condition found
Features: |
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical. Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways. – Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein. – Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects. • Effective Dosage in Studies – Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses. – Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary. -IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models) -IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type - In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg -Note half-life reports vary 2.5-90hrs?. -low solubility of apigenin in water : BioAv Pathways: - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ - Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK. - inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Also called CCND1 The main function of cyclin D1 is to maintain cell cycle and to promote cell proliferation. Cyclin D1 is a key regulatory protein involved in the cell cycle, particularly in the transition from the G1 phase to the S phase. It is part of the cyclin-dependent kinase (CDK) complex, where it binds to CDK4 or CDK6 to promote cell cycle progression. Cyclin D1 is crucial for the regulation of the cell cycle. Overexpression or dysregulation of cyclin D1 can lead to uncontrolled cell proliferation, a hallmark of cancer. Cyclin D1 is often found to be overexpressed in various cancers. Cyclin D1 can interact with tumor suppressor proteins, such as retinoblastoma (Rb). When cyclin D1 is overexpressed, it can lead to the phosphorylation and inactivation of Rb, releasing E2F transcription factors that promote the expression of genes required for DNA synthesis and cell cycle progression. Cyclin D1 is influenced by various signaling pathways, including the PI3K/Akt and MAPK pathways, which are often activated in cancer. In some cancers, high levels of cyclin D1 expression have been associated with poor prognosis, making it a potential biomarker for cancer progression and treatment response. |
2686- | BBR,  |   | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
- | Review, | Nor, | NA |
2678- | BBR,  |   | Berberine as a Potential Agent for the Treatment of Colorectal Cancer |
- | Review, | CRC, | NA |
1379- | BBR,  |   | Berberine derivative DCZ0358 induce oxidative damage by ROS-mediated JNK signaling in DLBCL cells |
- | in-vitro, | lymphoma, | NA |
2335- | BBR,  |   | Chemoproteomics reveals berberine directly binds to PKM2 to inhibit the progression of colorectal cancer |
- | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | HCT116 | - | in-vivo, | NA, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:41 Target#:73 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid