| Features: |
| Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical. Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways. – Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein. – Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects. • Effective Dosage in Studies – Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses. – Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary. -IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models) -IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type - In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg - very effective AChE inhibitor (Alzheimers) - Berberine may enhance the effects of blood-thinning medications like warfarin and aspirin. -Note half-life reports vary 2.5-90hrs?. -low solubility of apigenin in water : BioAv Pathways: - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ - Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK. - inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
| Source: |
| Type: |
| Cancer Stem Cells Phytochemicals (natural plant-derived compounds) that may affect CSCs: Curcumin — suppresses self-renewal and pathways (Wnt/Notch/Hedgehog). Resveratrol — shown to reduce CSC populations and sphere formation in multiple models. Sulforaphane (from broccoli sprouts) — reported to inhibit CSC properties and pathways; active in vitro and in vivo. EGCG (epigallocatechin-3-gallate, green tea) — reduces CSC markers and sphere formation in several cancer types. Quercetin — reported to inhibit CSC proliferation, self-renewal and invasiveness (breast, endometrial, others). Berberine — shown to suppress CSC “stemness” and reduce tumorigenic properties in multiple models. Genistein (soy isoflavone) — decreases CSC markers, sphere formation and stemness signaling in prostate/breast/other models. Honokiol (Magnolia bark) — shown to eliminate or suppress CSC-like populations in oral, colon, glioma models. Luteolin — inhibits stemness/EMT and reduces CSC markers and self-renewal in breast, prostate and other models. Withaferin A (from Withania somnifera / ashwagandha) — multiple preclinical reports show WA targets CSCs and reduces tumor growth/metastasis in models. |
| 2686- | BBR, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | Nor, | NA |
| 2685- | BBR, | Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells |
| - | in-vitro, | neuroblastoma, | NA |
| 4658- | BBR, | Berberine Suppresses Stemness and Tumorigenicity of Colorectal Cancer Stem-Like Cells by Inhibiting m6A Methylation |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 |
| 2715- | BBR, | Rad, | Berberine Can Amplify Cytotoxic Effect of Radiotherapy by Targeting Cancer Stem Cells |
| - | in-vitro, | BC, | MCF-7 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:41 Target#:795 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid