Database Query Results : Ferulic acid, , ROS

FA, Ferulic acid: Click to Expand ⟱
Features:
Ferulic acid is an antioxidant found in some skin creams and serums.
Foods: popcorn, bamboo, whole-grain rye bread, whole-grain oat flakes, sweet corn (cooked)

-Ferulic acid found in dietary strand fractions, especially its free form, has important functions for protecting the human health.
-AChE inhibitor (AD)
-Cooking results in an increase in free ferulic acid quantity and in a reduction in bound ferulic acid quantity.
Bamboo shoots       243.6 mg/100g
Sugar-beet pulp     800 mg/100g
Popcorn             313 mg/100g
Wheat bran	    500–1500mg/100g
Whole wheat flour   100–300mg/100g
            
Type of corn p-coumaric acidferulic acid
   mg/kg, DW mg/kg, DW
Yellow dent 18.9 265
American blue N.D. 927
Mexican blue 1.3 202
white 6.6 2484
Pathway / Target	Modulation by FA / Direction
Aβ aggregation	         ↓ Inhibits fibril formation and destabilizes existing Aβ fibrils 
BACE‑1 & APP	         ↓ Reduces BACE-1 and APP expression; ↑ MMP‑2/‑9 expression promoting Aβ clearance
Tau hyperphosphorylation  Implicitly ↓ through modulation of Ca²⁺/CDK5/GSK3β pathways
Ca²⁺         	         ↓ FA lowers STEP levels via chelation of Ca²⁺, suppressing PP2B → restores synaptic plasticity
(AChE / BChE)	         ↓ Inhibition of AChE (FA IC₅₀~15 µM, derivatives IC₅₀ down to 0.006 µM); also BChE
(MAO‑A/B)	         ↓ Inhibits MAO‑B (derivatives IC₅₀ ~0.3–0.7 µM), reducing ROS
ROS                      ↓ Scavenges ROS, enhances antioxidant enzymes (e.g., catalase), ↓ MDA
(COX‑2, 5‑LOX, NLRP3)	 ↓ Derivatives inhibit COX‑2/5‑LOX; derivative 13a ↓ NLRP3 inflammasome
Iron/Cu²⁺ chelation	 ↓ Metal-induced Aβ aggregation via chelation by FA and derivatives
Autophagy & Aβ clearance  ↗ Suggested promotion of autophagy mechanisms targeting Aβ


ROS, Reactive Oxygen Species: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
Reactive oxygen species (ROS) are highly reactive molecules that contain oxygen and can lead to oxidative stress in cells. They play a dual role in cancer biology, acting as both promoters and suppressors of cancer.
ROS can cause oxidative damage to DNA, leading to mutations that may contribute to cancer initiation and progression. So normally you want to inhibit ROS to prevent cell mutations.
However excessive ROS can induce apoptosis (programmed cell death) in cancer cells, potentially limiting tumor growth. Chemotherapy typically raises ROS.

"Reactive oxygen species (ROS) are two electron reduction products of oxygen, including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid peroxides, protein peroxides and peroxides formed in nucleic acids 1. They are maintained in a dynamic balance by a series of reduction-oxidation (redox) reactions in biological systems and act as signaling molecules to drive cellular regulatory pathways."
"During different stages of cancer formation, abnormal ROS levels play paradoxical roles in cell growth and death 8. A physiological concentration of ROS that maintained in equilibrium is necessary for normal cell survival. Ectopic ROS accumulation promotes cell proliferation and consequently induces malignant transformation of normal cells by initiating pathological conversion of physiological signaling networks. Excessive ROS levels lead to cell death by damaging cellular components, including proteins, lipid bilayers, and chromosomes. Therefore, both scavenging abnormally elevated ROS to prevent early neoplasia and facilitating ROS production to specifically kill cancer cells are promising anticancer therapeutic strategies, in spite of their contradictoriness and complexity."
"ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H 2O 2 ), organic hydroperoxides (ROOH), singlet molecular oxygen ( 1 O 2 ), electronically excited carbonyl, ozone (O3 ), hypochlorous acid (HOCl, and hypobromous acid HOBr). Free radical species are super-oxide anion radical (O 2•−), hydroxyl radical (•OH), peroxyl radical (ROO•) and alkoxyl radical (RO•) [130]. Any imbalance of ROS can lead to adverse effects. H2 O 2 and O 2 •− are the main redox signalling agents. The cellular concentration of H2 O 2 is about 10−8 M, which is almost a thousand times more than that of O2 •−".
"Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules."

Recent investigations have documented that polyphenols with good antioxidant activity may exhibit pro-oxidant activity in the presence of copper ions, which can induce apoptosis in various cancer cell lines but not in normal cells. "We have shown that such cell growth inhibition by polyphenols in cancer cells is reversed by copper-specific sequestering agent neocuproine to a significant extent whereas iron and zinc chelators are relatively ineffective, thus confirming the role of endogenous copper in the cytotoxic action of polyphenols against cancer cells. Therefore, this mechanism of mobilization of endogenous copper." > Ions could be one of the important mechanisms for the cytotoxic action of plant polyphenols against cancer cells and is possibly a common mechanism for all plant polyphenols. In fact, similar results obtained with four different polyphenolic compounds in this study, namely apigenin, luteolin, EGCG, and resveratrol, strengthen this idea.
Interestingly, the normal breast epithelial MCF10A cells have earlier been shown to possess no detectable copper as opposed to breast cancer cells [24], which may explain their resistance to polyphenols apigenin- and luteolin-induced growth inhibition as observed here (Fig. 1). We have earlier proposed [25] that this preferential cytotoxicity of plant polyphenols toward cancer cells is explained by the observation made several years earlier, which showed that copper levels in cancer cells are significantly elevated in various malignancies. Thus, because of higher intracellular copper levels in cancer cells, it may be predicted that the cytotoxic concentrations of polyphenols required would be lower in these cells as compared to normal cells."

Majority of ROS are produced as a by-product of oxidative phosphorylation, high levels of ROS are detected in almost all cancers.
-It is well established that during ER stress, cytosolic calcium released from the ER is taken up by the mitochondrion to stimulate ROS overgeneration and the release of cytochrome c, both of which lead to apoptosis.

Note: Products that may raise ROS can be found using this database, by:
Filtering on the target of ROS, and selecting the Effect Direction of ↑

Targets to raise ROS (to kill cancer cells):
• NADPH oxidases (NOX): NOX enzymes are involved in the production of ROS.
    -Targeting NOX enzymes can increase ROS levels and induce cancer cell death.
    -eNOX2 inhibition leads to a high NADH/NAD⁺ ratio which can lead to increased ROS
• Mitochondrial complex I: Inhibiting can increase ROS production
• P53: Activating p53 can increase ROS levels(by inducing the expression of pro-oxidant genes)
Nrf2 inhibition: regulates the expression of antioxidant genes. Inhibiting Nrf2 can increase ROS levels
• Glutathione (GSH): an antioxidant. Depleting GSH can increase ROS levels
• Catalase: Catalase converts H2O2 into H2O+O. Inhibiting catalase can increase ROS levels
• SOD1: converts superoxide into hydrogen peroxide. Inhibiting SOD1 can increase ROS levels
• PI3K/AKT pathway: regulates cell survival and metabolism. Inhibiting can increase ROS levels
HIF-1α inhibition: regulates genes involved in metabolism and angiogenesis. Inhibiting HIF-1α can increase ROS
• Glycolysis: Inhibiting glycolysis can increase ROS levels • Fatty acid oxidation: Cancer cells often rely on fatty acid oxidation for energy production.
-Inhibiting fatty acid oxidation can increase ROS levels
• ER stress: Endoplasmic reticulum (ER) stress can increase ROS levels
• Autophagy: process by which cells recycle damaged organelles and proteins.
-Inhibiting autophagy can increase ROS levels and induce cancer cell death.
• KEAP1/Nrf2 pathway: regulates the expression of antioxidant genes.
    -Inhibiting KEAP1 or activating Nrf2 can increase ROS levels and induce cancer cell death.
• DJ-1: regulates the expression of antioxidant genes. Inhibiting DJ-1 can increase ROS levels
• PARK2: regulates the expression of antioxidant genes. Inhibiting PARK2 can increase ROS levels
SIRT1 inhibition:regulates the expression of antioxidant genes. Inhibiting SIRT1 can increase ROS levels
AMPK activation: regulates energy metabolism and can increase ROS levels when activated.
mTOR inhibition: regulates cell growth and metabolism. Inhibiting mTOR can increase ROS levels
HSP90 inhibition: regulates protein folding and can increase ROS levels when inhibited.
• Proteasome: degrades damaged proteins. Inhibiting the proteasome can increase ROS levels
Lipid peroxidation: a process by which lipids are oxidized, leading to the production of ROS.
    -Increasing lipid peroxidation can increase ROS levels
• Ferroptosis: form of cell death that is regulated by iron and lipid peroxidation.
    -Increasing ferroptosis can increase ROS levels
• Mitochondrial permeability transition pore (mPTP): regulates mitochondrial permeability.
    -Opening the mPTP can increase ROS levels
• BCL-2 family proteins: regulate apoptosis and can increase ROS levels when inhibited.
• Caspase-independent cell death: a form of cell death that is regulated by ROS.
    -Increasing caspase-independent cell death can increase ROS levels
• DNA damage response: regulates the repair of DNA damage. Increasing DNA damage can increase ROS
• Epigenetic regulation: process by which gene expression is regulated.
    -Increasing epigenetic regulation can increase ROS levels

-PKM2, but not PKM1, can be inhibited by direct oxidation of cysteine 358 as an adaptive response to increased intracellular reactive oxygen species (ROS)

ProOxidant Strategy:(inhibit the Melavonate Pathway (likely will also inhibit GPx)
-HydroxyCitrate (HCA) found as supplement online and typically used in a dose of about 1.5g/day or more
-Atorvastatin typically 40-80mg/day
-Dipyridamole typically 200mg 2x/day
-Lycopene typically 100mg/day range

Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy

Scientific Papers found: Click to Expand⟱
3783- FA,    Design, Synthesis, and Biological Evaluation of Ferulic Acid-Piperazine Derivatives Targeting Pathological Hallmarks of Alzheimer’s Disease
- NA, AD, NA
*ROS↓, developed 13a, harboring the key functional groups to provide not only symptomatic relief but also targeting oxidative stress, able to chelate iron, inhibiting NLRP3, and Aβ1–42 aggregation in various AD models.
*IronCh↑,
*NLRP3↓,
*Aβ↓,
*AChE↓, 13a exhibited promising anticholinesterase activity against AChE (IC50 = 0.59 ± 0.19 μM) and BChE (IC50 = 5.02 ± 0.14 μM) with excellent antioxidant properties
*BChE↓,
*antiOx↑,
*BBB↑, 13a turned out to be a promising molecule that can efficiently cross the blood–brain barrier.
*MMP↑, mitigated mitochondrial-induced reactive oxygen species and mitochondrial membrane potential damage triggered by LPS and ATP in HMC-3 cells.
*memory↑, 13a was found to be efficacious in reversing memory impairment in a scopolamine-induced AD mouse model in the in vivo studies.
*SOD↑, 13a notably modulates the levels of superoxide, catalase, and malondialdehyde along with AChE and BChE.
*Catalase↑,

3782- FA,    Ferulic acid ameliorates bisphenol A (BPA)-induced Alzheimer’s disease-like pathology through Akt-ERK crosstalk pathway in male rats
- in-vivo, AD, NA
*cognitive↑, Interestingly, the BPA + FA treated group showed a reversal in the cognitive impairments induced by BPA
*ERK↓, a significant decrease in brain inflammatory cytokines, ERK, and p-Akt levels
*p‑Akt↓,
*AChE↓, brain levels of AChE and BACE were substantially reduced in BPA + FA rats.
*BACE↓,
*neuroP↑, neuroprotective effect of FA was confirmed by restoring the normal architecture of brain tissue, which was associated with decreasing GFAP.
*ROS↓, FA was sufficient to trigger antioxidant capabilities and decrease intracellular reactive oxygen species (ROS
*MDA↓, BPA + FA revealed a substantial reduction in MDA levels compared to rats intoxicated with BPA
*GSH↑, BPA + FA revealed a significant increment of GSH associated with a significant decrease in GSSG
*GSSG↓,
*p‑tau↓, BPA + FA showed a significant decline in the brain level of pTau compared to intoxicated rats.
*lipid-P↓, inhibit lipid peroxidation
*Aβ↓, FA has significantly counteracted the deleterious effect of BPA by decreasing Aβ 1–42, as previously reported

3778- FA,    Recent Advances in the Neuroprotective Properties of Ferulic Acid in Alzheimer’s Disease: A Narrative Review
- Review, AD, NA
*neuroP↑, it seems to ameliorate AD pathology by preventing neurodegeneration in several brain regions;
*Aβ↓, it has been shown to inhibit Aβ oligomer aggregations and to exert antioxidant, anti-inflammatory, and anti-apoptotic effects
*antiOx↑,
*Inflam↓,
*ROS↓, ability of ferulic acid to prevent oxidative stress
*NF-kB↓, inhibition of the nuclear factor kappa-B (NF-κ B),
*NLRP3↓, it also inhibited the NLR pyrin domain-containing protein 3 (NLRP3) inflammasome
*iNOS↓, A down-regulation by ferulic acid of proinflammatory molecules, such as nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, IL-1β, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1), has been observe
*COX2↓,
*TNF-α↓,
*IL1β↓,
*VCAM-1↓,
*ICAM-1↓,
*p‑MAPK?, inhibiting the phosphorylation of MAPKs, including p38 and c-Jun N-terminal kinase (JNK),
*hepatoP↑, ferulic acid reduces the liver damage induced by acetaminophen in a mouse model of hepatotoxicity by inhibiting the expression of toll like receptor 4 (TLR4),
*TLR4↓,
*PPARγ↑, ferulic acid upregulated PPARγ and Nrf2 expression in renal cells,
*NRF2↑,
*Fenton↓, Ferulic acid may also inhibit the generation of reactive oxygen species (ROS) through the Fenton reaction, acting as a chelator of metals (i.e., Fe and Cu),
*IronCh↑,
*MDA↓, a lowering in the levels of malondialdehyde (MDA), a lipid peroxidation marker
*HO-1↑, Ferulic acid has been found able to upregulate HO-1, thus increasing the production of bilirubin, which acts as an efficient ROS scavenger,
*Bil↑,
*GCLC↑, (GCLC), glutamate-cysteine ligase regulatory subunit (GCLM), and NADPH quinone oxidoreductase-1 (NQO1) were induced by ferulic acid
*GCLM↑,
*NQO1↑,
*GutMicro↑, ferulic acid esterified forms have been shown to act as a prebiotic, since they stimulate the growth of eubacteria, such as Lactobacilli and Bifidobacteria, in the human gastrointestinal tract, so preserving the homeostasis of gut microbiota,
*SOD↑, Indeed, it prevented membrane damage, scavenged free radicals, increased SOD activity, and decreased the intracellular free Ca2+ levels, lipid peroxidation, and the release of prostaglandin E2 (PGE2);
*Ca+2↓,
*lipid-P↓,
*PGE2↓,

3718- FA,    Therapeutic potential of ferulic acid and its derivatives in Alzheimer's disease-A systematic review
- Review, AD, NA
*antiOx↑, FA is an antioxidant, free radical scavenger with anti-inflammatory activity.
*ROS↓,
*Inflam↓,

3714- FA,    Recent Advances in the Neuroprotective Properties of Ferulic Acid in Alzheimer's Disease: A Narrative Review
- Review, AD, NA
*antiOx↑, antioxidant, anti-inflammatory and antidiabetic, thus suggesting it could be exploited as a possible novel neuroprotective strategy.
*Inflam↓,
*neuroP↑, neuroprotective strategy against AD due to its promising antioxidant and anti-inflammatory properties.
*NF-kB↓, inhibition of the nuclear factor kappa-B (NF-κ B), a key mediator of proinflammatory cytokine signaling pathway, which promotes the synthesis of interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α), leading to neuroinflammation
*NLRP3↓, also inhibited the NLR pyrin domain-containing protein 3 (NLRP3) inflammasome
*iNOS↓, A down-regulation by ferulic acid of proinflammatory molecules, such as nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, IL-1β, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1),
*COX2↓,
*TNF-α↓,
*IL1β↓,
*VCAM-1↓,
*ICAM-1↓,
*p‑MAPK↓, Ferulic acid was also able to affect the mitogen activated protein kinases (MAPKs) pathway, by inhibiting the phosphorylation of MAPKs, including p38 and c-Jun N-terminal kinase (JNK)
*p38↓,
*JNK↓,
*IL6↓, reduction of proinflammatory cytokines (IL-1β, IL-6, TNF-α and IL-8) mRNA expression
*IL8↓,
*hepatoP↑, ferulic acid reduces the liver damage induced by acetaminophen
*RenoP↑, renal protective effects by enhancing the CAT activity and PPAR γ gene expression
*Catalase↑,
*PPARγ↑,
*ROS↓, it was able to scavenge free radicals, inhibit the generation of reactive oxygen species (ROS)
*Fenton↓, inhibit the generation of reactive oxygen species (ROS) through the Fenton reaction, acting as a chelator of metals (i.e., Fe and Cu)
*IronCh↑,
*SOD↑, increasing the activity of the antioxidant superoxide dismutase (SOD) and catalase (CAT) enzymes
*MDA↓, lowering in the levels of malondialdehyde (MDA), a lipid peroxidation marker,
*lipid-P↓,
*NRF2↑, ferulic acid has been found associated to the modulation of several signaling pathways, and to an increased expression of the nuclear translocation of the transcription factor NF-E2-related factor (Nrf2)
*HO-1↑, Particularly, Nrf2 binds the antioxidant responsive element (ARE) in the promoter region of the heme oxygenase-1 (HO-1) gene,
*ARE↑,
*Bil↑, production of bilirubin, which acts as an efficient ROS scavenger, in human umbilical vein endothelial cells (HUVEC) under radiation-induced oxidative stress
*radioP↑,
*GCLC↑, HO-1 upregulation, an increased expression of other antioxidant genes, such as glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase regulatory subunit (GCLM), and NADPH quinone oxidoreductase-1 (NQO1) were induced by ferulic
*GCLM↑,
*NQO1↑,
*Half-Life↝, highest plasma concentration varies greatly depending on the investigated species: it is reached at 24 min and 2 min after ingestion in humans and rats, respectively
*GutMicro↑, ferulic acid esterified forms have been shown to act as a prebiotic, since they stimulate the growth of eubacteria, such as Lactobacilli and Bifidobacteria, in the human gastrointestinal tract, so preserving the homeostasis of gut microbiota,
*Aβ↓, ferulic acid was able to inhibit the aggregation of Aβ25–35, Aβ1–40, and Aβ1–42 and to destabilize pre-aggregated Aβ.
*BDNF↑, up-regulation of brain-derived neurotrophic factor (BDNF) gene were observed after treatment with ferulic acid
*Ca+2↓, prevented membrane damage, scavenged free radicals, increased SOD activity, and decreased the intracellular free Ca2+ levels, lipid peroxidation, and the release of prostaglandin E2 (PGE2);
*lipid-P↓,
*PGE2↓,
*cognitive↑, highlighted that ferulic administration (0.002–0.005% in drinking water) for 28 days improved the trimethyltin-induced cognitive deficit: an increase in the choline acetyltransferase activity was hypothesized as a possible mechanism of action.
*ChAT↑,
*memory↑, Another study showed that ferulic acid, administered intragastrically (30 mg/kg) for 3 months, improved memory in the transgenic APP/PS1 mice, and reduced Aβ deposits,
*Dose↝, 4-week prospective, open-label trial, in which patients (n = 20) assumed daily Feru-guard® (3.0 g/day), was designed.
*toxicity↓, Salau et al. [130] did not find signs of toxicity of ferulic acid in hippocampal neuronal cell lines HT22 cells, thus concluding that the substance seems to be safe in healthy brain cells

3713- FA,    Protective Effect of Ferulic Acid on Acetylcholinesterase and Amyloid Beta Peptide Plaque Formation in Alzheimer’s Disease: An In Vitro Study
- Review, AD, NA
*AChE↓, FA has the potential to be an AChE inhibitor, thus helping in blocking the activity of AChE and also reducing the incidence of amyloid beta plaque formation.
*antiOx↑, significant antioxidant property
*neuroP↑, FA has significant antioxidant and neuroprotective effects
*Aβ↓,
*MMP↓, restore mitochondrial membrane potential
*XO↓, FA, at concentrations ranging from 10 Inline graphicM to 320 Inline graphicM, demonstrated substantial inhibition of XO,
*SOD↑, FA has demonstrated the restoration of SOD activity, mitigated lipid peroxidation, and exhibited free radical scavenging capabilities
*lipid-P↑,
*ROS↓,

3712- FA,    Ferulic Acid: A Hope for Alzheimer’s Disease Therapy from Plants
- Review, AD, NA
*antiOx↑, Ferulic acid (FA) is an antioxidant naturally present in plant cell walls with anti-inflammatory activities and it is able to act as a free radical scavenger.
*Inflam↓,
*ROS↓,
*Aβ↓, “FA could prevent the development of AD, not only through scavenging reactive oxygen species, but also through direct inhibition of the deposition of fibrils in the brain”
*HO-1↑, FA plays a cytoprotective role through the up-regulation of enzymes such as heme oxygenase-1, heat shock protein 70, extracellular signal-regulated kinase (ERK) 1/2, and serine/threonine kinase (Akt).
*HSP70/HSPA5↑,
*ERK↑,
*Akt↑,
*iNOS↓, , FA inhibits the expression and/or activity of cytotoxic enzymes, including inducible nitric oxide synthase, caspases, and cyclooxygenase-2
*COX2↓,
*cardioP↑, treatment of several age-related diseases, such as neurodegenerative disorders, cardiovascular diseases, diabetes, and cancer
*memory↑, reported that the long-term administration of FA to mice protected against learning and memory deficits induced by centrally administered β-amyloid
*IL2↓, FA is able to significantly reduce the interleukin-1β (IL-1β) cortical levels
*cognitive↑, FA reversed behavioral impairment, including hyperactivity, object recognition, spatial working, and reference memory.
*APP↓, it reduced amyloidogenic APP metabolism by modulation of β-secretase, attenuated neuroinflammation, and stabilized oxidative stress.
*SOD↑, superoxide dismutase (SOD), catalase (CAT) ERK 1/2, and Akt [95].
*Catalase↑,
*Akt↑,
*BioAv↑, A good strategy to increase the bioavailability and the cytoprotective effect of compounds such as FA is the formulation of new nanoparticles.

3710- FA,    Therapeutic Potential of Ferulic Acid in Alzheimer's Disease
- Review, AD, NA
*antiOx↑, Ferulic acid (FA), a high-capacity antioxidant molecule, is naturally synthesized from certain plants.
*AntiCan↑, FA has been shown to have different substantial biological properties, such as anticancer, antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and cardioprotective actions, etc.
*Inflam↓,
*hepatoP↑,
*cardioP↑,
*neuroP↑, FA exerts neuroprotection via preventing Aβ-fibril formation, acting as an anti-inflammatory agent, and inhibiting free radical generation and acetylcholinesterase (AChE) enzyme activity.
*Aβ↓,
*ROS↓,
*AChE↓,

1656- FA,    Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling
- Review, Var, NA
tyrosinase↓,
CK2↓,
TumCP↓,
TumCMig↓,
FGF↓,
FGFR1↓,
PI3K↓,
Akt↓,
VEGF↓,
FGFR1↓,
FGFR2↓,
PDGF↓,
ALAT↓,
AST↓,
TumCCA↑, G0/G1 phase arrest
CDK2↓,
CDK4↓,
CDK6↓,
BAX↓,
Bcl-2↓,
MMP2↓,
MMP9↓,
P53↑,
PARP↑,
PUMA↑,
NOXA↑,
Casp3↑,
Casp9↑,
TIMP1↑,
lipid-P↑,
mtDam↑,
EMT↓,
Vim↓,
E-cadherin↓,
p‑STAT3↓,
COX2↓,
CDC25↓,
RadioS↑,
ROS↑,
DNAdam↑,
γH2AX↑,
PTEN↑,
LC3II↓,
Beclin-1↓,
SOD↓,
Catalase↓,
GPx↓,
Fas↑,
*BioAv↓, ferulic acid stability and limited solubility in aqueous media continue to be key obstacles to its bioavailability, preclinical efficacy, and clinical use.
cMyc↓,
Beclin-1↑, ferulic acid by elevating the levels of the apoptosis and autophagy biomarkers, including beclin-1, Light chain (LC3-I/LC3-II), PTEN-induced putative kinase 1 (PINK-1), and Parkin
LC3‑Ⅱ/LC3‑Ⅰ↓,

1654- FA,    Molecular mechanism of ferulic acid and its derivatives in tumor progression
- Review, Var, NA
AntiCan↑, FA has anti-inflammatory, analgesic, anti-radiation, and immune-enhancing effects and also shows anticancer activity,
Inflam↓,
RadioS↑,
ROS↑, FA can cause mitochondrial apoptosis by inducing the generation of intracellular reactive oxygen species (ROS)
Apoptosis↑,
TumCCA↑, G0/G1 phase
TumCMig↑, inducing autophagy; inhibiting cell migration, invasion, and angiogenesis
TumCI↓,
angioG↓,
ChemoSen↑, synergistically improving the efficacy of chemotherapy drugs and reducing adverse reactions.
ChemoSideEff↓,
P53↑, FA could increase the expression level of p53 in MIA PaCa-2 pancreatic cancer cells
cycD1↓, while reducing the expression levels of cyclin D1 and cyclin-dependent kinase (CDK) 4/6.
CDK4↓,
CDK6↓,
TumW↓, FA treatment was found to reduce tumor weight in a dose-dependent manner, increase miR-34a expression, downregulate Bcl-2 protein expression, and upregulate caspase-3 protein expression
miR-34a↑,
Bcl-2↓,
Casp3↑,
BAX↑,
β-catenin/ZEB1↓, isoferulic acid dose-dependently downregulated the expression of β-catenin and MYC proto-oncogene (c-Myc), inducing apoptosis
cMyc↓,
Bax:Bcl2↑, FXS-3 can inhibit the activity of A549 cells by upregulating the Bax/Bcl-2 ratio
SOD↓, After treatment with FA, Cao et al. [40] observed an increase in ROS production and a decrease in superoxide dismutase activity and glutathione content in EC-1 and TE-4 oesophageal cancer cells
GSH↓,
LDH↓, FA could promote the release of lactate dehydrogenase (LDH)
ERK↑, A can activate the ERK1/2 pathway
eff↑, conjugated zinc oxide nanoparticles with FA (ZnONPs-FA) to act on hepatoma Huh-7 and HepG2 cells. The results showed that ZnONPs-FA could induce oxidative DNA damage and apoptosis by inducing ROS production.
JAK2↓, by inhibiting the JAK2/STAT6 immune signaling pathway
STAT6↓,
NF-kB↓, thus inhibiting the activation of NF-κB
PYCR1↓, FA can target PYCR1 and inhibit its enzyme activity in a concentration-dependent manner.
PI3K↓, FA inhibits the activation of the PI3K/AKT pathway
Akt↓,
mTOR↓, FA could significantly reduce the expression level of mTOR mRNA and Ki-67 protein in A549 lung cancer graft tissue
Ki-67↓,
VEGF↓,
FGFR1↓, FA is a novel FGFR1 inhibitor
EMT↓, FA can inhibit EMT
CAIX↓, selectively inhibit CAIX
LC3II↑, Autophagy vacuoles and increased LC3-II and p62 autophagy proteins were observed after treatment with this compound
p62↑,
PKM2↓, FA could inhibit the expression of PKM2 and block aerobic glycolysis
Glycolysis↓,
*BioAv↓, FA has poor solubility in water and a poor ability to pass through biological barriers [118]; therefore, the extent to which it is metabolized in vivo after oral administration is largely unknown


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 10

Results for Effect on Cancer/Diseased Cells:
Akt↓,2,   ALAT↓,1,   angioG↓,1,   AntiCan↑,1,   Apoptosis↑,1,   AST↓,1,   BAX↓,1,   BAX↑,1,   Bax:Bcl2↑,1,   Bcl-2↓,2,   Beclin-1↓,1,   Beclin-1↑,1,   CAIX↓,1,   Casp3↑,2,   Casp9↑,1,   Catalase↓,1,   CDC25↓,1,   CDK2↓,1,   CDK4↓,2,   CDK6↓,2,   ChemoSen↑,1,   ChemoSideEff↓,1,   CK2↓,1,   cMyc↓,2,   COX2↓,1,   cycD1↓,1,   DNAdam↑,1,   E-cadherin↓,1,   eff↑,1,   EMT↓,2,   ERK↑,1,   Fas↑,1,   FGF↓,1,   FGFR1↓,3,   FGFR2↓,1,   Glycolysis↓,1,   GPx↓,1,   GSH↓,1,   Inflam↓,1,   JAK2↓,1,   Ki-67↓,1,   LC3‑Ⅱ/LC3‑Ⅰ↓,1,   LC3II↓,1,   LC3II↑,1,   LDH↓,1,   lipid-P↑,1,   miR-34a↑,1,   MMP2↓,1,   MMP9↓,1,   mtDam↑,1,   mTOR↓,1,   NF-kB↓,1,   NOXA↑,1,   P53↑,2,   p62↑,1,   PARP↑,1,   PDGF↓,1,   PI3K↓,2,   PKM2↓,1,   PTEN↑,1,   PUMA↑,1,   PYCR1↓,1,   RadioS↑,2,   ROS↑,2,   SOD↓,2,   p‑STAT3↓,1,   STAT6↓,1,   TIMP1↑,1,   TumCCA↑,2,   TumCI↓,1,   TumCMig↓,1,   TumCMig↑,1,   TumCP↓,1,   TumW↓,1,   tyrosinase↓,1,   VEGF↓,2,   Vim↓,1,   β-catenin/ZEB1↓,1,   γH2AX↑,1,  
Total Targets: 79

Results for Effect on Normal Cells:
AChE↓,4,   Akt↑,2,   p‑Akt↓,1,   AntiCan↑,1,   antiOx↑,7,   APP↓,1,   ARE↑,1,   Aβ↓,7,   BACE↓,1,   BBB↑,1,   BChE↓,1,   BDNF↑,1,   Bil↑,2,   BioAv↓,2,   BioAv↑,1,   Ca+2↓,2,   cardioP↑,2,   Catalase↑,3,   ChAT↑,1,   cognitive↑,3,   COX2↓,3,   Dose↝,1,   ERK↓,1,   ERK↑,1,   Fenton↓,2,   GCLC↑,2,   GCLM↑,2,   GSH↑,1,   GSSG↓,1,   GutMicro↑,2,   Half-Life↝,1,   hepatoP↑,3,   HO-1↑,3,   HSP70/HSPA5↑,1,   ICAM-1↓,2,   IL1β↓,2,   IL2↓,1,   IL6↓,1,   IL8↓,1,   Inflam↓,5,   iNOS↓,3,   IronCh↑,3,   JNK↓,1,   lipid-P↓,4,   lipid-P↑,1,   p‑MAPK?,1,   p‑MAPK↓,1,   MDA↓,3,   memory↑,3,   MMP↓,1,   MMP↑,1,   neuroP↑,5,   NF-kB↓,2,   NLRP3↓,3,   NQO1↑,2,   NRF2↑,2,   p38↓,1,   PGE2↓,2,   PPARγ↑,2,   radioP↑,1,   RenoP↑,1,   ROS↓,8,   SOD↑,5,   p‑tau↓,1,   TLR4↓,1,   TNF-α↓,2,   toxicity↓,1,   VCAM-1↓,2,   XO↓,1,  
Total Targets: 69

Scientific Paper Hit Count for: ROS, Reactive Oxygen Species
10 Ferulic acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:77  Target#:275  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page