduces oxidative stress in patients with acute ischemic stroke: a double-blind, randomized placebo-controlled study
- Trial, Stroke, NA
*MDA↓, *IL6↓, *SOD↑, *BDNF↑, *ROS↓, *Inflam↓, *neuroP↑,
3997- CoQ10,    Coenzyme Q and Its Role in the Dietary Therapy against Aging
- Review, AD, NA
*AntiAge↑, *Inflam↓, *antiOx↑, *Apoptosis↓, *BioAv↑, *other↝, *cognitive↑, *DNAdam↓, *ER Stress↓,
3996- CoQ10,    Coenzyme Q10 decreases TNF-alpha and IL-2 secretion by human peripheral blood mononuclear cells
- in-vitro, Nor, NA
*TNF-α↓,
3995- CoQ10,    Effects of Coenzyme Q10 on TNF-alpha secretion in human and murine monocytic cell lines
- in-vitro, NA, NA
*TNF-α↓, *antiOx↑, *Inflam↓,
3994- CoQ10,  Se,    Coenzyme Q10 Supplementation in Aging and Disease
- Review, AD, NA - Review, Park, NA
*AntiAge↑, *cardioP↑, *Inflam↓, *antiOx↑, *lipid-P↓, *QoL↑, *neuroP↑, *Dose↝, *BP↓, *IGF-1↑, *IGFBP1↑, *eff↑, *LDL↓, *HDL↑, *eff↑, *other↑, *RenoP↑, *ROS↓, *TNF-α↓, *IL6↓, *other↝, *other∅,
3993- CoQ10,    Coenzyme Q10 Decreases Amyloid Pathology and Improves Behavior in a Transgenic Mouse Model of Alzheimer’s Disease
- Review, Park, NA - Review, AD, NA
*neuroP↑, *Aβ↓, *ROS↓, *cognitive↑, *antiOx↑,
3992- CoQ10,    Coenzyme Q10
- Review, AD, NA
*antiOx↑, *SOD↑, *lipid-P↓, *ROS↓, *other?,
3991- CoQ10,    Evaluation of Coenzyme Q as an Antioxidant Strategy for Alzheimer’s Disease
- in-vivo, AD, NA
*ROS↓, *antiOx↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 25

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 1,  

Redox & Oxidative Stress

antiOx↓, 1,   Ferroptosis↑, 1,   H2O2↓, 1,   ROS↑, 7,  

Mitochondria & Bioenergetics

MMP↓, 2,   OCR↓, 1,  

Core Metabolism/Glycolysis

LDHA↓, 1,   PDH↑, 1,  

Cell Death

Akt↓, 3,   Apoptosis↑, 6,   Apoptosis∅, 1,   BAX↑, 1,   Bax:Bcl2↑, 2,   Bcl-2↓, 1,   Casp3↑, 2,   Cyt‑c↑, 1,   Ferroptosis↑, 1,   p27↑, 1,   survivin↓, 1,   TumCD↑, 2,  

Kinase & Signal Transduction

AMPKα↑, 1,   HER2/EBBR2↓, 1,  

Transcription & Epigenetics

other↑, 2,   other↝, 1,   tumCV↓, 2,  

Protein Folding & ER Stress

ERStress↑, 1,  

Autophagy & Lysosomes

Beclin-1↑, 2,   LC3II↑, 1,   LC3s↑, 1,   TumAuto↑, 1,  

DNA Damage & Repair

cl‑PARP↑, 1,  

Cell Cycle & Senescence

P21↑, 1,   TumCCA↑, 4,  

Proliferation, Differentiation & Cell State

ERK↓, 1,   mTOR↓, 2,   PI3K↓, 1,   PTEN↑, 1,   TumCG↓, 6,   TumCG∅, 2,   Wnt↓, 1,  

Migration

Akt2↓, 1,   MMP2↓, 1,   MMPs↓, 2,   TumCP↓, 2,   TumMeta↓, 3,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 3,   ECM/TCF↓, 1,   Hif1a↓, 1,   VEGF↓, 1,  

Immune & Inflammatory Signaling

Inflam↓, 1,  

Drug Metabolism & Resistance

ChemoSen↓, 1,   ChemoSen↑, 2,   ChemoSen∅, 3,   Dose?, 1,   Dose↝, 2,   eff↓, 2,   eff↑, 2,   eff↝, 1,   RadioS↑, 1,   selectivity↑, 2,  

Clinical Biomarkers

HER2/EBBR2↓, 1,  

Functional Outcomes

AntiCan↑, 4,   antiNeop∅, 1,   cardioP↑, 3,   chemoP↑, 3,   hepatoP↑, 1,   Risk↓, 4,   toxicity↓, 1,  
Total Targets: 70

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 9,   HDL↑, 1,   lipid-P?, 1,   lipid-P↓, 2,   MDA↓, 1,   ROS↓, 10,   SOD↑, 2,  

Mitochondria & Bioenergetics

ETC↝, 1,  

Core Metabolism/Glycolysis

LDL↓, 1,  

Cell Death

Akt↑, 1,   Apoptosis↓, 1,  

Transcription & Epigenetics

other?, 1,   other↓, 1,   other↑, 1,   other↝, 2,   other∅, 2,  

Protein Folding & ER Stress

ER Stress↓, 1,  

DNA Damage & Repair

DNAdam↓, 1,  

Proliferation, Differentiation & Cell State

IGF-1↑, 1,   IGFBP1↑, 1,   mTOR↑, 1,   PI3K↑, 1,   SOX2↑, 1,  

Immune & Inflammatory Signaling

IL6↓, 2,   Inflam↓, 4,   TNF-α↓, 3,  

Synaptic & Neurotransmission

BDNF↑, 2,  

Protein Aggregation

Aβ↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 2,   Dose↝, 1,   eff↑, 2,  

Clinical Biomarkers

BP↓, 1,   IL6↓, 2,  

Functional Outcomes

AntiAge↑, 2,   AntiCan↓, 1,   cardioP↑, 2,   cognitive↑, 3,   memory↑, 1,   neuroP↑, 3,   QoL↑, 1,   RenoP↑, 1,   toxicity↓, 1,   toxicity↝, 1,  
Total Targets: 43

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:356  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page