Database Query Results : Capsaicin, ,

CAP, Capsaicin: Click to Expand ⟱
Features:
Capsaicin is a chemical compound that gives chili peppers their spicy flavor and heat.

Biological activity, capsaicin has been reported to exhibit a range of effects, including:
Pain relief: 10-50 μM
Anti-inflammatory activity: 20-50 μM
Antioxidant activity: 10-100 μM
Anti-cancer activity: 50-100 μM
Cardiovascular health: 20-50 μM

Approximate μM concentrations of capsaicin, the active compound in chili peppers, that can be achieved with different amounts of chili peppers:
1 teaspoon of dried chili pepper flakes (5g):~10-50 μM of capsaicin
1 tablespoon of dried chili pepper flakes (15g): ~30-150 μM of capsaicin
1 cup of fresh chili peppers (100g): ~100-500 μM of capsaicin
1 teaspoon of chili pepper extract (5g): ~100-500 μM of capsaicin
1 tablespoon of chili pepper extract (15g): ~300-1500 μM of capsaicin

Approximate μM concentrations of capsaicin in various foods that contain capsaicin:
Jalapeño peppers: 1 pepper (20g): ~20-100 μM of capsaicin 2–8 mg/100g of fresh Jalapeño
Serrano peppers: 1 pepper (10g): ~10-50 μM of capsaicin 5–15 mg/100g
Cayenne peppers: 1 pepper (10g): ~50-200 μM of capsaicin
Habanero peppers: 1 pepper (20g): ~100-500 μM of capsaicin 15–30 mg/100g
Ghost peppers: 1 pepper (20g): ~200-1000 μM of capsaicin
Hot sauce: 1 teaspoon (5g): ~10-50 μM of capsaicin
Chili flakes: 1 teaspoon (5g): ~10-50 μM of capsaicin
Spicy sauces and marinades: 1 tablespoon (15g): ~10-50 μM of capsaicin

Cayenne Pepper Powder – Approximate capsaicin content: roughly 5–20 mg/g (15-30g human for 100uM?)

-IC50 in Cancer Cell Lines: Approximately 50–300 µM (consume 150mg of capsaican not possible?)
-IC50 in Normal Cell Lines: Generally higher—often 2–3 times greater

Pathways:
-disrupting mitochondrial membrane potential, leading to cytochrome c release and subsequent activation of caspases
-Activation of TRPV1: resulting in increased intracellular calcium levels
-capsaicin can lead to increased production of ROS within cancer cells
-Inhibition of NF-κB
-Inhibit PI3K/AKT/mTOR signaling
-STAT3 Inhibition
-Cell Cycle Arrest
-reduce the expression of vascular endothelial growth factor (VEGF)
-COX-2
-capsaicin is a natural ADAM10 activator and shows potential to attenuate amyloid pathology and protect against AD


Scientific Papers found: Click to Expand⟱
288- ALA,  HCA,  CAP,  Octr,    Tumor regression with a combination of drugs interfering with the tumor metabolism: efficacy of hydroxycitrate, lipoic acid and capsaicin
"highlight2" >TumCG↓,
2015- CAP,  CUR,  urea,    Anti-cancer Activity of Sustained Release Capsaicin Formulations
- Review, Var, NA
"highlight2" >AntiCan↑, "highlight2" >TumCG↓, "highlight2" >angioG↓, "highlight2" >TumMeta↓, "highlight2" >BioAv↓, "highlight2" >BioAv↓, "highlight2" >BioAv↑, "highlight2" >selectivity↑, "highlight2" >EPR↑, "highlight2" >eff↓, "highlight2" >ChemoSen↑, "highlight2" >Dose∅, "highlight2" >Half-Life∅, "highlight2" >eff↑,
4266- CAP,    Capsaicin effects on brain-derived neurotrophic factor in rat dorsal root ganglia and spinal cord
- in-vivo, NA, NA
"highlight2" >*BDNF↑,
3855- CAP,    Capsaicin consumption reduces brain amyloid-beta generation and attenuates Alzheimer’s disease-type pathology and cognitive deficits in APP/PS1 mice
- in-vivo, AD, NA
"highlight2" >*Risk↓, "highlight2" >*Aβ↓, "highlight2" >*p‑tau↓, "highlight2" >*Inflam↓, "highlight2" >*neuroP↑, "highlight2" >*cognitive↑, "highlight2" >*ADAM10↑, "highlight2" >*PPARα↑,
3854- CAP,    Capsaicin consumption reduces brain amyloid-beta generation and attenuates Alzheimer’s disease-type pathology and cognitive deficits in APP/PS1 mice
- in-vivo, AD, NA
"highlight2" >*Aβ↓, "highlight2" >*cognitive↑, "highlight2" >*APP↓, "highlight2" >*MMP-10↝, "highlight2" >*p‑tau↓, "highlight2" >*Inflam↓, "highlight2" >*neuroP↑, "highlight2" >*Risk↓, "highlight2" >*TNF-α↓, "highlight2" >*IFN-γ↓, "highlight2" >*IL6↓, "highlight2" >*PPARα↑,
2652- CAP,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
"highlight2" >chemoPv↑, "highlight2" >AntiCan↑, "highlight2" >ROS↑, "highlight2" >TumCG↓, "highlight2" >ROS↑, "highlight2" >MMP↑, "highlight2" >Apoptosis↑, "highlight2" >TumCCA↑, "highlight2" >JNK↑, "highlight2" >SOD↓, "highlight2" >Catalase↓, "highlight2" >GPx↓, "highlight2" >other↓, "highlight2" >SIRT1↓, "highlight2" >NADPH↑, "highlight2" >FOXO3↑,
2394- CAP,    Capsaicin acts as a novel NRF2 agonist to suppress ethanol induced gastric mucosa oxidative damage by directly disrupting the KEAP1-NRF2 interaction
- in-vitro, Nor, GES-1
"highlight2" >*mtDam↓, "highlight2" >*NRF2↑, "highlight2" >*HO-1↑, "highlight2" >*Trx↑, "highlight2" >*GSS↑, "highlight2" >*NQO1↑, "highlight2" >*Keap1↓, "highlight2" >*ROS↓, "highlight2" >*PKM2↓, "highlight2" >*LDHA↓, "highlight2" >*Inflam↓,
2349- CAP,    The TRPV1-PKM2-SREBP1 axis maintains microglial lipid homeostasis in Alzheimer’s disease
- in-vivo, AD, NA
"highlight2" >*TRPV1↑, "highlight2" >*PKM2↓, "highlight2" >*SREBP2↑, "highlight2" >*memory↑,
2348- CAP,    Recent advances in analysis of capsaicin and its effects on metabolic pathways by mass spectrometry
- Analysis, Nor, NA
"highlight2" >Warburg↓, "highlight2" >*PKM2↓, "highlight2" >*COX2↓, "highlight2" >*Inflam↓, "highlight2" >*Sepsis↓, "highlight2" >*AMPK↑, "highlight2" >*PKA↑, "highlight2" >*mitResp↑, "highlight2" >*FAO↑, "highlight2" >*FASN↓, "highlight2" >*PGM1?, "highlight2" >*ATP↑, "highlight2" >*ROS↓,
2347- CAP,    Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis
- in-vivo, Nor, NA - in-vitro, Nor, RAW264.7
"highlight2" >*PKM2↓, "highlight2" >*LDHA↓, "highlight2" >*Warburg↓, "highlight2" >*COX2↓, "highlight2" >*Sepsis↓, "highlight2" >*Inflam↓, "highlight2" >*ECAR↓, "highlight2" >*OCR↑,
2020- CAP,    Capsaicinoids and Their Effects on Cancer: The “Double-Edged Sword” Postulate from the Molecular Scale
- Review, Var, NA
"highlight2" >AntiTum↑, "highlight2" >selectivity↑, "highlight2" >TRPV1↑, "highlight2" >MMP↓, "highlight2" >Ca+2↑, "highlight2" >ER Stress↑, "highlight2" >angioG↓, "highlight2" >Casp3?, "highlight2" >cl‑PARP↑, "highlight2" >selectivity↑, "highlight2" >ROS↑, "highlight2" >*ROS∅, "highlight2" >selectivity↑,
