condition found
Features: |
Capsaicin is a chemical compound that gives chili peppers their spicy flavor and heat. Biological activity, capsaicin has been reported to exhibit a range of effects, including: Pain relief: 10-50 μM Anti-inflammatory activity: 20-50 μM Antioxidant activity: 10-100 μM Anti-cancer activity: 50-100 μM Cardiovascular health: 20-50 μM Approximate μM concentrations of capsaicin, the active compound in chili peppers, that can be achieved with different amounts of chili peppers: 1 teaspoon of dried chili pepper flakes (5g):~10-50 μM of capsaicin 1 tablespoon of dried chili pepper flakes (15g): ~30-150 μM of capsaicin 1 cup of fresh chili peppers (100g): ~100-500 μM of capsaicin 1 teaspoon of chili pepper extract (5g): ~100-500 μM of capsaicin 1 tablespoon of chili pepper extract (15g): ~300-1500 μM of capsaicin Approximate μM concentrations of capsaicin in various foods that contain capsaicin: Jalapeño peppers: 1 pepper (20g): ~20-100 μM of capsaicin 2–8 mg/100g of fresh Jalapeño Serrano peppers: 1 pepper (10g): ~10-50 μM of capsaicin 5–15 mg/100g Cayenne peppers: 1 pepper (10g): ~50-200 μM of capsaicin Habanero peppers: 1 pepper (20g): ~100-500 μM of capsaicin 15–30 mg/100g Ghost peppers: 1 pepper (20g): ~200-1000 μM of capsaicin Hot sauce: 1 teaspoon (5g): ~10-50 μM of capsaicin Chili flakes: 1 teaspoon (5g): ~10-50 μM of capsaicin Spicy sauces and marinades: 1 tablespoon (15g): ~10-50 μM of capsaicin Cayenne Pepper Powder – Approximate capsaicin content: roughly 5–20 mg/g (15-30g human for 100uM?) -IC50 in Cancer Cell Lines: Approximately 50–300 µM (consume 150mg of capsaican not possible?) -IC50 in Normal Cell Lines: Generally higher—often 2–3 times greater Pathways: -disrupting mitochondrial membrane potential, leading to cytochrome c release and subsequent activation of caspases -Activation of TRPV1: resulting in increased intracellular calcium levels -capsaicin can lead to increased production of ROS within cancer cells -Inhibition of NF-κB -Inhibit PI3K/AKT/mTOR signaling -STAT3 Inhibition -Cell Cycle Arrest -reduce the expression of vascular endothelial growth factor (VEGF) -COX-2 |
Source: |
Type: |
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues. Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance Factors that affect selectivity: 1. Ability of Cancer cells to preferentially absorb a product/drug -EPR-enhanced permeability and retention of cancer cells -nanoparticle formations/carriers may target cancer cells over normal cells -Liposomal formations. Also negatively/positively charged affects absorbtion 2. Product/drug effect may be different for normal vs cancer cells - hypoxia - transition metal content levels (iron/copper) change probability of fenton reaction. - pH levels - antiOxidant levels and defense levels 3. Bio-availability |
2020- | CAP,  |   | Capsaicinoids and Their Effects on Cancer: The “Double-Edged Sword” Postulate from the Molecular Scale |
- | Review, | Var, | NA |
2019- | CAP,  |   | Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer |
- | Review, | Var, | NA |
2018- | CAP,  | MF,  |   | Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma |
- | Review, | HCC, | NA |
2015- | CAP,  | CUR,  | urea,  |   | Anti-cancer Activity of Sustained Release Capsaicin Formulations |
- | Review, | Var, | NA |
2014- | CAP,  |   | Role of Mitochondrial Electron Transport Chain Complexes in Capsaicin Mediated Oxidative Stress Leading to Apoptosis in Pancreatic Cancer Cells |
- | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | Nor, | HPDE-6 | - | in-vivo, | PC, | AsPC-1 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:55 Target#:1110 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid