condition found tbRes List
BBR, Berberine: Click to Expand ⟱
Features:
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical.
Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways.

– Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein.
– Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects.

• Effective Dosage in Studies
– Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses.
– Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary.

-IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models)
-IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type
- In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg


-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv
Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.
- inhibit Growth/Metastases : , MMPs↓, MMP2, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells



MMP2, metalloproteinase-2: Click to Expand ⟱
Source:
Type:
Matrix metalloproteinase-2 (MMP-2) is an enzyme that plays a significant role in the degradation of extracellular matrix components, which is crucial for various physiological processes, including tissue remodeling, wound healing, and angiogenesis.
Elevated levels of MMP-2 have been associated with poor prognosis in various cancers, including breast, lung, and colorectal cancers.
MMP2 and MMP9: two enzymes are critical to tumor invasion.


Scientific Papers found: Click to Expand⟱
2691- BBR,    Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells
- in-vitro, Oral, KB
tumCV↓, viability of KB cells was found to decrease significantly in the presence of berberine in a dose-dependent manner.
DNAdam↑, berberine induced the fragmentation of genomic DNA, changes in cell morphology, and nuclear condensation.
Casp3↑, caspase-3 and -7 activation, and an increase in apoptosis were observed.
Casp7↑,
FasL↑, Berberine was also found to upregulate significantly the expression of the death receptor ligand, FasL
Casp8↑, triggered the activation of pro-apoptotic factors such as caspase-8, -9 and -3 and poly(ADP-ribose) polymerase (PARP).
Casp9↑,
PARP↑,
BAX↑, Bax, Bad and Apaf-1 were also significantly upregulated by berberine.
BAD↑,
APAF1↑,
MMP2↓, We also found that berberine-induced migration suppression was mediated by downregulation of MMP-2 and MMP-9 through phosphorylation of p38 MAPK.
MMP9↓,
p‑p38↑, This suggests that berberine-induced activation of the p38 and ERK1/2 MAPK pathways is the principal pathway involved in the apoptosis mediated by berberine in KB cells.
ERK↑,
MAPK↑,

2686- BBR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Nor, NA
Inflam↓, BBR has documented to have anti-diabetic, anti-inflammatory and anti-microbial (both anti-bacterial and anti-fungal) properties.
IL6↓, BBRs can inhibit IL-6, TNF-alpha, monocyte chemo-attractant protein 1 (MCP1) and COX-2 production and expression.
MCP1↓,
COX2↓,
PGE2↓, BBRs can also effect prostaglandin E2 (PGE2)
MMP2↓, and decrease the expression of key genes involved in metastasis including: MMP2 and MMP9.
MMP9↓,
DNAdam↑, BBR induces double strand DNA breaks and has similar effects as ionizing radiation
eff↝, In some cell types, this response has been reported to be TP53-dependent
Telomerase↓, This positively-charged nitrogen may result in the strong complex formations between BBR and nucleic acids and induce telomerase inhibition and topoisomerase poisoning
Bcl-2↓, BBR have been shown to suppress BCL-2 and expression of other genes by interacting with the TATA-binding protein and the TATA-box in certain gene promoter regions
AMPK↑, BBR has been shown in some studies to localize to the mitochondria and inhibit the electron transport chain and activate AMPK.
ROS↑, targeting the activity of mTOR/S6 and the generation of ROS
MMP↓, BBR has been shown to decrease mitochondrial membrane potential and intracellular ATP levels.
ATP↓,
p‑mTORC1↓, BBR induces AMPK activation and inhibits mTORC1 phosphorylation by suppressing phosphorylation of S6K at Thr 389 and S6 at Ser 240/244
p‑S6K↓,
ERK↓, BBR also suppresses ERK activation in MIA-PaCa-2 cells in response to fetal bovine serum, insulin or neurotensin stimulation
PI3K↓, Activation of AMPK is associated with inhibition of the PI3K/PTEN/Akt/mTORC1 and Raf/MEK/ERK pathways which are associated with cellular proliferation.
PTEN↑, RES was determined to upregulate phosphatase and tensin homolog (PTEN) expression and decrease the expression of activated Akt. In HCT116 cells, PTEN inhibits Akt signaling and proliferation.
Akt↓,
Raf↓,
MEK↓,
Dose↓, The effects of low doses of BBR (300 nM) on MIA-PaCa-2 cells were determined to be dependent on AMPK as knockdown of the alpha1 and alpha2 catalytic subunits of AMPK prevented the inhibitory effects of BBR on mTORC1 and ERK activities and DNA synthes
Dose↑, In contrast, higher doses of BBR inhibited mTORC1 and ERK activities and DNA synthesis by AMPK-independent mechanisms [223,224].
selectivity↑, BBR has been shown to have minimal effects on “normal cells” but has anti-proliferative effects on cancer cells (e.g., breast, liver, CRC cells) [225–227].
TumCCA↑, BBR induces G1 phase arrest in pancreatic cancer cells, while other drugs such as gemcitabine induce S-phase arrest
eff↑, BBR was determined to enhance the effects of epirubicin (EPI) on T24 bladder cancer cells
EGFR↓, In some glioblastoma cells, BBR has been shown to inhibit EGFR signaling by suppression of the Raf/MEK/ERK pathway but not AKT signaling
Glycolysis↓, accompanied by impaired glycolytic capacity.
Dose?, The IC50 for BBR was determined to be 134 micrograms/ml.
p27↑, Increased p27Kip1 and decreased CDK2, CDK4, Cyclin D and Cyclin E were observed.
CDK2↓,
CDK4↓,
cycD1↓,
cycE↓,
Bax:Bcl2↑, Increased BAX/BCL2 ratio was observed.
Casp3↑, The mitochondrial membrane potential was disrupted and activated caspase 3 and caspases 9 were observed
Casp9↑,
VEGFR2↓, BBR treatment decreased VEGFR, Akt and ERK1,2 activation and the expression of MMP2 and MMP9 [235].
ChemoSen↑, BBR has been shown to increase the anti-tumor effects of tamoxifen (TAM) in both drug-sensitive MCF-7 and drug-resistant MCF-7/TAM cells.
eff↑, The combination of BBR and CUR has been shown to be effective in suppressing the growth of certain breast cancer cell lines.
eff↑, BBR has been shown to synergize with the HSP-90 inhibitor NVP-AUY922 in inducing death of human CRC.
PGE2↓, BBR inhibits COX2 and PEG2 in CRC.
JAK2↓, BBR prevented the invasion and metastasis of CRC cells via inhibiting the COX2/PGE2 and JAK2/STAT3 signaling pathways.
STAT3↓,
CXCR4↓, BBR has been observed to inhibit the expression of the chemokine receptors (CXCR4 and CCR7) at the mRNA level in esophageal cancer cells.
CCR7↓,
uPA↓, BBR has also been shown to induce plasminogen activator inhibitor-1 (PAI-1) and suppress uPA in HCC cells which suppressed their invasiveness and motility.
CSCs↓, BBR has been shown to inhibit stemness, EMT and induce neuronal differentiation in neuroblastoma cells. BBR inhibited the expression of many genes associated with neuronal differentiation
EMT↓,
Diff↓,
CD133↓, BBR also suppressed the expression of many genes associated with cancer stemness such as beta-catenin, CD133, NESTIN, N-MYC, NOTCH and SOX2
Nestin↓,
n-MYC↓,
NOTCH↓,
SOX2↓,
Hif1a↓, BBR inhibited HIF-1alpha and VEGF expression in prostate cancer cells and increased their radio-sensitivity in in vitro as well as in animal studies [290].
VEGF↓,
RadioS↑,

2685- BBR,    Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells
- in-vitro, neuroblastoma, NA
CSCs↓, Berberine attenuated cancer stemness markers CD133, β-catenin, n-myc, sox2, notch2 and nestin.
CD133↓,
β-catenin/ZEB1↓,
n-MYC↓,
SOX2↓,
NOTCH2↓,
Nestin↓,
TumCCA↑, Berberine potentiated G0/G1 cell cycle arrest by inhibiting proliferation, cyclin dependent kinases and cyclins resulting in apoptosis through increased bax/bcl-2 ratio.
TumCP↓,
CDK1↓,
Cyc↓,
Apoptosis↑,
Bax:Bcl2↑,
NCAM↓, The induction of NCAM and reduction in its polysialylation indicates anti-migratory potential which is supported by down regulation of MMP-2/9.
MMP2↓,
MMP9↓,
*Smad1↑, It increased epithelial marker laminin and smad and increased Hsp70 levels also suggest its protective role.
*HSP70/HSPA5↑,
*LAMs↑,

2678- BBR,    Berberine as a Potential Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
*Inflam↓, BBR exerts remarkable anti-inflammatory (94–96), antiviral (97), antioxidant (98), antidiabetic (99), immunosuppressive (100), cardiovascular (101, 102), and neuroprotective (103) activities.
*antiOx↑,
*cardioP↑,
*neuroP↑,
TumCCA↑, BBR could induce G1 cycle arrest in A549 lung cancer cells by decreasing the levels of cyclin D1 and cyclin E1
cycD1↓,
cycE↓,
CDC2↓, BBR also induced G1 cycle arrest by inhibiting cyclin B1 expression and CDC2 kinase in some cancer cells
AMPK↝, BBR has been suggested to induce autophagy in glioblastoma by targeting the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR)/ULK1 pathway
mTOR↝,
Casp8↑, BBR has been revealed to stimulate apoptosis in leukemia by upregulation of caspase-8 and caspase-9
Casp9↑,
Cyt‑c↑, in skin squamous cell carcinoma A431 cells by increasing cytochrome C levels
TumCMig↓, BBR has been confirmed to inhibit cell migration and invasion by inhibiting the expression of epithelial–mesenchymal transition (EMT)
TumCI↓,
EMT↓,
MMPs↓, metastasis-related proteins, such as matrix metalloproteinases (MMPs) and E-cadherin,
E-cadherin↓,
Telomerase↓, BBR has shown antitumor effects by interacting with microRNAs (125) and inhibiting telomerase activity
*toxicity↓, Numerous studies have revealed that BBR is a safe and effective treatment for CRC
GRP78/BiP↓, Downregulates GRP78
EGFR↓, Downregulates EGFR
CDK4↓, downregulates CDK4, TERT, and TERC
COX2↓, Reduces levels of COX-2/PGE2, phosphorylation of JAK2 and STAT3, and expression of MMP-2/-9.
PGE2↓,
p‑JAK2↓,
p‑STAT3↓,
MMP2↓,
MMP9↓,
GutMicro↑, BBR can inhibit tumor growth through meditation of the intestinal flora and mucosal barrier, and generally and ultimately improve weight loss. BBR has been reported to modulate the composition of intestinal flora and significantly reduce flora divers
eff↝, BBR can regulate the activity of P-glycoprotein (P-gp), and potential drug-drug interactions (DDIs) are observed when BBR is coadministered with P-gp substrates
*BioAv↓, the efficiency of BBR is limited by its low bioavailability due to its poor absorption rate in the gut, low solubility in water, and fast metabolism. Studies have shown that the oral bioavailability of BBR is 0.68% in rats
BioAv↑, combining it with p-gp inhibitors (such as tariquidar and tetrandrine) (196, 198), and modification to berberine organic acid salts (BOAs)

2674- BBR,    Berberine: A novel therapeutic strategy for cancer
- Review, Var, NA - Review, IBD, NA
Inflam↓, anti-inflammatory, antidiabetic, antibacterial, antiparasitic, antidiarrheal, antihypertensive, hypolipidemic, and fungicide.
AntiCan↑, elaborated on the anticancer effects of BBR through the regulation of different molecular pathways such as: inducing apoptosis, autophagy, arresting cell cycle, and inhibiting metastasis and invasion.
Apoptosis↑,
TumAuto↑,
TumCCA↑,
TumMeta↓,
TumCI↓,
eff↑, BBR is shown to have beneficial effects on cancer immunotherapy.
eff↑, BBR inhibited the release of Interleukin 1 beta (IL-1β), Interferon gamma (IFN-γ), Interleukin 6 (IL-6), and Tumor Necrosis Factor-alpha (TNF-α) from LPS stimulated lymphocytes by acting as a dopamine receptor antagonist
CD4+↓, BBR inhibited the proliferation of CD4+ T cells and down-regulated TNF-α and IL-1 and thus, improved autoimmune neuropathy.
TNF-α↓,
IL1↓,
BioAv↓, On the other hand, P-Glycoprotein (P-gp), a secretive pump located in the epithelial cell membrane, restricts the oral bioavailability of a variety of medications, such as BBR. The use of P-gp inhibitors is a common and effective way to prevent this
BioAv↓, Regardless of its low bioavailability, BBR has shown great therapeutic efficacy in the treatment of a number of diseases.
other↓, BBR has been also used as an effective therapeutic agent for Inflammatory Bowel Disease (IBD) for several years
AMPK↑, inhibitory effects on inflammation by regulating different mechanisms such as 5′ Adenosine Monophosphate-Activated Protein Kinase (AMPK. Increase of AMPK
MAPK↓, Mitogen-Activated Protein Kinase (MAPK), and NF-κB signaling pathways
NF-kB↓,
IL6↓, inhibiting the expression of proinflammatory genes such as IL-1, IL-6, Monocyte Chemoattractant Protein 1 (MCP1), TNF-α, Prostaglandin E2 (PGE2), and Cyclooxygenase-2 (COX-2)
MCP1↓,
PGE2↓,
COX2↓,
*ROS↓, BBR protected PC-12 cells (normal) from oxidative damage by suppressing ROS through PI3K/AKT/mTOR signaling pathways
*antiOx↑, BBR therapy improved the antioxidant function of mice intestinal tissue by enhancing the levels of glutathione peroxidase and catalase enzymes.
*GPx↑,
*Catalase↑,
AntiTum↑, Besides, BBR leaves great antitumor effects on multiple types of cancer such as breast cancer,69 bladder cancer,70 hepatocarcinoma,71 and colon cancer.72
TumCP↓, BBR exerts its antitumor activity by inhibiting proliferation, inducing apoptosis and autophagy, and suppressing angiogenesis and metastasis
angioG↓,
Fas↑, by increasing the amounts of Fas receptor (death receptor)/FasL (Fas ligand), ROS, ATM, p53, Retinoblastoma protein (Rb), caspase-9,8,3, TNF-α, Bcl2-associated X protein (Bax), BID
FasL↑,
ROS↑,
ATM↑,
P53↑,
RB1↑,
Casp9↑,
Casp8↑,
Casp3↓,
BAX↑,
Bcl-2↓, and declining Bcl2, Bcl-X, c-IAP1 (inhibitor of apoptosis protein), X-linked inhibitor of apoptosis protein (XIAP), and Survivin levels
Bcl-xL↓,
IAP1↓,
XIAP↓,
survivin↓,
MMP2↓, Furthermore, BBR suppressed Matrix Metalloproteinase-2 (MMP-2), and MMP-9 expression.
MMP9↓,
CycB↓, Inhibition of cyclin B1, cdc2, cdc25c
CDC25↓,
CDC25↓,
Cyt‑c↑, BBR inhibited tumor cell proliferation and migration and induced mitochondria-mediated apoptosis pathway in Triple Negative Breast Cancer (TNBC) by: stimulating cytochrome c release from mitochondria to cytosol
MMP↓, decreased the mitochondrial membrane potential, and enabled cytochrome c release from mitochondria to cytosol
RenoP↑, BBR significantly reduced the destructive effects of cisplatin on the kidney by inhibiting autophagy, and exerted nephroprotective effects.
mTOR↓, U87 cell, Inhibition of m-TOR signaling
MDM2↓, Downregulation of MDM2
LC3II↑, Increase of LC3-II and beclin-1
ERK↓, BBR stimulated AMPK signaling, resulting in reduced extracellular signal–regulated kinase (ERK) activity and COX-2 expression in B16F-10 lung melanoma cells
COX2↓,
MMP3↓, reducing MMP-3 in SGC7901 GC and AGS cells
TGF-β↓, BBR suppressed the invasion and migration of prostate cancer PC-3 cells by inhibiting TGF-β-related signaling molecules which induced Epithelial-Mesenchymal Transition (EMT) such as Bone morphogenetic protein 7 (BMP7),
EMT↑,
ROCK1↓, inhibiting metastasis-associated proteins such as ROCK1, FAK, Ras Homolog Family Member A (RhoA), NF-κB and u-PA, leading to in vitro inhibition of MMP-1 and MMP-13.
FAK↓,
RAS↓,
Rho↓,
NF-kB↓,
uPA↓,
MMP1↓,
MMP13↓,
ChemoSen↑, recent studies have indicated that it can be used in combination with chemotherapy agents