2019- CAP,    Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer
- Review, Var, NA
"highlight2" >chemoPv↑, "highlight2" >Ca+2↑, "highlight2" >antiOx↑, "highlight2" >*ROS↓, "highlight2" >*MMP∅, "highlight2" >*Cyt‑c∅, "highlight2" >*Casp3∅, "highlight2" >*eff↑, "highlight2" >*Inflam↓, "highlight2" >*NF-kB↓, "highlight2" >*COX2↓, "highlight2" >iNOS↓, "highlight2" >TRPV1↑, "highlight2" >i-Ca+2?, "highlight2" >MMP↓, "highlight2" >Cyt‑c↑, "highlight2" >Bax:Bcl2↑, "highlight2" >P53↑, "highlight2" >JNK↑, "highlight2" >PI3K↓, "highlight2" >Akt↓, "highlight2" >mTOR↓, "highlight2" >LC3II↑, "highlight2" >ATG5↑, "highlight2" >p62↑, "highlight2" >Fap1↓, "highlight2" >Casp3↑, "highlight2" >Apoptosis↑, "highlight2" >ROS↑, "highlight2" >MMP9↓, "highlight2" >eff↑, "highlight2" >eff↓, "highlight2" >eff↑, "highlight2" >selectivity↑, "highlight2" >eff↑, "highlight2" >ChemoSen↑,
2018- CAP,  MF,    Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma
- Review, HCC, NA
"highlight2" >TRPV1↑, "highlight2" >eff↑, "highlight2" >Akt↓, "highlight2" >mTOR↓, "highlight2" >p‑STAT3↑, "highlight2" >MMP2↑, "highlight2" >ER Stress↑, "highlight2" >Ca+2↑, "highlight2" >ROS↑, "highlight2" >selectivity↑, "highlight2" >MMP↓, "highlight2" >eff↑,
2017- CAP,    Spice Up Your Kidney: A Review on the Effects of Capsaicin in Renal Physiology and Disease
- Review, Var, NA
"highlight2" >RenoP↑, "highlight2" >AntiTum↑, "highlight2" >AMPK↑, "highlight2" >mTOR↑, "highlight2" >PD-1↓, "highlight2" >PD-L1↓,
2016- CAP,    Capsaicin binds the N-terminus of Hsp90, induces lysosomal degradation of Hsp70, and enhances the anti-tumor effects of 17-AAG (Tanespimycin)
"highlight2" >HSP90↓, "highlight2" >ATPase↓, "highlight2" >eff↑, "highlight2" >HSP70/HSPA5↓, "highlight2" >other↝, "highlight2" >NF-kB↓, "highlight2" >EGFR↓, "highlight2" >CDK4↓, "highlight2" >Src↓, "highlight2" >VEGF↓, "highlight2" >PI3K↓, "highlight2" >Akt↓,
2014- CAP,    Role of Mitochondrial Electron Transport Chain Complexes in Capsaicin Mediated Oxidative Stress Leading to Apoptosis in Pancreatic Cancer Cells
- in-vitro, PC, Bxpc-3 - in-vitro, Nor, HPDE-6 - in-vivo, PC, AsPC-1
"highlight2" >ROS↑, "highlight2" >*ROS∅, "highlight2" >selectivity↑, "highlight2" >compI↓, "highlight2" >compIII↓, "highlight2" >eff↑, "highlight2" >selectivity↑, "highlight2" >ATP↓, "highlight2" >Cyt‑c↑, "highlight2" >Casp9↑, "highlight2" >Casp3↑, "highlight2" >MMP↓, "highlight2" >SOD↓, "highlight2" >GSH/GSSG↓, "highlight2" >Apoptosis↑, "highlight2" >*toxicity∅, "highlight2" >GSH↓, "highlight2" >Catalase↓, "highlight2" >GPx↓, "highlight2" >Dose↝,
2013- CAP,    Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, DU145 - in-vivo, NA, NA
"highlight2" >TumCP↓, "highlight2" >P53↑, "highlight2" >P21↑, "highlight2" >BAX↑, "highlight2" >PSA↓, "highlight2" >AR↓, "highlight2" >NF-kB↓, "highlight2" >Proteasome↓, "highlight2" >TumVol↓, "highlight2" >eff∅,
2012- CAP,    Capsaicin induces cytotoxicity in human osteosarcoma MG63 cells through TRPV1-dependent and -independent pathways
- NA, OS, MG63
"highlight2" >AntiTum↑, "highlight2" >Apoptosis↑, "highlight2" >TRPV1↑, "highlight2" >ROS↑, "highlight2" >SOD↓, "highlight2" >AMPK↑, "highlight2" >P53↑, "highlight2" >JNK↑, "highlight2" >Bcl-2↓, "highlight2" >Cyt‑c↑, "highlight2" >cl‑Casp3↑, "highlight2" >cl‑PARP↑, "highlight2" >Ca+2↑, "highlight2" >MMP↓,
1518- CAP,    Capsaicin-mediated tNOX (ENOX2) up-regulation enhances cell proliferation and migration in vitro and in vivo
- in-vitro, CRC, HCT116
"highlight2" >ENOX2↑, "highlight2" >TumCP↑, "highlight2" >TumCMig↑, "highlight2" >Dose?, "highlight2" >eff↑,
1517- CAP,    Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX) and Sirtuin1 (SIRT1)
- in-vitro, Bladder, TSGH8301 - in-vitro, CRC, T24
"highlight2" >ENOX2↓, "highlight2" >TumCCA↑, "highlight2" >ERK↓, "highlight2" >p‑FAK↓, "highlight2" >p‑pax↓, "highlight2" >TumCMig↓, "highlight2" >EMT↓, "highlight2" >SIRT1↓, "highlight2" >Dose∅, "highlight2" >ROS↑, "highlight2" >MMP↓, "highlight2" >Bcl-2↓, "highlight2" >Bak↑, "highlight2" >cl‑PARP↑, "highlight2" >Casp3↑, "highlight2" >SIRT1↓, "highlight2" >ac‑P53↑, "highlight2" >BIM↑, "highlight2" >p‑RB1↓, "highlight2" >cycD1/CCND1↓, "highlight2" >Dose∅, "highlight2" >β-catenin/ZEB1↓, "highlight2" >N-cadherin↓, "highlight2" >E-cadherin↑,
1265- CAP,    Capsaicin shapes gut microbiota and pre-metastatic niche to facilitate cancer metastasis to liver
- in-vivo, CRC, NA
"highlight2" >GutMicro↓, "highlight2" >Risk↑,
1264- CAP,    Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells
- in-vitro, HCC, NA
"highlight2" >TumCP↓, "highlight2" >TumCMig↓, "highlight2" >TumCCA↑, "highlight2" >MMP∅, "highlight2" >MMP2↓, "highlight2" >MMP9↓, "highlight2" >α-SMA↓, "highlight2" >COL1A1↓, "highlight2" >COL3A1↓, "highlight2" >TIMP1↓,
1263- CAP,    Capsaicin inhibits the migration and invasion via the AMPK/NF-κB signaling pathway in esophagus sequamous cell carcinoma by decreasing matrix metalloproteinase-9 expression
- in-vitro, ESCC, Eca109
"highlight2" >TumCMig↓, "highlight2" >TumCI↓, "highlight2" >MMP9↓, "highlight2" >p‑AMPK↑, "highlight2" >SIRT1↑, "highlight2" >NF-kB↓, "highlight2" >p‑IκB↑,
1262- CAP,    Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway
- vitro+vivo, BC, NA
"highlight2" >FBI-1↓, "highlight2" >Ki-67↓, "highlight2" >Bcl-2↓, "highlight2" >survivin↓, "highlight2" >BAX↑, "highlight2" >Casp3↑, "highlight2" >TumCP↓, "highlight2" >Apoptosis↑,
1261- CAP,    Capsaicin inhibits glycolysis in esophageal squamous cell carcinoma by regulating hexokinase‑2 expression
- in-vitro, ESCC, KYSE150
"highlight2" >GlucoseCon↓, "highlight2" >lactateProd↓, "highlight2" >HK2↓, "highlight2" >Glycolysis↓, "highlight2" >PTEN↑, "highlight2" >AKT1↓,
1260- CAP,    Capsaicin inhibits in vitro and in vivo angiogenesis
- vitro+vivo, NA, NA
"highlight2" >VEGF↓, "highlight2" >angioG↓, "highlight2" >TumCCA↑, "highlight2" >cycD1/CCND1↓, "highlight2" >Akt↓,
1259- CAP,    Capsaicin inhibits HIF-1α accumulation through suppression of mitochondrial respiration in lung cancer cells
- in-vitro, Lung, H1299 - in-vitro, Lung, A549 - in-vitro, Lung, H23 - in-vitro, Lung, H2009
"highlight2" >Hif1a↓, "highlight2" >PDK1↓, "highlight2" >GLUT1↓, "highlight2" >ROS↑, "highlight2" >mitResp↓, "highlight2" >ATP↓,
3760- CUR,  GI,  CAP,  RosA,  PI  Extending the lore of curcumin as dipteran Butyrylcholine esterase (BChE) inhibitor: A holistic molecular interplay assessment
"highlight2" >*AChE↓, "highlight2" >*other↓, "highlight2" >*other↓, "highlight2" >*other↓, "highlight2" >*other↓, "highlight2" >*other↓, "highlight2" >*other↓,
693- EGCG,  CAP,  Phen,    Metabolite modulation of HeLa cell response to ENOX2 inhibitors EGCG and phenoxodiol
- in-vitro, Cerv, HeLa
"highlight2" >ENOX2↓, "highlight2" >TumCG↓,
637- EGCG,  CAP,    Cancer prevention trial of a synergistic mixture of green tea concentrate plus Capsicum (CAPSOL-T) in a random population of subjects ages 40-84
- Human, NA, NA
"highlight2" >ENOX2↓,
2446- SFN,  CAP,    The Molecular Effects of Sulforaphane and Capsaicin on Metabolism upon Androgen and Tip60 Activation of Androgen Receptor
- in-vitro, Pca, LNCaP
"highlight2" >AR↓, "highlight2" >Bcl-xL↓, "highlight2" >TumCP↓, "highlight2" >Glycolysis↓, "highlight2" >HK2↓, "highlight2" >PKA↓, "highlight2" >Hif1a↓, "highlight2" >PSA↓, "highlight2" >ECAR↓, "highlight2" >BioAv↑, "highlight2" >BioAv↓, "highlight2" >*toxicity↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 31

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 2,  

Redox & Oxidative Stress

antiOx↑, 1,   Catalase↓, 2,   compI↓, 1,   ENOX2↓, 3,   ENOX2↑, 1,   GPx↓, 2,   GSH↓, 1,   GSH/GSSG↓, 1,   ROS↑, 9,   SOD↓, 3,  

Mitochondria & Bioenergetics

ATP↓, 2,   compIII↓, 1,   mitResp↓, 1,   MMP↓, 6,   MMP↑, 1,   MMP∅, 1,  

Core Metabolism/Glycolysis

AKT1↓, 1,   AMPK↑, 2,   p‑AMPK↑, 1,   ECAR↓, 1,   FBI-1↓, 1,   GlucoseCon↓, 1,   Glycolysis↓, 2,   HK2↓, 2,   lactateProd↓, 1,   NADPH↑, 1,   PDK1↓, 1,   SIRT1↓, 3,   SIRT1↑, 1,   Warburg↓, 1,  

Cell Death

Akt↓, 4,   Apoptosis↑, 5,   Bak↑, 1,   BAX↑, 2,   Bax:Bcl2↑, 1,   Bcl-2↓, 3,   Bcl-xL↓, 1,   BIM↑, 1,   Casp3?, 1,   Casp3↑, 4,   cl‑Casp3↑, 1,   Casp9↑, 1,   Cyt‑c↑, 3,   Fap1↓, 1,   iNOS↓, 1,   JNK↑, 3,   Proteasome↓, 1,   survivin↓, 1,   TRPV1↑, 4,  

Transcription & Epigenetics

other↓, 1,   other↝, 1,  

Protein Folding & ER Stress

ER Stress↑, 2,   HSP70/HSPA5↓, 1,   HSP90↓, 1,  

Autophagy & Lysosomes

ATG5↑, 1,   LC3II↑, 1,   p62↑, 1,  

DNA Damage & Repair

P53↑, 3,   ac‑P53↑, 1,   cl‑PARP↑, 3,  

Cell Cycle & Senescence

CDK4↓, 1,   cycD1/CCND1↓, 2,   P21↑, 1,   p‑RB1↓, 1,   TumCCA↑, 4,  

Proliferation, Differentiation & Cell State

EMT↓, 1,   ERK↓, 1,   FOXO3↑, 1,   mTOR↓, 2,   mTOR↑, 1,   PI3K↓, 2,   PTEN↑, 1,   Src↓, 1,   p‑STAT3↑, 1,   TumCG↓, 4,  

Migration

ATPase↓, 1,   Ca+2↑, 4,   i-Ca+2?, 1,   COL1A1↓, 1,   COL3A1↓, 1,   E-cadherin↑, 1,   p‑FAK↓, 1,   Ki-67↓, 1,   MMP2↓, 1,   MMP2↑, 1,   MMP9↓, 3,   N-cadherin↓, 1,   p‑pax↓, 1,   PKA↓, 1,   TIMP1↓, 1,   TumCI↓, 1,   TumCMig↓, 3,   TumCMig↑, 1,   TumCP↓, 4,   TumCP↑, 1,   TumMeta↓, 1,   α-SMA↓, 1,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 3,   EGFR↓, 1,   EPR↑, 1,   Hif1a↓, 2,   VEGF↓, 2,  

Barriers & Transport

GLUT1↓, 1,  

Immune & Inflammatory Signaling

p‑IκB↑, 1,   NF-kB↓, 3,   PD-1↓, 1,   PD-L1↓, 1,   PSA↓, 2,  

Hormonal & Nuclear Receptors

AR↓, 2,  

Drug Metabolism & Resistance

BioAv↓, 3,   BioAv↑, 2,   ChemoSen↑, 2,   Dose?, 1,   Dose↝, 1,   Dose∅, 3,   eff↓, 2,   eff↑, 9,   eff∅, 1,   Half-Life∅, 1,   selectivity↑, 8,  

Clinical Biomarkers

AR↓, 2,   EGFR↓, 1,   GutMicro↓, 1,   Ki-67↓, 1,   PD-L1↓, 1,   PSA↓, 2,  

Functional Outcomes

AntiCan↑, 2,   AntiTum↑, 3,   RenoP↑, 1,   Risk↑, 1,   TumVol↓, 1,  
Total Targets: 133

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

GSS↑, 1,   HO-1↑, 1,   Keap1↓, 1,   NQO1↑, 1,   NRF2↑, 1,   ROS↓, 3,   ROS∅, 2,   Trx↑, 1,  

Mitochondria & Bioenergetics

ATP↑, 1,   mitResp↑, 1,   MMP∅, 1,   mtDam↓, 1,   OCR↑, 1,  

Core Metabolism/Glycolysis

AMPK↑, 1,   ECAR↓, 1,   FAO↑, 1,   FASN↓, 1,   LDHA↓, 2,   PGM1?, 1,   PKM2↓, 4,   PPARα↑, 2,   SREBP2↑, 1,   Warburg↓, 1,  

Cell Death

Casp3∅, 1,   Cyt‑c∅, 1,   TRPV1↑, 1,  

Transcription & Epigenetics

other↓, 6,  

Migration

APP↓, 1,   MMP-10↝, 1,   PKA↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 3,   IFN-γ↓, 1,   IL6↓, 1,   Inflam↓, 6,   NF-kB↓, 1,   TNF-α↓, 1,  

Synaptic & Neurotransmission

AChE↓, 1,   ADAM10↑, 1,   BDNF↑, 1,   p‑tau↓, 2,  

Protein Aggregation

Aβ↓, 2,  

Drug Metabolism & Resistance

eff↑, 1,  

Clinical Biomarkers

IL6↓, 1,  

Functional Outcomes

cognitive↑, 2,   memory↑, 1,   neuroP↑, 2,   Risk↓, 2,   toxicity↓, 1,   toxicity∅, 1,  

Infection & Microbiome

Sepsis↓, 2,  
Total Targets: 50

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:55  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page