tbResList Print — MET Metformin

Filters: qv=11, qv2=%, rfv=%

Product

MET Metformin
Features: oral antidiabetic agent,
Description: <b>Metformin</b> is a pleiotropic drug: attributed to its action on AMPK<br>
Metformin is a biguanide drug used primarily for type 2 diabetes. Mechanistically, it is best described as a bioenergetic modulator: partial inhibition of mitochondrial respiration can raise AMP/ADP, engage AMPK, and suppress mTORC1 signaling; systemically it reduces hepatic gluconeogenesis and can lower insulin/IGF-1 growth signaling. In oncology, observational studies suggested improved outcomes in some settings, but randomized trial data are mixed (e.g., large adjuvant breast cancer data did not show broad benefit overall). Long-term use can be associated with vitamin B12 deficiency, and prescribing requires attention to renal function due to rare lactic acidosis risk in predisposed states.<br>
Metformin directly(partially) inhibits Complex I of the electron transport chain (ETC) in mitochondria. This inhibition decreases mitochondrial ATP production and forces cells to rely more on glycolysis for energy.<br>
Cancer cells, especially those with high energy demands, may be particularly sensitive to a drop in ATP levels. The inhibition of Complex I also increases the AMP/ATP ratio, setting the stage for the activation of downstream energy stress pathways.<br>
AMPK activation results in the inhibition of the mammalian target of rapamycin (mTOR) pathway, a central regulator of protein synthesis and cellular growth. mTOR inhibition reduces cell proliferation and limits tissue growth, which can slow tumor progression.<br>
<br>
Metformin reduces circulating insulin levels, which in turn can decrease the activation of the insulin and insulin-like growth factor-1 (IGF-1) receptor pathways.<br>
<br>
ETC Inhibitors: Drugs that directly inhibit specific ETC complexes (e.g., Complex I inhibitors like metformin or phenformin) can increase electron leakage and ROS production.(dose- and context-dependent, and not consistent)<br>
<br>
-known as mild OXPHOS inhibitor(Complex I modulator)<br>
<br>



<!-- Metformin — Time-Scale Flagged Pathway Table (web-page ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Mitochondrial Complex I (OXPHOS) inhibition</td>
<td>Energetic stress ↑; proliferation pressure ↓ (context)</td>
<td>Hepatic energy shift; gluconeogenesis ↓</td>
<td>P, R</td>
<td>Bioenergetic modulation</td>
<td>Metformin partially inhibits mitochondrial Complex I (OXPHOS), increasing AMP/ADP ratio and triggering downstream AMPK activation. ROS changes are dose- and context-dependent.</td>
</tr>


<tr>
<td>2</td>
<td>AMPK activation (LKB1/AMPK axis)</td>
<td>Growth programs ↓ (context-dependent)</td>
<td>Metabolic homeostasis ↑</td>
<td>R</td>
<td>Energy-sensor activation</td>
<td>AMPK activation is frequently invoked downstream of respiratory inhibition, though some hepatic effects can be AMPK-independent.</td>
</tr>

<tr>
<td>3</td>
<td>mTORC1 inhibition (via AMPK→TSC2/Raptor; also AMPK-independent routes reported)</td>
<td>Protein synthesis / growth signaling ↓ (reported)</td>
<td>Reduced anabolic signaling in liver (context)</td>
<td>R, G</td>
<td>Anti-anabolic signaling</td>
<td>Mechanistically supported: AMPK regulation of TSC2 and Raptor contributes to metformin-mediated mTORC1 inhibition; AMPK-independent mTORC1 inhibition has also been described.</td>
</tr>

<tr>
<td>4</td>
<td>Hepatic gluconeogenesis suppression</td>
<td>Indirect tumor support via insulin/IGF-1 lowering (systemic)</td>
<td>Liver glucose production ↓ (core clinical effect)</td>
<td>R, G</td>
<td>Systemic metabolic effect</td>
<td>Metformin reduces hepatic glucose output through multiple mechanisms (energy state shifts, cAMP pathways, and other proposed nodes).</td>
</tr>

<tr>
<td>5</td>
<td>Insulin / IGF-1 axis (systemic growth signaling)</td>
<td>Mitogenic tone ↓ (context; strongest in hyperinsulinemic settings)</td>
<td>Insulin sensitivity ↑; insulin levels ↓ (context)</td>
<td>G</td>
<td>Systemic growth-factor modulation</td>
<td>Many “anti-cancer” hypotheses depend on lowering insulin/IGF-1 signaling rather than direct tumor cytotoxicity.</td>
</tr>

<tr>
<td>6</td>
<td>Cell-cycle & apoptosis (secondary, model-dependent)</td>
<td>Proliferation ↓; apoptosis ↑ (reported in some models)</td>
<td>↔</td>
<td>G</td>
<td>Conditional cytostasis</td>
<td>Often downstream of mTORC1 suppression/energy stress; not a universal direct cytotoxin signature.</td>
</tr>

<tr>
<td>7</td>
<td>Inflammation signaling (NF-κB and related programs)</td>
<td>Inflammatory pro-survival transcription ↓ (reported)</td>
<td>Anti-inflammatory trends in metabolic disease contexts</td>
<td>R, G</td>
<td>Inflammation modulation</td>
<td>Frequently reported as downstream of improved metabolic/oxidative stress tone; avoid presenting as a primary direct target.</td>
</tr>

<tr>
<td>8</td>
<td>Autophagy / stress adaptation</td>
<td>Autophagy ↑ or ↓ depending on context; can affect therapy response</td>
<td>↔</td>
<td>G</td>
<td>Adaptive stress response</td>
<td>Autophagy findings are heterogeneous across tumor models and combinations.</td>
</tr>

<tr>
<td>9</td>
<td>Clinical oncology evidence (adjunct use)</td>
<td>Observational signals exist; randomized data are mixed</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>Epidemiology/meta-analyses suggested potential benefit in some cancers, but large randomized trials (e.g., adjuvant breast cancer MA.32) did not show broad benefit across the overall population.</td>
</tr>

<tr>
<td>10</td>
<td>Safety / monitoring constraints (B12, lactic acidosis risk in predisposed states)</td>
<td>—</td>
<td>Vitamin B12 deficiency risk with long-term use; rare lactic acidosis risk increases with renal impairment and other conditions</td>
<td>—</td>
<td>Clinical risk management</td>
<td>Long-term B12 monitoring is commonly advised; prescribing requires renal function assessment due to lactic acidosis risk in predisposed settings.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid bioenergetic effects)</li>
<li><b>R</b>: 30 min–3 hr (acute signaling shifts: AMPK/mTOR)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Catalase↓, 1,   GPx4↓, 1,   GSH↓, 1,   HK1↓, 1,   HO-1↓, 1,   Iron↑, 1,   MDA↑, 1,   NRF2↓, 1,   OXPHOS↑, 1,   ROS↑, 5,   T-SOD↓, 1,   xCT↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 1,   MMP↓, 3,   OCR↑, 1,  

Core Metabolism/Glycolysis

ACLY↓, 1,   p‑AMPK↑, 1,   AMPK↑, 5,   cMyc↓, 1,   FASN↓, 1,   GLS↓, 1,   glucoNG↓, 1,   glucose↓, 1,   GlucoseCon↓, 2,   Glycolysis↓, 3,   Glycolysis↑, 1,   HK2↓, 3,   IDH1↑, 1,   lactateProd↓, 2,   LDH↓, 1,   LDHA↓, 1,   NADPH↓, 1,   PDH↑, 2,   PDH↓, 1,   p‑PDH↑, 1,   PDHB↓, 1,   PDK1↓, 1,   PDKs↓, 1,   PFK↓, 1,   PKM2↓, 10,   Warburg↓, 1,  

Cell Death

Akt↓, 1,   Apoptosis↑, 7,   BAX↑, 1,   BAX↓, 1,   Bcl-2↓, 3,   BIM↑, 1,   Casp3↑, 2,   Casp8↑, 1,   Casp9↑, 1,   Cyt‑c↑, 1,   MLKL↑, 1,   p‑MLKL↓, 1,   Necroptosis↑, 1,   TumCD↑, 1,  

Transcription & Epigenetics

tumCV↓, 4,  

Protein Folding & ER Stress

p‑Hsc70↑, 1,  

Autophagy & Lysosomes

LC3B↑, 1,   p62↑, 1,   TumAuto↑, 1,  

DNA Damage & Repair

DNA-PK↑, 1,   DNAdam↑, 1,   P53↑, 1,   P53∅, 1,   p‑P53↑, 1,   cl‑PARP↑, 2,   p‑PARP↑, 1,   PARP↓, 2,   γH2AX↑, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

EMT↓, 5,   mTOR↓, 4,   P70S6K↓, 2,   PI3K↓, 1,   STAT3↓, 2,   p‑STAT3↓, 1,   TumCG↓, 5,   TumCG↑, 1,  

Migration

APP↓, 1,   CAFs/TAFs↝, 1,   E-cadherin↑, 1,   Ki-67↑, 1,   L-sel↑, 1,   RIP3↑, 1,   p‑RIP3↑, 1,   Snail↓, 1,   TGF-β↓, 1,   TumCI↓, 4,   TumCMig↓, 5,   TumCP↓, 2,   TXNIP↓, 1,   Vim↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 7,   PHDs↑, 1,  

Barriers & Transport

GLUT1↓, 1,   GLUT3↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   IKKα↑, 1,   PD-L1↓, 1,  

Cellular Microenvironment

pH↝, 1,   TIM-3↑, 1,  

Hormonal & Nuclear Receptors

ERα/ESR1↓, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 2,   Dose∅, 2,   Dose↝, 2,   eff↑, 11,   eff↓, 2,   selectivity↑, 4,   selectivity↓, 1,  

Clinical Biomarkers

ERα/ESR1↓, 1,   Ki-67↑, 1,   LDH↓, 1,   PD-L1↓, 1,  

Functional Outcomes

chemoP↑, 1,   memory↑, 1,   neuroP↑, 1,   OS↑, 1,   toxicity∅, 1,   TumVol↓, 1,   TumW↓, 2,  
Total Targets: 122

Pathway results for Effect on Normal Cells

Mitochondria & Bioenergetics

mitResp↓, 1,  

Core Metabolism/Glycolysis

AMPK↑, 1,   glucoNG↓, 2,   glucose↓, 2,   HK2↓, 2,   PKM2↓, 2,  

Proliferation, Differentiation & Cell State

EMT↓, 1,   p‑P70S6K↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 1,  

Drug Metabolism & Resistance

Dose↝, 1,  

Functional Outcomes

toxicity∅, 1,   toxicity↓, 1,  
Total Targets: 12

Research papers

Year Title Authors PMID Link Flag
2019Metabolic therapies inhibit tumor growth in vivo and in silicoJorgelindo da Veiga Moreirahttps://www.nature.com/articles/s41598-019-39109-10
2021Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cellsMadhuri Shende Warkadhttps://www.nature.com/articles/s41598-021-93270-00
2018Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma LinesMalgorzata Tyszka-CzocharaPMC6073805https://pmc.ncbi.nlm.nih.gov/articles/PMC6073805/0
2024Targeting metabolic pathways alleviates bortezomib-induced neuropathic pain without compromising anticancer efficacy in a sex-specific mannerPanjamurthy KuppusamyPMC11228363https://pmc.ncbi.nlm.nih.gov/articles/PMC11228363/0
2016Long-term stabilization of stage 4 colon cancer using sodium dichloroacetate therapyAkbar KhanPMC5067498https://pmc.ncbi.nlm.nih.gov/articles/PMC5067498/0
2015Dichloroacetate Enhances Apoptotic Cell Death via Oxidative Damage and Attenuates Lactate Production in Metformin-Treated Breast Cancer CellsAllison B HaugrudPMC4184194https://pmc.ncbi.nlm.nih.gov/articles/PMC4184194/0
2023Honokiol inhibits the growth of hormone-resistant breast cancer cells: its promising effect in combination with metforminEkaterina I MikhaevichPMC10568957https://pmc.ncbi.nlm.nih.gov/articles/PMC10568957/0
2024Metformin Increases the Response of Cholangiocarcinoma Cells to Gemcitabine by Suppressing Pyruvate Kinase M2 to Activate Mitochondrial ApoptosisHaishan Deng38170336https://pubmed.ncbi.nlm.nih.gov/38170336/0
2023Metformin induces ferroptosis through the Nrf2/HO-1 signaling in lung cancerChengmin DengPMC10521546https://pmc.ncbi.nlm.nih.gov/articles/PMC10521546/0
2023Integration of metabolomics and transcriptomics reveals metformin suppresses thyroid cancer progression via inhibiting glycolysis and restraining DNA replicationJielin Ouyanghttps://www.sciencedirect.com/science/article/pii/S07533322230145790
2022Tumor metabolism destruction via metformin-based glycolysis inhibition and glucose oxidase-mediated glucose deprivation for enhanced cancer therapyXiangyu Meng35460908https://pubmed.ncbi.nlm.nih.gov/35460908/0
2021Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapyLuis Enrique MunozPMC8611422https://pmc.ncbi.nlm.nih.gov/articles/PMC8611422/0
2021Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse modelXiaoyan Xuhttps://link.springer.com/article/10.1007/s13238-021-00858-30
2020Metformin suppresses HIF-1α expression in cancer-associated fibroblasts to prevent tumor-stromal cross talk in breast cancerShan Shao32592239https://pubmed.ncbi.nlm.nih.gov/32592239/0
2020Metformin inhibits epithelial-mesenchymal transition of oral squamous cell carcinoma via the mTOR/HIF-1α/PKM2/STAT3 pathwayWeihuang YinPMC7693125https://pmc.ncbi.nlm.nih.gov/articles/PMC7693125/0
2020Mechanisms of metformin inhibiting cancer invasion and migrationYong Chang ChenPMC7540116https://pmc.ncbi.nlm.nih.gov/articles/PMC7540116/0
2020The Metformin Mechanism on Gluconeogenesis and AMPK Activation: The Metabolite PerspectiveLoranne AgiusPMC7247334https://pmc.ncbi.nlm.nih.gov/articles/PMC7247334/0
2019Metformin Inhibits Gluconeogenesis by a Redox-Dependent Mechanism In VivoAnila K MadirajuPMC6129196https://pmc.ncbi.nlm.nih.gov/articles/PMC6129196/0
2019Activation of AMPK by metformin promotes renal cancer cell proliferation under glucose deprivation through its interaction with PKM2Meihan LiuPMC6367591https://pmc.ncbi.nlm.nih.gov/articles/PMC6367591/0
2019Metformin Inhibits Epithelial-to-Mesenchymal Transition of Keloid Fibroblasts via the HIF-1α/PKM2 Signaling PathwayRui LeiPMC6643126https://pmc.ncbi.nlm.nih.gov/articles/PMC6643126/0
2019The role of pyruvate kinase M2 in anticancer therapeutic treatmentsQiongli SuPMC6865080https://pmc.ncbi.nlm.nih.gov/articles/PMC6865080/0
2018Down‐regulation of PKM2 enhances anticancer efficiency of THP on bladder cancerQiongli SuPMC5908113https://pmc.ncbi.nlm.nih.gov/articles/PMC5908113/0
2017Metformin alleviates nickel-induced autophagy and apoptosis via inhibition of hexokinase-2, activating lipocalin-2, in human bronchial epithelial cellsYu-Ting KangPMC5739657https://pmc.ncbi.nlm.nih.gov/articles/PMC5739657/0
2016Metformin Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition via PKM2 Relative-mTOR/p70s6k Signaling Pathway in Cervical Carcinoma CellsKeyan ChengPMC5187800https://pmc.ncbi.nlm.nih.gov/articles/PMC5187800/0
2016Metformin increases PDH and suppresses HIF-1α under hypoxic conditions and induces cell death in oral squamous cell carcinomaTalita Antunes GuimarãesPMC5342401https://pmc.ncbi.nlm.nih.gov/articles/PMC5342401/0
2015Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signalingGuangxia ChenPMC4473320https://pmc.ncbi.nlm.nih.gov/articles/PMC4473320/0
2015Metformin Induces Apoptosis and Downregulates Pyruvate Kinase M2 in Breast Cancer Cells Only When Grown in Nutrient-Poor ConditionsAlessandra SilvestriPMC4546379https://pmc.ncbi.nlm.nih.gov/articles/PMC4546379/0
2014Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenaseAnila K MadirajuPMC4074244https://pmc.ncbi.nlm.nih.gov/articles/PMC4074244/0
2013Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancerCecilia MariniPMC3906335https://pmc.ncbi.nlm.nih.gov/articles/PMC3906335/0
2013Metformin Impairs Glucose Consumption and Survival in Calu-1 Cells by Direct Inhibition of Hexokinase-IIBarbara Salanihttps://www.nature.com/articles/srep020700