2670- BBR,    Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases
- Review, Var, NA
*Inflam↓, According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity
*antiOx↑,
*Ca+2↓, Impaired cerebral arterial vasodilation can be alleviated by berberine in a diabetic rat model via down-regulation of the intracellular Ca2+ processing of VSMCs
*BioAv↓, poor oral absorption and low bioavailability
*BioAv↑, Conversion of biological small molecules into salt compounds may be a method to improve its bioavailability in vivo.
*BioAv↑, Long-chain alkylation (C5-C9) may enhance hydrophobicity, which has been shown to improve bioavailability; for example, 9-O-benzylation further enhances lipophilicity and imparts neuroprotective effect
*angioG↑, figure 2
*MAPK↓,
*AMPK↓, 100 mg/kg berberine daily for 14 days attenuated ischemia–reperfusion injury via hemodynamic improvements and inhibition of AMPK activity in both non-ischemic and ischemic areas of rat heart tissue
*NF-kB↓,
VEGF↓,
PI3K↓,
Akt↓,
MMP2↓,
Bcl-2↓,
ERK↓,

2699- BBR,    Plant Isoquinoline Alkaloid Berberine Exhibits Chromatin Remodeling by Modulation of Histone Deacetylase To Induce Growth Arrest and Apoptosis in the A549 Cell Line
- in-vitro, Lung, A549
HDAC↓, BBR represses total HDAC and also class I, II, and IV HDAC activity through hyperacetylation of histones.
TumCCA↑, BBR triggers positive regulation of the sub-G0/G1 cell cycle progression phase in A549 cells.
TNF-α↓, BBR downregulates oncogenes (TNF-α, COX-2, MMP-2, and MMP-9) and upregulates tumor suppressor genes (p21 and p53) mRNA and protein expressions.
COX2↓,
MMP2↓, BBR Induces Downregulation of MMP-2 and MMP-9
MMP9↓,
P21↑,
P53↑,
Casp↑, triggered the caspase cascade apoptotic pathway in A549 cells
ac‑H3↑, BBR Increases the Acetylation State of Histones H3 and H4.
ac‑H4↑,
ROS↑, BBR Induces ROS Generation, Δψm Alteration, Membrane Loss, and Nuclear Fragmentation
MMP↓,

1299- BBR,    Effects of Berberine and Its Derivatives on Cancer: A Systems Pharmacology Review
- Review, NA, NA
TumCCA↑, G1 phase, G0/G1 phase, or G2/M phase
TP53↑,
COX2↓,
Bax:Bcl2↑,
ROS↑,
VEGFR2↓,
Akt↓,
ERK↓,
MMP2↓, Berberine also decreased MMP-2, MMP-9, E-cadherin, EGF, bFGF, and fibronectin in the breast cancer cells.
MMP9↓,
IL8↑,
P21↑,
p27↑,
E-cadherin↓,
Fibronectin↓,
cMyc↓, The results indicated that these derivatives could selectively induce and stabilize the formation of the c-myc in the parallel molecular G-quadruplex. Accordingly, transcription of c-myc was down-regulated in the cancer cell line

1396- BBR,    Berberine induced down-regulation of matrix metalloproteinase-1, -2 and -9 in human gastric cancer cells (SNU-5) in vitro
- in-vitro, GC, SNU1041 - in-vitro, GC, SNU5
tumCV↓,
ROS↑,
MMP1↓, berberine induced downregulation of MMP-1 -2, and -9 but did not affect the level of MMP-7
MMP2↓,
MMP9↓,
MMP7∅,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 9

Results for Effect on Cancer/Diseased Cells:
Akt↓,3,   AMPK↑,2,   AMPK↝,1,   angioG↓,1,   AntiCan↑,1,   AntiTum↑,1,   APAF1↑,1,   Apoptosis↑,2,   ATM↑,1,   ATP↓,1,   BAD↑,1,   BAX↑,2,   Bax:Bcl2↑,3,   Bcl-2↓,3,   Bcl-xL↓,1,   BioAv↓,2,   BioAv↑,1,   Casp↑,1,   Casp3↓,1,   Casp3↑,2,   Casp7↑,1,   Casp8↑,3,   Casp9↑,4,   CCR7↓,1,   CD133↓,2,   CD4+↓,1,   CDC2↓,1,   CDC25↓,2,   CDK1↓,1,   CDK2↓,1,   CDK4↓,2,   ChemoSen↑,2,   cMyc↓,1,   COX2↓,6,   CSCs↓,2,   CXCR4↓,1,   Cyc↓,1,   CycB↓,1,   cycD1↓,2,   cycE↓,2,   Cyt‑c↑,2,   Diff↓,1,   DNAdam↑,2,   Dose?,1,   Dose↓,1,   Dose↑,1,   E-cadherin↓,2,   eff↑,5,   eff↝,2,   EGFR↓,2,   EMT↓,2,   EMT↑,1,   ERK↓,4,   ERK↑,1,   FAK↓,1,   Fas↑,1,   FasL↑,2,   Fibronectin↓,1,   Glycolysis↓,1,   GRP78/BiP↓,1,   GutMicro↑,1,   ac‑H3↑,1,   ac‑H4↑,1,   HDAC↓,1,   Hif1a↓,1,   IAP1↓,1,   IL1↓,1,   IL6↓,2,   IL8↑,1,   Inflam↓,2,   JAK2↓,1,   p‑JAK2↓,1,   LC3II↑,1,   MAPK↓,1,   MAPK↑,1,   MCP1↓,2,   MDM2↓,1,   MEK↓,1,   MMP↓,3,   MMP1↓,2,   MMP13↓,1,   MMP2↓,9,   MMP3↓,1,   MMP7∅,1,   MMP9↓,8,   MMPs↓,1,   mTOR↓,1,   mTOR↝,1,   p‑mTORC1↓,1,   n-MYC↓,2,   NCAM↓,1,   Nestin↓,2,   NF-kB↓,2,   NOTCH↓,1,   NOTCH2↓,1,   other↓,1,   P21↑,2,   p27↑,2,   p‑p38↑,1,   P53↑,2,   PARP↑,1,   PGE2↓,4,   PI3K↓,2,   PTEN↑,1,   RadioS↑,1,   Raf↓,1,   RAS↓,1,   RB1↑,1,   RenoP↑,1,   Rho↓,1,   ROCK1↓,1,   ROS↑,5,   p‑S6K↓,1,   selectivity↑,1,   SOX2↓,2,   STAT3↓,1,   p‑STAT3↓,1,   survivin↓,1,   Telomerase↓,2,   TGF-β↓,1,   TNF-α↓,2,   TP53↑,1,   TumAuto↑,1,   TumCCA↑,6,   TumCI↓,2,   TumCMig↓,1,   TumCP↓,2,   tumCV↓,2,   TumMeta↓,1,   uPA↓,2,   VEGF↓,2,   VEGFR2↓,2,   XIAP↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 134

Results for Effect on Normal Cells:
AMPK↓,1,   angioG↑,1,   antiOx↑,3,   BioAv↓,2,   BioAv↑,2,   Ca+2↓,1,   cardioP↑,1,   Catalase↑,1,   GPx↑,1,   HSP70/HSPA5↑,1,   Inflam↓,2,   LAMs↑,1,   MAPK↓,1,   neuroP↑,1,   NF-kB↓,1,   ROS↓,1,   Smad1↑,1,   toxicity↓,1,  
Total Targets: 18

Scientific Paper Hit Count for: MMP2, metalloproteinase-2
9 Berberine
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:41  Target#:201  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page