tbResList Print — JG Juglone

Filters: qv=105, qv2=%, rfv=%

Product

JG Juglone
Description: <b>Found</b> in roots, leaves, nut-hulls, bark and wood of walnut trees.<br>
Juglone (5-hydroxy-1,4-naphthoquinone) <br>
Juglans nigra refers to the black walnut tree, which is one of the most well-known sources of juglone<br>
-Research has focused on the hulls (the green outer covering of the walnut) because they have the highest concentrations.<br>
-Fresh hulls can contain juglone levels in the range of approximately 1–5% of the dry weight<br>
<br>
-Juglone can redox cycle to generate reactive oxygen species (ROS). <br>
-Increasing Bax, decreasing Bcl‑2, caspase activation, and MMP depolarization.<br>
-Modulation of MAPK pathways (including ERK, JNK, and p38) <br>
-May inhibit NF‑κB signaling<br>
-Cause DNA damage or stress that, in turn, leads to p53 pathway activation—
Pin1 Inhibition<br>
–Pin1, a peptidyl-prolyl cis/trans isomerase, is frequently overexpressed in cancer.<br>
<br>
-ic50 maybe 5-10uM<br>
-For matching 5uM, crude estimate is 5mg consumption of juglone required which might be 1.5 g of black walnut hull material<br>
<br>


<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>Redox cycling (quinone–semiquinone system)</td>
<td>↑↑ ROS</td>
<td>Oxidative stress overload</td>
<td>Juglone can act as a redox-cycling quinone; ROS elevation is a dominant upstream driver in multiple cancer models</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC6523217/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>Thiol buffering (GSH depletion)</td>
<td>↓ GSH</td>
<td>Loss of redox buffering</td>
<td>In HL-60 leukemia cells, juglone induces ROS and explicitly depletes GSH; antioxidants block downstream apoptosis markers</td>
<td><a href="https://www.sciencedirect.com/science/article/abs/pii/S0278691512000117" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>Mitochondrial integrity (ΔΨm)</td>
<td>↓ ΔΨm</td>
<td>Mitochondrial dysfunction</td>
<td>In LNCaP prostate cancer cells, juglone decreases mitochondrial potential (ΔΨ) during intrinsic apoptosis</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC6266065/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>Intrinsic apoptosis (Caspase-9 → Caspase-3)</td>
<td>↑ Caspase-9/3 activation</td>
<td>Programmed cell death</td>
<td>Same LNCaP evidence base: intrinsic apoptosis with activation of caspases 3 and 9 is reported for juglone</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC6266065/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>DNA damage / genotoxic stress</td>
<td>↑ DNA damage</td>
<td>Checkpoint activation and death signaling</td>
<td>Juglone is reported to have genotoxic effects (DNA damage) in melanoma models, consistent with ROS-driven injury</td>
<td><a href="https://www.sciencedirect.com/science/article/abs/pii/S1065699509001607" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>p53 stress response</td>
<td>↑ p53 pathway (activation)</td>
<td>Cell-cycle arrest / apoptosis cooperation</td>
<td>Human liver cancer model: juglone drives apoptosis and autophagy via a ROS-mediated p53 pathway (in vitro and in vivo)</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/31283929/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>MAPK stress pathways (JNK / p38)</td>
<td>↑ JNK / ↑ p38</td>
<td>Pro-death stress signaling</td>
<td>Mechanistic synthesis notes juglone induces ROS and activates JNK and p38 MAPK, contributing to cell death signaling</td>
<td><a href="https://www.sciencedirect.com/science/article/abs/pii/S0278691518302060" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB</td>
<td>Reduced pro-survival transcription</td>
<td>Literature reports juglone inhibits NF-κB production/signaling in colonic cancer cell contexts (noted as prior work)</td>
<td><a href="https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.674341/full" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>PI3K–AKT survival pathway</td>
<td>↓ PI3K / ↓ p-AKT</td>
<td>Survival pathway suppression</td>
<td>NSCLC: juglone increases ROS and inhibits PI3K/Akt signaling; NAC (ROS scavenger) attenuates apoptosis and pathway changes</td>
<td><a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299921" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>10</td>
<td>Cell cycle control</td>
<td>↑ arrest</td>
<td>Proliferation blockade</td>
<td>NSCLC: juglone arrests the cell cycle alongside ROS rise and apoptosis marker changes</td>
<td><a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299921" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>11</td>
<td>Autophagy</td>
<td>↑ autophagy (stress-associated)</td>
<td>Stress adaptation / death crosstalk</td>
<td>Juglone induces both apoptosis and autophagy in cancer cells via MAPK pathway modulation (with ROS-MAPK coupling)</td>
<td><a href="https://www.sciencedirect.com/science/article/abs/pii/S0278691518302060" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>12</td>
<td>Angiogenesis signaling (VEGF)</td>
<td>↓ VEGF</td>
<td>Reduced vascular support</td>
<td>Pancreatic cancer cell lines: juglone reduces VEGF gene expression (and other metastasis/angiogenesis-related genes) at sub-IC50 exposure</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/33502882/" target="_blank">(ref)</a></td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx⇅, 1,   Catalase↓, 1,   Ferroptosis↑, 2,   GPx↓, 1,   GPx4↓, 2,   GSH↓, 6,   GSH⇅, 1,   H2O2↑, 2,   HO-1↑, 1,   Iron↑, 1,   lipid-P↑, 3,   MDA↑, 2,   NRF2↓, 1,   ROS↑, 18,   m-ROS↑, 1,   SOD↓, 2,  

Mitochondria & Bioenergetics

CDC25↓, 1,   MMP↓, 6,  

Core Metabolism/Glycolysis

AMPK↑, 2,  

Cell Death

p‑Akt↓, 1,   Akt↓, 3,   Apoptosis↑, 9,   BAD↑, 1,   BAX↑, 6,   Bax:Bcl2↑, 1,   Bcl-2↓, 4,   Bcl-xL↓, 1,   cl‑Casp3↑, 2,   Casp3?, 2,   Casp3↑, 2,   proCasp3↑, 1,   Casp8↑, 1,   Casp9↑, 2,   proCasp9↑, 1,   Cyt‑c↑, 6,   Diablo↑, 1,   DR5↑, 1,   Fas↑, 1,   Ferroptosis↑, 2,   JNK↑, 1,   p‑MAPK↑, 1,   MAPK↑, 1,   p‑p38↑, 1,   p38↑, 1,  

Transcription & Epigenetics

other↓, 1,   tumCV↓, 3,  

Autophagy & Lysosomes

Beclin-1↑, 2,   LC3I↑, 1,   LC3II↑, 2,   p62↓, 1,   TumAuto↑, 4,  

DNA Damage & Repair

DNAdam↑, 2,   P53↑, 2,   PARP↑, 1,   cl‑PARP↑, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK2↓, 1,   cycA1/CCNA1↓, 1,   P21↑, 1,   TumCCA↑, 3,   TumCCA↓, 1,  

Proliferation, Differentiation & Cell State

EMT↑, 1,   FOSL1↑, 1,   GSK‐3β↑, 1,   GSK‐3β↓, 1,   mTOR↑, 2,   PI3K↓, 1,   TumCG↓, 5,   Wnt↓, 1,  

Migration

i-Ca+2↑, 1,   Ca+2↑, 1,   E-cadherin↑, 2,   Ki-67↓, 1,   MMP2↓, 1,   MMP9↓, 2,   N-cadherin↓, 2,   SMAD2↓, 1,   Snail↓, 1,   TumCI↓, 3,   TumCMig↓, 2,   TumCP↓, 5,   TumPF↓, 1,   Vim↓, 2,  

Angiogenesis & Vasculature

angioG↓, 1,   Hif1a↓, 1,   VEGF↓, 3,  

Immune & Inflammatory Signaling

PSA↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,  

Drug Metabolism & Resistance

Dose↝, 1,   eff↓, 5,   eff↝, 1,   eff↑, 1,   selectivity↑, 1,  

Clinical Biomarkers

AR↓, 1,   Ki-67↓, 1,   PSA↓, 1,  

Functional Outcomes

chemoPv↑, 1,   OS↑, 1,   Pin1↓, 2,   toxicity↝, 1,  

Infection & Microbiome

AntiFungal↑, 1,   Bacteria↓, 1,  
Total Targets: 103

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 1,   NFE2L2↓, 1,   ROS↓, 2,  

Immune & Inflammatory Signaling

IL12↓, 1,   IL23↓, 1,   IL6↓, 1,   Inflam↓, 1,   NF-kB↓, 1,   TNF-α↓, 1,  

Clinical Biomarkers

IL6↓, 1,  

Functional Outcomes

OS↑, 1,  
Total Targets: 11

Research papers

Year Title Authors PMID Link Flag
2025Juglone induces ferroptotic effect on hepatocellular carcinoma and pan-cancer via the FOSL1-HMOX1 axisChuyu Wang39923427https://pubmed.ncbi.nlm.nih.gov/39923427/0
2024Juglone triggers apoptosis of non-small cell lung cancer through the reactive oxygen species -mediated PI3K/Akt pathwayJian ZhongPMC11139338https://pmc.ncbi.nlm.nih.gov/articles/PMC11139338/0
2024Juglone induces ferroptosis in glioblastoma cells by inhibiting the Nrf2-GPX4 axis through the phosphorylation of p38MAPKFangzhou GuoPMC10958923https://pmc.ncbi.nlm.nih.gov/articles/PMC10958923/0
2022The Anti-Glioma Effect of Juglone Derivatives through ROS GenerationJinsen ZhangPMC9237211https://pmc.ncbi.nlm.nih.gov/articles/PMC9237211/0
2022Natural quinones induce ROS-mediated apoptosis and inhibit cell migration in PANC-1 human pancreatic cancer cell linePrasad Narayanan35253318https://pubmed.ncbi.nlm.nih.gov/35253318/0
2021Juglone can inhibit angiogenesis and metastasis in pancreatic cancer cells by targeting Wnt/β-catenin signalingF Gokturk33502882https://pubmed.ncbi.nlm.nih.gov/33502882/0
2021Juglone Suppresses Inflammation and Oxidative Stress in Colitis MiceShuai Chenhttps://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.674341/full0
2020Inhibition of human leukemia cells growth by juglone is mediated via autophagy induction, endogenous ROS production, and inhibition of cell migration and invasionYi Xiao32862610https://pubmed.ncbi.nlm.nih.gov/32862610/0
2019ROS -mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitroPeng Wang31283929https://pubmed.ncbi.nlm.nih.gov/31283929/0
2019Mechanism of Juglone-Induced Cell Cycle Arrest and Apoptosis in Ishikawa Human Endometrial Cancer CellsYuan-Yuan Zhang31184118https://pubmed.ncbi.nlm.nih.gov/31184118/0
2019https://pubmed.ncbi.nlm.nih.gov/31283929/Peng Wang31283929https://pubmed.ncbi.nlm.nih.gov/31283929/0
2019Effects of Juglone on Antioxidant Status in Pancreatic Cancer Cell LinesEmine Nedime Korucuhttps://jmsh.ac.in/articles/effects-of-juglone-on-antioxidant-status-in-pancreatic-cancer-cell-lines0
2019Juglone in Oxidative Stress and Cell SignalingTaseer AhmadPMC6523217https://pmc.ncbi.nlm.nih.gov/articles/PMC6523217/0
2018Juglone suppresses epithelial-mesenchymal transition in prostate cancer cells via the protein kinase B/glycogen synthase kinase-3β/Snail signaling pathwayFang FangPMC6036567https://pmc.ncbi.nlm.nih.gov/articles/PMC6036567/0
2018Juglone induces apoptosis and autophagy via modulation of mitogen-activated protein kinase pathways in human hepatocellular carcinoma cellsPeng Wanghttps://www.sciencedirect.com/science/article/abs/pii/S02786915183020600
2018Natural Products to Fight Cancer: A Focus on Juglans regiaElena CatanzaroPMC6266065https://pmc.ncbi.nlm.nih.gov/articles/PMC6266065/0
2018Juglone down-regulates the Akt-HIF-1α and VEGF signaling pathways and inhibits angiogenesis in MIA Paca-2 pancreatic cancer in vitroNamrata Karkihttps://www.sciopen.com/article/10.31665/JFB.2018.11330
2017Juglone induces apoptosis of tumor stem-like cells through ROS-p38 pathway in glioblastomaJinfeng WuPMC5383964https://pmc.ncbi.nlm.nih.gov/articles/PMC5383964/0
2016Mechanism of juglone-induced apoptosis of MCF-7 cells by the mitochondrial pathwayY B Ji27525860https://pubmed.ncbi.nlm.nih.gov/27525860/0
2016Redox regulation of mitochondrial functional activity by quinonesN G Krylova28229632https://pubmed.ncbi.nlm.nih.gov/28229632/0
2012Juglone, from Juglans mandshruica Maxim, inhibits growth and induces apoptosis in human leukemia cell HL-60 through a reactive oxygen species-dependent mechanismHua Li Xuhttps://www.sciencedirect.com/science/article/abs/pii/S02786915120001170
2011Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathwayYu-Bin Ji19815401https://pubmed.ncbi.nlm.nih.gov/19815401/0
2009Juglone, a naphthoquinone from walnut, exerts cytotoxic and genotoxic effects against cultured melanoma tumor cellsB. Kiran Aithalhttps://www.sciencedirect.com/science/article/abs/pii/S10656995090016070