tbResList Print — LT Luteolin

Filters: qv=118, qv2=%, rfv=%

Product

LT Luteolin
Description: <b>Luteolin</b> a Flavonoid found in celery, parsley, broccoli, onion leaves, carrots, peppers, cabbages, apple skins, and chrysanthemum flowers.<br>

-MDR1 expression, MMP-9, IGF-1 and Epithelial to mesenchymal transition.<br>


<br>
-Note <a href="tbResList.php?qv=118&tsv=1109&wNotes=on&exSp=open">half-life</a> 2–3 hours<br>
<a href="tbResList.php?qv=118&tsv=792&wNotes=on&exSp=open">BioAv </a> low, but could be improved with Res, or blend of castor oil, kolliphor and polyethylene glycol
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- induce
<a href="tbResList.php?qv=118&tsv=275&wNotes=on">ROS</a> production in cancer cell but a few reports of reduction. Always seems to reduce ROS in normal cells.<br>
- ROS↑ related:
<a href="tbResList.php?qv=118&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=118&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=118&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?qv=118&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=118&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?qv=118&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=118&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=118&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=118&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=118&wNotes=on&word=HSP">HSP↓</a>
<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=118&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?qv=118&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>,
<a href="tbResList.php?qv=118&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=118&tsv=46&wNotes=on">Catalase↓</a>
<a href="tbResList.php?qv=118&tsv=597&wNotes=on">HO1↓</a>
<a href="tbResList.php?qv=118&wNotes=on&word=GPx">GPx↓</a>


<br>

- Raises
<a href="tbResList.php?qv=118&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=118&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=118&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=118&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=118&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=118&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=118&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=118&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=118&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=118&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=118&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=118&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=118&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=118&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=118&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=118&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=118&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=118&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?qv=118&tsv=308&wNotes=on">TIMP2</a>,
<a href="tbResList.php?qv=118&tsv=415&wNotes=on">IGF-1↓</a>,
<a href="tbResList.php?qv=118&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=118&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=118&tsv=273&wNotes=on">RhoA↓</a>,
<a href="tbResList.php?qv=118&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?qv=118&tsv=79&wNotes=on">CXCR4↓</a>,
<a href="tbResList.php?qv=118&tsv=105&wNotes=on">ERK↓</a>
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=118&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=118&tsv=85&wNotes=on">DNMT1↓</a>,
<a href="tbResList.php?qv=118&tsv=86&wNotes=on">DNMT3A↓</a>,
<a href="tbResList.php?qv=118&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=118&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=118&wNotes=on&word=HSP">HSP↓</a>,
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=118&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=118&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=118&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?qv=118&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=118&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?qv=118&tsv=895&wNotes=on">CDK6↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=118&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=118&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=118&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=118&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=118&tsv=1117&wNotes=on">TOP1↓</a>,
<a href="tbResList.php?qv=118&tsv=657&wNotes=on">TET1↓</a>,
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=118&tsv=129&wNotes=on">glycolysis</a>
and
<a href="tbResList.php?qv=118&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=118&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=118&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?qv=118&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=118&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=118&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=118&tsv=356&wNotes=on">GRP78↑</a>,
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=118&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=118&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=118&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=118&wNotes=on&word=NOTCH">Notch↓</a>,
<a href="tbResList.php?qv=118&tsv=361&wNotes=on">PDGF↓</a>,
<a href="tbResList.php?qv=118&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<a href="tbResList.php?qv=118&&wNotes=on&word=ITG">Integrins↓</a>,
<br>



<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=118&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=118&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=118&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=118&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=118&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=118&tsv=9&wNotes=on">AMPK</a>,
<a href="tbResList.php?qv=118&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=118&tsv=168&wNotes=on">JNK</a>,
<a href="tbResList.php?qv=118&word=Trx&wNotes=on">TrxR**</a>,

- Shown to modulate the nuclear translocation of
<a href="tbResList.php?qv=118&tsv=1132&wNotes=on&exSp=open&word=SREBP2">SREBP-2</a> (related to cholesterol).<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=118&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=118&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=118&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=118&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=118&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=118&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=118&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=118&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=118&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a><br>
<br>



Luteolin — Cancer vs Normal Cell Effects
<table>
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>PI3K → AKT → mTOR axis</td>
<td>↓ AKT / ↓ mTOR signaling</td>
<td>↔ adaptive suppression</td>
<td>Driver</td>
<td>Loss of survival and growth signaling</td>
<td>Luteolin consistently suppresses PI3K/AKT signaling, explaining growth inhibition and apoptosis sensitization</td>
</tr>

<tr>
<td>2</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB activation</td>
<td>↓ inflammatory NF-κB tone</td>
<td>Driver</td>
<td>Suppression of inflammatory survival transcription</td>
<td>NF-κB inhibition is a core, repeatedly observed luteolin effect</td>
</tr>

<tr>
<td>3</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS (context- & dose-dependent)</td>
<td>↓ ROS / buffered</td>
<td>Conditional Driver</td>
<td>Biphasic redox modulation</td>
<td>Luteolin can act as a pro-oxidant in cancer cells while remaining antioxidant in normal cells</td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial integrity / intrinsic apoptosis</td>
<td>↓ ΔΨm; ↑ caspase activation</td>
<td>↔ preserved</td>
<td>Secondary</td>
<td>Execution of intrinsic apoptosis</td>
<td>Mitochondrial apoptosis follows signaling and redox stress</td>
</tr>

<tr>
<td>5</td>
<td>STAT3 signaling</td>
<td>↓ STAT3 activation</td>
<td>↔ minimal</td>
<td>Secondary</td>
<td>Loss of proliferative and stemness signaling</td>
<td>STAT3 suppression contributes to reduced invasion and CSC traits</td>
</tr>

<tr>
<td>6</td>
<td>Cell cycle regulation</td>
<td>↑ G1 or G2/M arrest</td>
<td>↔ spared</td>
<td>Phenotypic</td>
<td>Cytostatic growth control</td>
<td>Cell-cycle arrest reflects upstream pathway inhibition</td>
</tr>

<tr>
<td>7</td>
<td>Migration / invasion (EMT, MMP axis)</td>
<td>↓ migration & invasion</td>
<td>↔</td>
<td>Phenotypic</td>
<td>Anti-metastatic phenotype</td>
<td>Reduced EMT and protease activity limit invasiveness</td>
</tr>

</table>



Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx⇅, 1,   Catalase↓, 3,   Catalase↑, 1,   CYP1A1↓, 2,   Ferroptosis↑, 1,   GPx↓, 1,   GPx4↓, 1,   GSH↓, 5,   GSR↓, 1,   GSS↑, 1,   GSTs↓, 2,   e-H2O2↓, 1,   i-H2O2∅, 1,   HO-1↓, 6,   HO-1↑, 1,   Iron↑, 1,   MDA↑, 1,   NQO1↓, 2,   NRF2↓, 8,   NRF2⇅, 1,   NRF2↑, 2,   ROS↑, 11,   ROS↓, 2,   SOD↓, 6,   SOD2↓, 1,   Trx1↑, 1,   TrxR1↓, 1,   VitC↓, 1,   VitE↓, 1,  

Metal & Cofactor Biology

IronCh↑, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 1,   BOK↑, 1,   CDC2↓, 2,   p‑MEK↓, 1,   MMP↓, 5,   mtDam↑, 2,   XIAP↓, 4,  

Core Metabolism/Glycolysis

AKT1↓, 2,   ALAT∅, 1,   cMyc↓, 3,   p‑cMyc↑, 1,   FASN↓, 2,   Glycolysis↓, 2,   HK2↓, 1,   PKM2↓, 1,   SIRT1↓, 2,   SREBP2↓, 1,  

Cell Death

Akt↓, 3,   Akt↑, 1,   p‑Akt↓, 2,   APAF1↑, 1,   Apoptosis↑, 10,   Apoptosis↓, 1,   ATF2↓, 1,   BAD↑, 1,   BAX↑, 8,   Bax:Bcl2↑, 1,   Bcl-2↓, 8,   Bcl-xL↓, 2,   BID↑, 1,   Casp↑, 1,   Casp1↓, 1,   cl‑Casp12↝, 1,   cl‑Casp12↑, 1,   Casp12↑, 2,   Casp3↑, 6,   cl‑Casp3↑, 1,   Casp7↑, 1,   cl‑Casp8↑, 1,   Casp8↑, 3,   Casp9↑, 5,   cl‑Casp9↑, 1,   proCasp9↓, 1,   Cyt‑c↑, 5,   DR5↑, 5,   FADD↑, 1,   Fas↑, 4,   FasL↑, 1,   Ferroptosis↑, 1,   HGF/c-Met↓, 2,   hTERT/TERT↓, 3,   iNOS↓, 1,   JNK↑, 2,   JNK↓, 1,   p‑JNK↑, 1,   MAPK↓, 3,   MAPK↑, 1,   Mcl-1↓, 2,   MDM2↓, 2,   p‑MDM2↓, 1,   Myc↓, 1,   NAIP↓, 1,   necrosis↑, 1,   NICD↓, 1,   p27↑, 1,   p‑p38↑, 2,   p38↑, 1,   survivin↓, 2,   Telomerase↓, 2,   TumCD↑, 1,   YAP/TEAD↓, 2,  

Kinase & Signal Transduction

HER2/EBBR2↓, 1,  

Transcription & Epigenetics

EZH2↓, 2,   H3↓, 1,   ac‑H3↓, 1,   H4↓, 1,   ac‑H4↓, 1,   HATs↓, 1,   TET3↑, 1,   tumCV↓, 2,  

Protein Folding & ER Stress

cl‑ATF6↑, 1,   p‑CHOP↝, 1,   CHOP↑, 3,   p‑eIF2α↝, 1,   p‑eIF2α↑, 2,   eIF2α↑, 2,   ER Stress↑, 5,   GRP78/BiP↑, 1,   GRP94↑, 1,   HSP90↓, 2,   p‑PERK↝, 1,   PERK↑, 2,   UPR↑, 1,  

Autophagy & Lysosomes

Beclin-1↑, 3,   BNIP3↑, 1,   LC3B-II↑, 1,   LC3II↑, 2,   TumAuto↑, 2,  

DNA Damage & Repair

DNAdam↑, 1,   DNMT1↓, 1,   DNMT3A↓, 1,   DNMTs↓, 2,   P53↑, 4,   cl‑PARP↑, 1,   PARP↑, 1,   PCNA↓, 1,  

Cell Cycle & Senescence

CDK2↓, 5,   CDK4↓, 2,   cycA1/CCNA1↑, 1,   CycB/CCNB1↓, 2,   cycD1/CCND1↓, 3,   cycE/CCNE↓, 1,   P21↑, 3,   TumCCA↑, 8,  

Proliferation, Differentiation & Cell State

ALDH1A1↓, 1,   CD34↓, 1,   cFos↑, 1,   cMET↓, 1,   CSCs↓, 2,   EMT↓, 6,   p‑ERK↓, 2,   ERK↓, 2,   ERK↑, 1,   GDF15↓, 1,   p‑GSK‐3β↓, 1,   GSK‐3β↓, 1,   HDAC↓, 3,   IGF-1↓, 1,   MSCmark↓, 1,   mTOR↓, 1,   NOTCH↓, 1,   NOTCH1↓, 2,   PI3K↓, 4,   p‑PI3K↓, 1,   PTEN↓, 1,   RAS↓, 1,   p‑Src↓, 1,   p‑STAT3↓, 3,   STAT3↓, 3,   p‑STAT6↓, 1,   TAZ↓, 2,   TOP1↓, 1,   TOP2↓, 1,   TumCG↓, 3,   Wnt↓, 2,  

Migration

AEG1↓, 1,   Akt2↓, 1,   AXL↓, 1,   Ca+2↑, 2,   Cdc42↓, 1,   CEA↓, 1,   CLDN1↓, 1,   E-cadherin↑, 5,   E-cadherin↓, 1,   EM↑, 1,   FAK↓, 3,   ITGB1↓, 1,   MET↓, 1,   p‑MET↓, 1,   MMP1↓, 1,   MMP2↓, 4,   MMP9↓, 4,   MMPs↓, 1,   N-cadherin↓, 5,   PDGF↓, 1,   PKCδ↓, 1,   Rac1↓, 1,   Rho↓, 1,   Snail↓, 3,   SOX4↓, 1,   TET1↑, 2,   TGF-β↓, 1,   TIMP1↑, 1,   TIMP2↑, 1,   TumCI↓, 1,   TumCMig↓, 4,   TumCP↓, 8,   TumMeta↓, 2,   Twist↓, 2,   Tyro3↓, 1,   Vim↓, 3,   Vim↑, 1,   ZO-1↑, 1,   β-catenin/ZEB1↓, 2,  

Angiogenesis & Vasculature

angioG↓, 4,   p‑ATF4↝, 1,   ATF4↑, 2,   ECM/TCF↓, 1,   EGFR↓, 1,   EGFR↑, 1,   p‑EGFR↓, 1,   HIF-1↓, 1,   Hif1a↓, 2,   VEGF↓, 4,   VEGFR2↓, 2,  

Immune & Inflammatory Signaling

ASC↓, 1,   COX2↓, 1,   CXCR4↓, 1,   ICAM-1↓, 1,   IFN-γ↓, 1,   IKKα↓, 1,   IL1↓, 1,   IL18↓, 1,   IL2↑, 1,   IL2↓, 1,   IL6↓, 2,   IL8↓, 1,   NF-kB↓, 8,   p‑NF-kB↑, 1,   p‑p65↓, 1,   PD-1↓, 1,   PD-L1↓, 1,   TNF-α↓, 2,  

Protein Aggregation

NLRP3↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 2,   CDK6↓, 1,   CYP19↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↑, 3,   ChemoSen↑, 8,   ChemoSen↓, 1,   CYP1A2↓, 1,   Dose?, 1,   Dose↝, 1,   eff↓, 4,   eff↑, 4,   Half-Life↝, 1,   MDR1↓, 2,   P450↓, 1,   RadioS↑, 3,   selectivity↑, 2,   TET2↓, 1,  

Clinical Biomarkers

ALAT∅, 1,   AR↓, 2,   AST∅, 1,   CEA↓, 1,   EGFR↓, 1,   EGFR↑, 1,   p‑EGFR↓, 1,   EZH2↓, 2,   GutMicro↑, 1,   HER2/EBBR2↓, 1,   hTERT/TERT↓, 3,   IL6↓, 2,   Myc↓, 1,   NSE↓, 1,   PD-L1↓, 1,  

Functional Outcomes

AntiCan↑, 1,   cachexia↓, 1,   cardioP↑, 1,   chemoP↑, 3,   chemoPv↑, 1,   Weight∅, 1,  
Total Targets: 284

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 8,   Catalase↑, 5,   Ferroptosis↓, 1,   GPx↑, 2,   GPx4∅, 1,   GSH↑, 5,   GSR↑, 2,   GSTA1↑, 1,   GSTs↑, 2,   HO-1∅, 1,   HO-1↑, 3,   lipid-P↓, 5,   MDA↓, 2,   NQO1↑, 1,   NRF2↑, 4,   NRF2∅, 1,   NRF2↓, 2,   PrxII↑, 1,   ROS↓, 15,   SOD↑, 7,  

Metal & Cofactor Biology

IronCh↑, 1,  

Mitochondria & Bioenergetics

ATP↑, 2,   p‑MEK↓, 1,   p‑MKK4↑, 1,   MMP↑, 2,   Raf↓, 1,  

Core Metabolism/Glycolysis

ACSL4∅, 1,   ALAT↓, 1,   AMPK↑, 2,   CREB↑, 1,   LDHA↑, 1,   PPARα↑, 1,   PPARγ↑, 1,   SIRT1↑, 2,   SREBP1↓, 1,  

Cell Death

p‑Akt↓, 1,   Apoptosis↓, 1,   BAX↓, 1,   Bax:Bcl2↓, 1,   Bcl-2↑, 1,   Casp1↓, 1,   Casp3↓, 3,   Casp9↓, 1,   Casp9↑, 1,   Cyt‑c↓, 1,   Ferroptosis↓, 1,   iNOS↓, 1,   p‑JNK↓, 1,   p‑p38↓, 1,  

Transcription & Epigenetics

other↓, 2,  

Protein Folding & ER Stress

CHOP↓, 1,   ER Stress↓, 1,   GRP78/BiP↑, 1,   UPR↑, 1,  

Autophagy & Lysosomes

Beclin-1↓, 1,  

DNA Damage & Repair

p‑γH2AX↓, 1,  

Proliferation, Differentiation & Cell State

p‑ERK↓, 1,   GSK‐3β↓, 2,   HDAC2↓, 1,   p‑mTOR↓, 1,   PI3K↓, 1,  

Migration

AntiAg↑, 2,   AP-1↓, 1,   E-cadherin↑, 1,   MMP1↓, 1,   PDGF↓, 1,   TXNIP↓, 1,   Vim↓, 1,   ZO-1↑, 1,  

Angiogenesis & Vasculature

ATF4↓, 1,   NO↓, 1,  

Barriers & Transport

BBB↑, 3,  

Immune & Inflammatory Signaling

COX2↓, 2,   COX2∅, 1,   IFN-γ↓, 1,   IL10↑, 1,   IL18↓, 1,   IL1β↓, 3,   IL2↓, 1,   IL33↓, 1,   IL6↓, 3,   IL8↓, 1,   Inflam↓, 5,   NF-kB↓, 2,   p‑NF-kB↓, 1,   PGE2↓, 1,   TLR4↓, 1,   TNF-α↓, 2,  

Synaptic & Neurotransmission

AChE↓, 3,   BDNF↑, 2,   tau↓, 2,   p‑tau↓, 2,   TrkB↑, 1,  

Protein Aggregation

Aβ↓, 3,   BACE↓, 1,   NLRP3↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 3,   BioAv↑, 1,   BioAv↝, 1,   eff↑, 4,   Half-Life↝, 1,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 1,   BloodF↑, 1,   GutMicro↑, 1,   IL6↓, 3,  

Functional Outcomes

cardioP↑, 1,   cognitive↑, 2,   hepatoP↑, 1,   memory↑, 1,   neuroP↑, 5,   RenoP↑, 1,   toxicity↑, 1,   toxicity↓, 1,  
Total Targets: 114

Research papers

Year Title Authors PMID Link Flag
2023Natural Nrf2 Inhibitors: A Review of Their Potential for Cancer TreatmentJuan ZhangPMC10321279https://pmc.ncbi.nlm.nih.gov/articles/PMC10321279/0
2017Dietary flavones counteract phorbol 12-myristate 13-acetate-induced SREBP-2 processing in hepatic cellsYan Qin Tan27778136https://pubmed.ncbi.nlm.nih.gov/27778136/0
2023Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocyteI-Chieh Wanghttps://www.sciencedirect.com/science/article/abs/pii/S01675273220189390
2018Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer's Disease TherapyThaiane Coelho dos SantosPMC6201143https://pmc.ncbi.nlm.nih.gov/articles/PMC6201143/0
2025Luteolin: a natural product with multiple mechanisms for atherosclerosisChanjun WanPMC11983452https://pmc.ncbi.nlm.nih.gov/articles/PMC11983452/0
2025Luteolin targets MKK4 to attenuate particulate matter-induced MMP-1 and inflammation in human keratinocytesJaehyeok Yunhttps://www.nature.com/articles/s41598-025-01090-30
2025Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human MalignanciesMahwishPMC11742186https://pmc.ncbi.nlm.nih.gov/articles/PMC11742186/0
2024Mechanism of luteolin induces ferroptosis in nasopharyngeal carcinoma cellsZhiyi Wu39231684https://pubmed.ncbi.nlm.nih.gov/39231684/0
2024Luteolin blocks the ROS/PI3K/AKT pathway to inhibit mesothelial-mesenchymal transition and reduce abdominal adhesionsYiwei Renhttps://www.sciencedirect.com/science/article/pii/S00142999230078600
2024Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systemsPincha Devage Sameera Madushan FernandoPMC11129544https://pmc.ncbi.nlm.nih.gov/articles/PMC11129544/0
2024Revisiting luteolin: An updated review on its anticancer potentialAbdur Raufhttps://www.sciencedirect.com/science/article/pii/S24058440240273240
2024Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidenceJin Zhanghttps://www.sciencedirect.com/science/article/pii/S07533322240079350
2024The inhibition of β-catenin activity by luteolin isolated from Paulownia flowers leads to growth arrest and apoptosis in cholangiocarcinomaHaibo Yang37884243https://pubmed.ncbi.nlm.nih.gov/37884243/0
2024Combination of transcriptomic and proteomic approaches helps unravel the mechanisms of luteolin in inducing liver cancer cell death via targeting AKT1 and SRCJunxia Mahttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1450847/full0
2024Luteolin for neurodegenerative diseases: a reviewDunuvilla Kavindi JayawickremePMC11294387https://pmc.ncbi.nlm.nih.gov/articles/PMC11294387/0
2024Regulatory Role of NF-κB on HDAC2 and Tau Hyperphosphorylation in Diabetic Encephalopathy and the Therapeutic Potential of LuteolinQian Fuhttps://diabetesjournals.org/diabetes/article-abstract/73/9/1513/156848/Regulatory-Role-of-NF-B-on-HDAC2-and-Tau?redirectedFrom=fulltext0
2023Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategiesChenhao Yaohttps://www.sciencedirect.com/science/article/pii/S07533322230126230
2023Therapeutic Potential of Luteolin on CancerMelisa ÇetinkayaPMC10057337https://pmc.ncbi.nlm.nih.gov/articles/PMC10057337/0
2023Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cellsJun MaPMC10320424https://pmc.ncbi.nlm.nih.gov/articles/PMC10320424/0
2023Luteolin inhibits the TGF-β signaling pathway to overcome bortezomib resistance in multiple myelomaZhenzhen Li36442773https://pubmed.ncbi.nlm.nih.gov/36442773/0
2023Luteolin inhibits GPVI-mediated platelet activation, oxidative stress, and thrombosisYujia Yehttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1255069/full0
2022Luteolin: a flavonoid with a multifaceted anticancer potentialParteek Prasherhttps://cancerci.biomedcentral.com/articles/10.1186/s12935-022-02808-30
2022Luteolin Causes 5′CpG Demethylation of the Promoters of TSGs and Modulates the Aberrant Histone Modifications, Restoring the Expression of TSGs in Human Cancer CellsSreepoorna PramodPMC8999529https://pmc.ncbi.nlm.nih.gov/articles/PMC8999529/0
2022An update of Nrf2 activators and inhibitors in cancer prevention/promotionFarhad PouremamaliPMC9245222https://pmc.ncbi.nlm.nih.gov/articles/PMC9245222/0
2021Folic acid-modified ROS-responsive nanoparticles encapsulating luteolin for targeted breast cancer treatmentYu WangPMC8428179https://pmc.ncbi.nlm.nih.gov/articles/PMC8428179/0
2021Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancerZe-Bo Jiang34052328https://pubmed.ncbi.nlm.nih.gov/34052328/0
2021Luteolin Inhibits Breast Cancer Stemness and Enhances Chemosensitivity through the Nrf2-Mediated PathwayKuen-Jang TsaiPMC8587415https://pmc.ncbi.nlm.nih.gov/articles/PMC8587415/0
2021Luteolin suppressed PKM2 and promoted autophagy for inducing the apoptosis of hepatocellular carcinoma cellsCHEN Juanhttp://journal18.magtechjournal.com/Jwk_zgyyyx/EN/10.13286/j.1001-5213.2021.11.040
2020Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management?Tharindu L. Suraweerahttps://www.mdpi.com/2076-3921/9/10/9730
2020Luteolin impairs hypoxia adaptation and progression in human breast and colon cancer cellsElena Monti32526242https://pubmed.ncbi.nlm.nih.gov/32526242/0
2020Luteolin suppresses epithelial-mesenchymal transition and migration of triple-negative breast cancer cells by inhibiting YAP/TAZ activityDai Cao32768952https://pubmed.ncbi.nlm.nih.gov/32768952/0
2020Formulation, characterization, in vitro and in vivo evaluations of self-nanoemulsifying drug delivery system of luteolinMohammad Javed Ansarhttps://www.tandfonline.com/doi/epdf/10.1080/16583655.2020.1812269?src=getftr&utm_source=sciencedirect_contenthosting&getft_integrator=sciencedirect_contenthosting0
2020Luteolin inhibits melanoma growth in vitro and in vivo via regulating ECM and oncogenic pathways but not ROSJohn Schomberhttps://www.sciencedirect.com/science/article/abs/pii/S00062952203025250
2019Luteolin Suppresses Teratoma Cell Growth and Induces Cell Apoptosis via Inhibiting Bcl-2Teng LiuPMC7848233https://pmc.ncbi.nlm.nih.gov/articles/PMC7848233/0
2019Luteolin confers renoprotection against ischemia–reperfusion injury via involving Nrf2 pathway and regulating miR320Sanaz Moradi Kalbolandihttps://link.springer.com/article/10.1007/s11033-019-04853-00
2019Luteolin, a flavonoid, as an anticancer agent: A reviewMuhammad Imranhttps://www.sciencedirect.com/science/article/pii/S07533322183671800
2019Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cellsKyoung Ah KangPMC6465248https://pmc.ncbi.nlm.nih.gov/articles/PMC6465248/0
2018Luteolin ameliorates rat myocardial ischemia-reperfusion injury through peroxiredoxin II activation: LUT's cardioprotection through PRX IIBo Weihttps://www.researchgate.net/publication/325277010_Luteolin_ameliorates_rat_myocardial_ischemia-reperfusion_injury_through_peroxiredoxin_II_activation_LUT's_cardioprotection_through_PRX_II0
2018Luteolin attenuates neutrophilic oxidative stress and inflammatory arthritis by inhibiting Raf1 activityShun-Chin Yang29883707https://pubmed.ncbi.nlm.nih.gov/29883707/0
2018Luteolin-mediated increase in miR-26a inhibits prostate cancer cell growth and induces cell cycle arrest targeting EZH2Rajnee Kanwalhttps://aacrjournals.org/cancerres/article/78/13_Supplement/251/6269640
2018Loss of BRCA1 in the cells of origin of ovarian cancer induces glycolysis: A window of opportunity for ovarian cancer chemopreventionTatsuyuki ChiyodaPMC5425093https://pmc.ncbi.nlm.nih.gov/articles/PMC5425093/0
2017Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastomaQiang Wang28393257https://pubmed.ncbi.nlm.nih.gov/28393257/0
2017Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1Shiyu Songhttps://www.nature.com/articles/cddis2017380
2016Dietary Flavonoids Luteolin and Quercetin Suppressed Cancer Stem Cell Properties and Metastatic Potential of Isolated Prostate Cancer CellsPEI-HSUN TSAIhttps://ar.iiarjournals.org/content/36/12/63670
2015Luteolin acts as a radiosensitizer in non‑small cell lung cancer cells by enhancing apoptotic cell death through activation of a p38/ROS/caspase cascadeHyun-Ji Ch25586525https://pubmed.ncbi.nlm.nih.gov/25586525/0
2014Luteolin Reduces Alzheimer’s Disease Pathologies Induced by Traumatic Brain InjuryDarrell SawmillerPMC3907845https://pmc.ncbi.nlm.nih.gov/articles/PMC3907845/0
2014Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathwaySong Chian24761924https://pubmed.ncbi.nlm.nih.gov/24761924/0
2013Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive actionHusain Yar Khan24123728https://pubmed.ncbi.nlm.nih.gov/24123728/0
2012Luteolin Induces Carcinoma Cell Apoptosis through Binding Hsp90 to Suppress Constitutive Activation of STAT3Jin Fuhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.00491940
2012Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cellsFutao Zhou22528780https://pubmed.ncbi.nlm.nih.gov/22528780/0
2012Luteolin from Purple Perilla mitigates ROS insult particularly in primary neuronsGang Zhaohttps://www.sciencedirect.com/science/article/abs/pii/S01974580100009280
2012Inhibitory effect of luteolin on estrogen biosynthesis in human ovarian granulosa cells by suppression of aromatase (CYP19)Dan-feng Lu22838964https://pubmed.ncbi.nlm.nih.gov/22838964/0
2011Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cellsA Young Choihttps://www.sciencedirect.com/science/article/abs/pii/S00142999110075400
2011Luteolin Regulation of Estrogen Signaling and Cell Cycle Pathway Genes in MCF-7 Human Breast Cancer CellsBarry M MarkaverichPMC3127207https://pmc.ncbi.nlm.nih.gov/articles/PMC3127207/0
2011Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cellsSamir Attoub21074525https://pubmed.ncbi.nlm.nih.gov/21074525/0
2011Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugsXiuwen Tang21402146https://pubmed.ncbi.nlm.nih.gov/21402146/0
2010Inhibition of Fatty Acid Synthase by Luteolin Post-Transcriptionally Downregulates c-Met Expression Independent of Proteosomal/Lysosomal DegradationDavid T ColemanPMC2741738https://pmc.ncbi.nlm.nih.gov/articles/PMC2741738/0
2008Luteolin as a glycolysis inhibitor offers superior efficacy and lesser toxicity of doxorubicin in breast cancer cellsGang-Jun Du18503759https://pubmed.ncbi.nlm.nih.gov/18503759/0
2008Luteolin, a flavonoid with potentials for cancer prevention and therapyYong LinPMC2615542https://pmc.ncbi.nlm.nih.gov/articles/PMC2615542/0
2006Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cellsGabriel K Harris16702314https://pubmed.ncbi.nlm.nih.gov/16702314/0
2022A Synergistic Combination of DHA, Luteolin, and Urolithin A Against Alzheimer’s DiseaseDona P W JayatungaPMC8890506https://pmc.ncbi.nlm.nih.gov/articles/PMC8890506/0