condition found
Features: |
Polyphenol found in fruits, vegetables, nuts and some mushrooms. Strawberries, raspberries, blackberries, cherries and walnuts, green tea and red wine. - Ellagitannins are high molecular weight polyphenols with a complex structure that includes one or more HHDP groups attached to a sugar. - Ellagic Acid is the simpler, bioactive compound released when the HHDP groups in ellagitannins cyclize during hydrolysis. Pathways: Apoptosis Regulation: (Bax, Bad) (Bcl-2, Bcl-xL) Cell Cycle Arrest: G0/G1 or G2/M phases) NF-κB (inhibit): MAPK Pathways: (including ERK1/2, JNK, and p38 MAPK) PI3K/Akt/mTOR: might downregulate this pathway p53 Pathway: may influence the expression or activation of p53 Oxidative Stress and Nrf2 Pathway:exhibits antioxidant properties, <ROS, modulate the Nrf2 Angiogenesis Inhibition Summary: - Anti-oxidant, with some evidence it can induce ROS in cancer (production of ROS) - Works well with Curcumin - Reduced the viability of cancer cells at a concentration of 10 µmol/L, while in healthy cells, this effect was observed only at a concentration of 200 µmol/L - Pomegranate juice (PJ) (180 ml) containing EA (25 mg) and ETs (318 mg, as punicalagins, the major fruit ellagitannin). Plasma concentration (31.9 ng/ml) after 1 h post-ingestion but was rapidly eliminated by 4 h. (Hence might be difficult to consume enough EA!!!! to match vitro requirements) - Likely need > 10mg/kg/day -> *180kg = 1800mg (might be possible) - Increased the expression of p53 and p21 proteins as well as markers of apoptosis (Bax and caspase-3), and decreases Bcl-2, NF-кB, and iNOS - EA has restricted bioavailability, primarily due to its hydrophobic nature and very low water solubility. - Industrial processing of pomegranates for juice production increases the concentration of EA in juices, but freezing reduces concentration Punica granatum L. Pomegranate 700mg/kg (arils), 38700mg/kg(mesocarp) Rubus idaeus L. Raspberry 2637–3309mg/kg jaglandaceae Walnut 410mg/kg(freeEA) 8230mg/kg(totalEA) |
Source: HalifaxProj (inhibit) |
Type: |
Reactive oxygen species (ROS) are highly reactive molecules that contain oxygen and can lead to oxidative stress in cells. They play a dual role in cancer biology, acting as both promoters and suppressors of cancer. ROS can cause oxidative damage to DNA, leading to mutations that may contribute to cancer initiation and progression. So normally you want to inhibit ROS to prevent cell mutations. However excessive ROS can induce apoptosis (programmed cell death) in cancer cells, potentially limiting tumor growth. Chemotherapy typically raises ROS. "Reactive oxygen species (ROS) are two electron reduction products of oxygen, including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid peroxides, protein peroxides and peroxides formed in nucleic acids 1. They are maintained in a dynamic balance by a series of reduction-oxidation (redox) reactions in biological systems and act as signaling molecules to drive cellular regulatory pathways." "During different stages of cancer formation, abnormal ROS levels play paradoxical roles in cell growth and death 8. A physiological concentration of ROS that maintained in equilibrium is necessary for normal cell survival. Ectopic ROS accumulation promotes cell proliferation and consequently induces malignant transformation of normal cells by initiating pathological conversion of physiological signaling networks. Excessive ROS levels lead to cell death by damaging cellular components, including proteins, lipid bilayers, and chromosomes. Therefore, both scavenging abnormally elevated ROS to prevent early neoplasia and facilitating ROS production to specifically kill cancer cells are promising anticancer therapeutic strategies, in spite of their contradictoriness and complexity." "ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H 2O 2 ), organic hydroperoxides (ROOH), singlet molecular oxygen ( 1 O 2 ), electronically excited carbonyl, ozone (O3 ), hypochlorous acid (HOCl, and hypobromous acid HOBr). Free radical species are super-oxide anion radical (O 2•−), hydroxyl radical (•OH), peroxyl radical (ROO•) and alkoxyl radical (RO•) [130]. Any imbalance of ROS can lead to adverse effects. H2 O 2 and O 2 •− are the main redox signalling agents. The cellular concentration of H2 O 2 is about 10−8 M, which is almost a thousand times more than that of O2 •−". "Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules." Recent investigations have documented that polyphenols with good antioxidant activity may exhibit pro-oxidant activity in the presence of copper ions, which can induce apoptosis in various cancer cell lines but not in normal cells. "We have shown that such cell growth inhibition by polyphenols in cancer cells is reversed by copper-specific sequestering agent neocuproine to a significant extent whereas iron and zinc chelators are relatively ineffective, thus confirming the role of endogenous copper in the cytotoxic action of polyphenols against cancer cells. Therefore, this mechanism of mobilization of endogenous copper." > Ions could be one of the important mechanisms for the cytotoxic action of plant polyphenols against cancer cells and is possibly a common mechanism for all plant polyphenols. In fact, similar results obtained with four different polyphenolic compounds in this study, namely apigenin, luteolin, EGCG, and resveratrol, strengthen this idea. Interestingly, the normal breast epithelial MCF10A cells have earlier been shown to possess no detectable copper as opposed to breast cancer cells [24], which may explain their resistance to polyphenols apigenin- and luteolin-induced growth inhibition as observed here (Fig. 1). We have earlier proposed [25] that this preferential cytotoxicity of plant polyphenols toward cancer cells is explained by the observation made several years earlier, which showed