condition found
Features: |
Berberine is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical. Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways. – Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein. – Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects. • Effective Dosage in Studies – Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses. – Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary. -IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models) -IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type - In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg -Note half-life reports vary 2.5-90hrs?. -low solubility of apigenin in water : BioAv Pathways: - induce ROS production - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓ - Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK. - inhibit Growth/Metastases : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, EZH2↓, P53↑, HSP↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, CD133↓, β-catenin↓, n-myc↓, sox2↓, notch2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, α↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Biological process in which epithelial cells lose their cell polarity and cell-cell adhesion properties and gain mesenchymal traits, such as increased motility and invasiveness. This process is pivotal during embryogenesis and wound healing. Hh signaling pathway is able to regulate the EMT. Snail, E-cadherin and N-cadherin, key components of EMT; EMT-related factors, E-cadherin, N-cadherin, vimentin; The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin. EMT is regulated by various signaling pathways, including TGF-β, Wnt, Notch, and Hedgehog pathways. Transcription factors such as Snail, Slug, Twist, and ZEB play critical roles in repressing epithelial markers (like E-cadherin) and promoting mesenchymal markers (like N-cadherin and vimentin). EMT is associated with increased tumor aggressiveness, enhanced migratory and invasive capabilities, and resistance to apoptosis. |
2693- | BBR,  |   | Antitumor Effects of Berberine on Gliomas via Inactivation of Caspase-1-Mediated IL-1β and IL-18 Release |
- | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | U87MG |
2686- | BBR,  |   | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
- | Review, | Nor, | NA |
2678- | BBR,  |   | Berberine as a Potential Agent for the Treatment of Colorectal Cancer |
- | Review, | CRC, | NA |
2674- | BBR,  |   | Berberine: A novel therapeutic strategy for cancer |
- | Review, | Var, | NA | - | Review, | IBD, | NA |
1102- | BBR,  |   | Berberine suppressed epithelial mesenchymal transition through cross-talk regulation of PI3K/AKT and RARα/RARβ in melanoma cells |
- | in-vitro, | Melanoma, | B16-BL6 |
1392- | BBR,  |   | Based on network pharmacology and experimental validation, berberine can inhibit the progression of gastric cancer by modulating oxidative stress |
- | in-vitro, | GC, | AGS | - | in-vitro, | GC, | MKN45 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:41 Target#:96 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid