condition found tbRes List
BBR, Berberine: Click to Expand ⟱
Features:
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical.
Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways.

– Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein.
– Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects.

• Effective Dosage in Studies
– Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses.
– Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary.

-IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models)
-IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type
- In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg


-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells



hepatoP, L,hepatoprotective: Click to Expand ⟱
Source:
Type:
Hepatoprotective is the ability of a chemical substance to prevent damage to the liver.

Grapefruit:
-hepatoprotective potential has emerged from the study of naringenin and naringin.
Blueberries/cranberries:
-proanthocyanidins
Grape:
Nopal (Cactus pear) and tuna (Cactus pear fruit) “Opuntia ficus-indica”:
Chamomile (Matricaria chamomilla or Chamomilla recutita):
Silymarin (Silybum marianum):
Blue green algae spirulina :
Propolis (bee glue):

POLYSACCHARIDES
β-glucans


Scientific Papers found: Click to Expand⟱
2677- BBR,    Liposome-Encapsulated Berberine Alleviates Liver Injury in Type 2 Diabetes via Promoting AMPK/mTOR-Mediated Autophagy and Reducing ER Stress: Morphometric and Immunohistochemical Scoring
- in-vivo, Diabetic, NA
*hepatoP↑, berberine (Lip-BBR) to aid in ameliorating hepatic damage and steatosis, insulin homeostasis, and regulating lipid metabolism in type 2 diabetes (T2DM)
*LC3II↑, Lip-BBR treatment promoted autophagy via the activation of LC3-II and Bclin-1 proteins and activated the AMPK/mTOR pathway in the liver tissue of T2DM rats.
*Beclin-1↑,
*AMPK↑,
*mTOR↑,
*ER Stress↓, It decreased the endoplasmic reticulum stress by limiting the CHOP, JNK expression, oxidative stress, and inflammation.
*CHOP↓,
*JNK↓,
*ROS↓,
*Inflam↓,
*BG↓, Oral supplementation of diabetic rats either by Lip-BBR or Vild, 10 mg/kg of each, significantly (p < 0.001) lowered the blood glucose levels of tested diabetic rats compared to the diabetic group.
*SOD↑, when the diabetic rats received Lip-BBR, the decrements were less pronounced compared to the diabetic group by 1.16 fold, 2.52 fold, and 67.57% for SOD, GPX, and CAT, respectively.
*GPx↑,
*Catalase↑,
*IL10↑, Treatment of the diabetic rats with Lip-BBR significantly (p < 0.001) elevated serum IL-10 levels by 37.01% compared with diabetic rats.
*IL6↓, Oral supplementation of Lip-BBR could markedly (p < 0.0001) reduce the elevated serum levels of IL-6 and TNF-α when it is used as a single treatment by 55.83% and 49.54%,
*TNF-α↓,
*ALAT↓, ALT, AST, and ALP in the diabetic group were significantly higher (p < 0.0001) by 88.95%, 81.64%, and 1.8 fold, respectively, compared with those in the control group, but this was reversed by the treatment with Lip-BBR
*AST↓,
*ALP↓,

2675- BBR,    The therapeutic effects of berberine against different diseases: A review on the involvement of the endoplasmic reticulum stress
- Review, Var, NA
*Inflam↓, including anti-inflammatory, antioxidative, anti-apoptotic, antiproliferative, and antihypertensive.
*antiOx↑,
*ER Stress↓, BBR can decrease apoptosis and inflammation following different pathological conditions, which might be mediated by targeting ER stress pathways.
*cardioP↑, protective potential of BBR against several diseases, such as metabolic disorders, cancer, intestinal diseases, cardiovascular, liver, kidney, and central nervous system diseases, in both in vivo and in vitro studies.
*RenoP↑,
*hepatoP↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:

Total Targets: 0

Results for Effect on Normal Cells:
ALAT↓,1,   ALP↓,1,   AMPK↑,1,   antiOx↑,1,   AST↓,1,   Beclin-1↑,1,   BG↓,1,   cardioP↑,1,   Catalase↑,1,   CHOP↓,1,   ER Stress↓,2,   GPx↑,1,   hepatoP↑,2,   IL10↑,1,   IL6↓,1,   Inflam↓,2,   JNK↓,1,   LC3II↑,1,   mTOR↑,1,   RenoP↑,1,   ROS↓,1,   SOD↑,1,   TNF-α↓,1,  
Total Targets: 23

Scientific Paper Hit Count for: hepatoP, L,hepatoprotective
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:41  Target#:1179  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page