that copper levels in cancer cells are significantly elevated in various malignancies. Thus, because of higher intracellular copper levels in cancer cells, it may be predicted that the cytotoxic concentrations of polyphenols required would be lower in these cells as compared to normal cells." Majority of ROS are produced as a by-product of oxidative phosphorylation, high levels of ROS are detected in almost all cancers. -It is well established that during ER stress, cytosolic calcium released from the ER is taken up by the mitochondrion to stimulate ROS overgeneration and the release of cytochrome c, both of which lead to apoptosis. Note: Products that may raise ROS can be found using this database, by: Filtering on the target of ROS, and selecting the Effect Direction of ↑ Targets to raise ROS (to kill cancer cells): • NADPH oxidases (NOX): NOX enzymes are involved in the production of ROS. -Targeting NOX enzymes can increase ROS levels and induce cancer cell death. -eNOX2 inhibition leads to a high NADH/NAD⁺ ratio which can lead to increased ROS • Mitochondrial complex I: Inhibiting can increase ROS production • P53: Activating p53 can increase ROS levels(by inducing the expression of pro-oxidant genes) • Nrf2: regulates the expression of antioxidant genes. Inhibiting Nrf2 can increase ROS levels • Glutathione (GSH): an antioxidant. Depleting GSH can increase ROS levels • Catalase: Catalase converts H2O2 into H2O+O. Inhibiting catalase can increase ROS levels • SOD1: converts superoxide into hydrogen peroxide. Inhibiting SOD1 can increase ROS levels • PI3K/AKT pathway: regulates cell survival and metabolism. Inhibiting can increase ROS levels • HIF-1α: regulates genes involved in metabolism and angiogenesis. Inhibiting HIF-1α can increase ROS • Glycolysis: Inhibiting glycolysis can increase ROS levels • Fatty acid oxidation: Cancer cells often rely on fatty acid oxidation for energy production. -Inhibiting fatty acid oxidation can increase ROS levels • ER stress: Endoplasmic reticulum (ER) stress can increase ROS levels • Autophagy: process by which cells recycle damaged organelles and proteins. -Inhibiting autophagy can increase ROS levels and induce cancer cell death. • KEAP1/Nrf2 pathway: regulates the expression of antioxidant genes. -Inhibiting KEAP1 or activating Nrf2 can increase ROS levels and induce cancer cell death. • DJ-1: regulates the expression of antioxidant genes. Inhibiting DJ-1 can increase ROS levels • PARK2: regulates the expression of antioxidant genes. Inhibiting PARK2 can increase ROS levels • SIRT1:regulates the expression of antioxidant genes. Inhibiting SIRT1 can increase ROS levels • AMPK: regulates energy metabolism and can increase ROS levels when activated. • mTOR: regulates cell growth and metabolism. Inhibiting mTOR can increase ROS levels • HSP90: regulates protein folding and can increase ROS levels when inhibited. • Proteasome: degrades damaged proteins. Inhibiting the proteasome can increase ROS levels • Lipid peroxidation: a process by which lipids are oxidized, leading to the production of ROS. -Increasing lipid peroxidation can increase ROS levels • Ferroptosis: form of cell death that is regulated by iron and lipid peroxidation. -Increasing ferroptosis can increase ROS levels • Mitochondrial permeability transition pore (mPTP): regulates mitochondrial permeability. -Opening the mPTP can increase ROS levels • BCL-2 family proteins: regulate apoptosis and can increase ROS levels when inhibited. • Caspase-independent cell death: a form of cell death that is regulated by ROS. -Increasing caspase-independent cell death can increase ROS levels • DNA damage response: regulates the repair of DNA damage. Increasing DNA damage can increase ROS • Epigenetic regulation: process by which gene expression is regulated. -Increasing epigenetic regulation can increase ROS levels -PKM2, but not PKM1, can be inhibited by direct oxidation of cysteine 358 as an adaptive response to increased intracellular reactive oxygen species (ROS) ProOxidant Strategy:(inhibit the Melavonate Pathway (likely will also inhibit GPx) -HydroxyCitrate (HCA) found as supplement online and typically used in a dose of about 1.5g/day or more -Atorvastatin typically 40-80mg/day -Dipyridamole typically 200mg 2x/day -Lycopene typically 100mg/day range Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy |
1609- | CUR,  | EA,  |   | Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells |
- | in-vitro, | Cerv, | NA |
1621- | EA,  |   | The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art |
- | Review, | Var, | NA |
1620- | EA,  | Rad,  |   | Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: an in vitro study |
- | in-vitro, | Liver, | HepG2 |
1615- | EA,  |   | Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum l.) polyphenols after ingestion of a standardized extract in healthy human volunteers |
- | Human, | Nor, | NA |
1613- | EA,  |   | Ellagitannins in Cancer Chemoprevention and Therapy |
- | Review, | Var, | NA |
1612- | EA,  |   | Negative Effect of Ellagic Acid on Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Cancer Cell |
- | in-vitro, | EC, | NA |
1611- | EA,  |   | Targeting Myeloperoxidase Activity and Neutrophil ROS Production to Modulate Redox Process: Effect of Ellagic Acid and Analogues |
- | in-vitro, | Mal, | NA |
1610- | EA,  |   | Anticancer Effect of Pomegranate Peel Polyphenols against Cervical Cancer |
- | Review, | Cerv, | NA |
1608- | EA,  |   | Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity |
- | in-vitro, | Cerv, | HeLa | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HUVECs |
1606- | EA,  |   | Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells |
- | in-vitro, | Colon, | HCT15 |
1605- | EA,  |   | Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:74 Target#:275 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid