condition found
Features: |
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical. Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways. – Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein. – Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects. • Effective Dosage in Studies – Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses. – Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary. -IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models) -IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type - In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg -Note half-life reports vary 2.5-90hrs?. -low solubility of apigenin in water : BioAv Pathways: - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ - Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK. - inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDH">LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
LDH is a general term that refers to the enzyme that catalyzes the interconversion of lactate and pyruvate. LDH is a tetrameric enzyme, meaning it is composed of four subunits. LDH refers to the enzyme as a whole, while LDHA specifically refers to the M subunit. Elevated LDHA levels are often associated with poor prognosis and aggressive tumor behavior, similar to elevated LDH levels. However, it's worth noting that some studies have shown that LDHA is a more specific and sensitive biomarker for cancer than total LDH, as it is more closely associated with the Warburg effect and cancer metabolism. Dysregulated LDH activity contributes significantly to cancer development, promoting the Warburg effect (Chen et al., 2007), which involves increased glucose uptake and lactate production, even in the presence of oxygen, to meet the energy demands of rapidly proliferating cancer cells (Warburg and Minami, 1923; Dai et al., 2016b). LDHA overexpression favors pyruvate to lactate conversion, leading to tumor microenvironment acidification and aiding cancer progression and metastasis. Inhibitors: Flavonoids, a group of polyphenols abundant in fruit, vegetables, and medicinal plants, function as LDH inhibitors. • Galloflavin: A flavonoid compound found in the plant Galphimia gracilis, which has been shown to inhibit LDH and have anti-cancer activity. • Fisetin: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity. • Quercetin: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity. • Kaempferol: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity. • Resveratrol: A polyphenol compound found in grapes and other plants, which has been shown to inhibit LDH and have anti-cancer activity. • Curcumin: A polyphenol compound found in turmeric, which has been shown to inhibit LDH and have anti-cancer activity. • Berberine: A compound found in the plant Berberis, which has been shown to inhibit LDH and have anti-cancer activity. • Honokiol: A lignan compound found in the plant Magnolia, which has been shown to inhibit LDH and have anti-cancer activity. • Silibinin: A flavonoid compound found in milk thistle, which has been shown to inhibit LDH and have anti-cancer activity. Others:Ursolic acid, Oleanolic acid, Limonin, Allicin (garlic), Taurine |
2710- | BBR,  |   | Berberine inhibits the Warburg effect through TET3/miR-145/HK2 pathways in ovarian cancer cells |
- | in-vitro, | Ovarian, | SKOV3 |
1092- | BBR,  |   | Berberine as a Potential Anticancer Agent: A Comprehensive Review |
- | Review, | NA, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:41 Target#:906 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid