tbResList Print — Lyco Lycopene

Filters: qv=119, qv2=%, rfv=%

Product

Lyco Lycopene
Description: <b>Lycopene</b> is a naturally occurring carotenoid found predominantly in tomatoes and other red fruits and vegetables. <br>
<br>
Antioxidant Properties:<br>
-Lycopene is a powerful antioxidant. It helps neutralize free radicals, which can reduce oxidative stress—a factor implicated in cancer development. Possible
<a href="https://nestronics.ca/dbx/tbResEdit.php?rid=3273">concern</a>
about interfering with chemotherapy and radiation therapy.
However this
<a href="https://nestronics.ca/dbx/tbResEdit.php?rid=3281">review </a>disagrees.<br>
Inflammation Reduction:<br>
-Some studies suggest that lycopene may help lower levels of inflammation, another process linked to cancer progression<br>
<br>
At supraphysiological or extremely high concentrations, lycopene may have the potential to switch from an antioxidant to a prooxidant role<br>
-The prooxidant effect of lycopene has been observed under conditions of high oxygen tension. In vitro studies have suggested that in environments with elevated oxygen levels, lycopene might promote rather than neutralize the production of reactive oxygen species (ROS).<br>
-The presence of metal ions (such as iron or copper) in the environment can catalyze reactions where antioxidants, including lycopene, contribute to oxidative processes. These metals can interact with lycopene, potentially leading to the formation of radicals.<br>
<br>
The mevalonate pathway produces cholesterol and a variety of isoprenoids, which are important for maintaining cell membrane integrity, protein prenylation, and other essential cellular functions.<br>
-One of the primary enzymes in this pathway is HMG-CoA reductase (3-hydroxy-3-methylglutaryl-coenzyme A reductase), which is the target of statin drugs used for lowering cholesterol.
Some studies suggest that lycopene might downregulate the activity of HMG-CoA reductase or other enzymes in the mevalonate pathway. By doing so, lycopene could potentially reduce the synthesis of cholesterol and isoprenoids that are necessary for rapid cell proliferation—an especially relevant aspect in cancer cells.<br>
<br>
Lycopene typically used in a 100mg/day range for cancer (inhibition of the the Melavonate Pathway)<br>
-also has <a href="tbResList.php?qv=119&tsv=10&wNotes=on&exSp=open">antiplatelet </a>aggregation capability.<br>


<br>
-Note <a href="tbResList.php?qv=119&tsv=1109&wNotes=on&exSp=open">half-life</a> 16–20 days.<br>
<a href="tbResList.php?qv=119&tsv=792&wNotes=on&exSp=open">BioAv</a> Heat processing, especially when combined with a small amount of fat, significantly enhances lycopene’s bioaccessibility and absorption. (20% under optimal conditions)
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- <a href="tbResList.php?qv=119&tsv=275&wNotes=on">ROS</a> usually goes down, but may go up or down depending on dose and environment. Lycopene may also be modified to be a "oxdiative product" which may change the behaviour.<br>
<!--
- ROS↑ related:
<a href="tbResList.php?qv=119&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=119&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=119&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?qv=119&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=119&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?qv=119&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=119&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=119&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=119&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=119&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=119&wNotes=on&word=Prx">Prx</a>,
<br>
<!--

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
<!--
- Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=119&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?qv=119&word=Trx&wNotes=on">TrxR↓**</a>,
<a href="tbResList.php?qv=119&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>,
<a href="tbResList.php?qv=119&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=119&tsv=46&wNotes=on">Catalase↓</a>
<a href="tbResList.php?qv=119&tsv=597&wNotes=on">HO1↓</a>
<a href="tbResList.php?qv=119&wNotes=on&word=GPx">GPx↓</a>
<br>
-->

- Raises
<a href="tbResList.php?qv=119&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=119&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=119&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=119&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=119&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=119&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=119&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=119&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=119&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=119&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=119&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>,
<a href="tbResList.php?qv=119&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=119&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=119&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=119&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<!-- <a href="tbResList.php?qv=119&tsv=604&wNotes=on">TumMeta↓</a>, -->
<!-- <a href="tbResList.php?qv=119&tsv=323&wNotes=on">TumCG↓</a>, -->
<a href="tbResList.php?qv=119&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=119&tsv=204&wNotes=on">MMPs↓</a>,
<!-- <a href="tbResList.php?qv=119&tsv=201&wNotes=on">MMP2↓</a>, -->
<a href="tbResList.php?qv=119&tsv=203&wNotes=on">MMP9↓</a>,
<!-- <a href="tbResList.php?qv=119&tsv=308&wNotes=on">TIMP2</a>, -->
<a href="tbResList.php?qv=119&tsv=415&wNotes=on">IGF-1↓</a>,
<a href="tbResList.php?qv=119&tsv=428&wNotes=on">uPA↓</a>,
<a href="tbResList.php?qv=119&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=119&tsv=1284&wNotes=on">ROCK1↓</a>,
<a href="tbResList.php?qv=119&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=119&tsv=273&wNotes=on">RhoA↓</a>,
<a href="tbResList.php?qv=119&tsv=214&wNotes=on">NF-κB↓</a>,
<!-- <a href="tbResList.php?qv=119&tsv=79&wNotes=on">CXCR4↓</a>, -->
<!-- <a href="tbResList.php?qv=119&tsv=1247&wNotes=on">SDF1↓</a>, -->
<!-- <a href="tbResList.php?qv=119&tsv=304&wNotes=on">TGF-β↓</a>, -->
<!-- <a href="tbResList.php?qv=119&tsv=719&wNotes=on">α-SMA↓</a>, -->
<a href="tbResList.php?qv=119&tsv=105&wNotes=on">ERK↓</a>
<!-- <a href="tbResList.php?qv=119&tsv=1178&wNotes=on">MARK4↓</a> --> <!-- contributing to tumor growth, invasion, and metastasis-->
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<!-- <a href="tbResList.php?qv=119&tsv=140&wNotes=on">HDAC↓</a>, -->
<!-- <a href="tbResList.php?qv=119&wNotes=on&word=DNMT">DNMTs↓</a>, -->
<a href="tbResList.php?qv=119&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=119&tsv=236&wNotes=on">P53↑</a>,
<!-- <a href="tbResList.php?qv=119&wNotes=on&word=HSP">HSP↓</a>, -->
<a href="tbResList.php?qv=119&tsv=506&wNotes=on">Sp proteins↓</a>,
<!-- <a href="tbResList.php?qv=119&wNotes=on&word=TET">TET↑</a> -->
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=119&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=119&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=119&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?qv=119&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=119&tsv=894&wNotes=on">CDK4↓</a>,
<!-- <a href="tbResList.php?qv=119&tsv=895&wNotes=on">CDK6↓</a>, -->
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=119&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=119&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=119&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>, <!-- encourages invasion, proliferation, EMT, and angiogenesis -->
<a href="tbResList.php?qv=119&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=119&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=119&tsv=96&wNotes=on">EMT↓</a>,
<!-- <a href="tbResList.php?qv=119&wNotes=on&word=TOP">TOP1↓</a>, -->
<!-- <a href="tbResList.php?qv=119&tsv=657&wNotes=on">TET1</a>, -->
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
<!--
- inhibits
<a href="tbResList.php?qv=119&tsv=129&wNotes=on">glycolysis</a>
/<a href="tbResList.php?qv=119&tsv=947&wNotes=on">Warburg Effect</a> and
<a href="tbResList.php?qv=119&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=119&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=119&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?qv=119&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=119&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=119&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?qv=119&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=119&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=119&wNotes=on&word=PFK">PFKs↓</a>,
<a href="tbResList.php?qv=119&wNotes=on&word=PDK">PDKs↓</a>,
<a href="tbResList.php?qv=119&tsv=847&wNotes=on">ECAR↓</a>,
<a href="tbResList.php?qv=119&tsv=230&wNotes=on">OXPHOS↓</a>,
<a href="tbResList.php?qv=119&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=119&tsv=1278&wNotes=on">Glucose↓</a>,
<a href="tbResList.php?qv=119&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>
-->

<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=119&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=119&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=119&tsv=143&wNotes=on">HIF-1α↓</a>,
<!-- <a href="tbResList.php?qv=119&wNotes=on&word=NOTCH">Notch↓</a>, -->
<!-- <a href="tbResList.php?qv=119&wNotes=on&word=FGF">FGF↓</a>, -->
<!-- <a href="tbResList.php?qv=119&wNotes=on&word=PDGF">PDGF↓</a>, -->
<!-- <a href="tbResList.php?qv=119&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>, -->
<a href="tbResList.php?qv=119&&wNotes=on&word=ITG">Integrins↓</a>,
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
<!--
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=119&tsv=795&wNotes=on">CSC↓</a>,
<a href="tbResList.php?qv=119&tsv=524&wNotes=on">CK2↓</a>,
<a href="tbResList.php?qv=119&tsv=141&wNotes=on">Hh↓</a>,
<a href="tbResList.php?qv=119&tsv=434&wNotes=on">GLi↓</a>,
<a href="tbResList.php?qv=119&tsv=124&wNotes=on">GLi1↓</a>,
<a href="tbResList.php?qv=119&tsv=677&wNotes=on">CD133↓</a>,
<a href="tbResList.php?qv=119&tsv=655&wNotes=on">CD24↓</a>,
<a href="tbResList.php?qv=119&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=119&tsv=357&wNotes=on">n-myc↓</a>,
<a href="tbResList.php?qv=119&tsv=656&wNotes=on">sox2↓</a>,
<a href="tbResList.php?qv=119&wNotes=on&word=NOTCH">Notch2↓</a>,
<a href="tbResList.php?qv=119&tsv=1024&wNotes=on">nestin↓</a>,
<a href="tbResList.php?qv=119&tsv=508&wNotes=on">OCT4↓</a>,
<br>
-->

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=119&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=119&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=119&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=119&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=119&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=119&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=119&tsv=9&wNotes=on">AMPK</a>,
<!-- <a href="tbResList.php?qv=119&tsv=475&wNotes=on">α↓</a>, -->
<a href="tbResList.php?qv=119&tsv=105&wNotes=on">ERK↓</a>,
<!-- <a href="tbResList.php?qv=119&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=119&tsv=168&wNotes=on">JNK</a>,


- <a href="tbResList.php?qv=119&wNotes=on&word=SREBP">SREBP</a> (related to cholesterol).<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=119&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=119&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=119&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=119&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=119&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=119&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=119&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=119&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=119&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=119&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=119&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a><br>
<br>



<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>Reactive oxygen species (ROS)</td>
<td>↓ ROS</td>
<td>↓ ROS</td>
<td>Driver</td>
<td>Potent antioxidant activity</td>
<td>Lycopene is a strong singlet-oxygen quencher with antioxidant dominance</td>
</tr>

<tr>
<td>2</td>
<td>IGF-1 / PI3K → AKT signaling</td>
<td>↓ IGF-1 signaling; ↓ AKT</td>
<td>↔ minimal</td>
<td>Secondary</td>
<td>Growth factor signaling attenuation</td>
<td>Reduced IGF-1–driven proliferation is a key cancer-relevant effect</td>
</tr>

<tr>
<td>3</td>
<td>Cell cycle regulation</td>
<td>↑ G0/G1 arrest</td>
<td>↔ spared</td>
<td>Phenotypic</td>
<td>Cytostatic growth control</td>
<td>Cell-cycle effects reflect growth factor modulation</td>
</tr>

<tr>
<td>4</td>
<td>Gap junction communication (connexins)</td>
<td>↑ gap junction signaling</td>
<td>↑ gap junction signaling</td>
<td>Secondary</td>
<td>Normalization of cell–cell communication</td>
<td>Enhanced gap junctions are associated with reduced tumor progression</td>
</tr>

<tr>
<td>5</td>
<td>NF-κB / inflammatory signaling</td>
<td>↓ inflammatory signaling</td>
<td>↓ inflammatory tone</td>
<td>Secondary</td>
<td>Anti-inflammatory environment</td>
<td>Inflammation reduction contributes to chemopreventive effects</td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↓, 2,   antiOx↑, 8,   ARE↑, 1,   Catalase↑, 3,   GPx↑, 4,   GSH↑, 3,   GSH↓, 1,   GSR↑, 1,   GSTA1↑, 1,   GSTs↑, 1,   HO-1↑, 1,   Keap1↝, 1,   lipid-P↓, 2,   MDA↓, 1,   MDA↑, 1,   MPO↓, 1,   NOX4↓, 1,   NRF2↑, 3,   NRF2↓, 1,   NRF2↝, 2,   ROS↓, 13,   ROS↑, 13,   ROS⇅, 3,   i-ROS↓, 1,   mt-ROS↑, 1,   SOD↑, 3,   SOD↓, 1,  

Mitochondria & Bioenergetics

MMP↓, 3,   mtDam↑, 1,   OCR↓, 1,  

Core Metabolism/Glycolysis

cMyc↓, 3,   G6PD↓, 1,   Glycolysis↓, 1,   LDL↓, 2,   PPARγ↑, 3,   PPARγ↓, 1,   SIRT1↑, 1,  

Cell Death

Akt↓, 5,   Akt↝, 1,   p‑Akt↓, 2,   Apoptosis↑, 13,   Apoptosis↓, 1,   BAX↑, 6,   BAX↓, 1,   BAX↝, 1,   Bax:Bcl2↑, 4,   Bcl-2↓, 5,   Bcl-2↑, 1,   Casp3↑, 6,   cl‑Casp3↑, 1,   Casp7↑, 1,   Casp9↑, 1,   cl‑Casp9↑, 1,   Chk2↓, 1,   Cyt‑c↑, 2,   iNOS↓, 2,   JNK↓, 1,   MAPK↓, 3,   p27↑, 3,   p27↓, 1,   p38↓, 1,   survivin↓, 2,   β-TRCP↑, 1,  

Kinase & Signal Transduction

Sp1/3/4↓, 1,  

Transcription & Epigenetics

EZH2↓, 1,   tumCV↓, 3,  

DNA Damage & Repair

CHK1↓, 1,   DNAdam↑, 3,   DNAdam↓, 2,   P53↑, 5,   P53↓, 2,   P53↝, 1,   cl‑PARP↑, 2,   PCNA↓, 3,   TP53↑, 1,   γH2AX↓, 1,  

Cell Cycle & Senescence

CDK2↓, 4,   CDK2↑, 1,   CDK4↓, 4,   CycB/CCNB1↓, 1,   cycD1/CCND1↓, 11,   CycD3↓, 1,   cycE/CCNE↓, 4,   cycE/CCNE↑, 1,   cycE1↓, 1,   P21↑, 6,   P21↓, 1,   TumCCA↑, 9,   TumCCA↓, 2,  

Proliferation, Differentiation & Cell State

CIP2A↓, 1,   EMT↓, 3,   ERK↓, 3,   ERK↑, 1,   p‑ERK↓, 1,   FOXO3↓, 1,   p‑GSK‐3β↓, 1,   GSK‐3β↓, 1,   IGF-1↓, 1,   IGF-1R↓, 1,   mTOR↓, 4,   mTOR↝, 1,   p‑mTOR↓, 1,   PI3K↓, 2,   PI3K↝, 1,   p‑PI3K↓, 1,   STAT3↓, 5,   TumCG↓, 6,   Wnt↓, 4,  

Migration

Akt2↓, 1,   AP-1↓, 1,   APC↑, 1,   E-cadherin↓, 1,   E-cadherin↑, 1,   FAK↓, 2,   ITGA5↓, 2,   ITGB1↓, 2,   Ki-67↓, 1,   MMP2↓, 4,   MMP7↓, 3,   MMP9↓, 10,   MMPs↓, 1,   N-cadherin↓, 1,   PDGF↓, 1,   Rho↓, 1,   TIMP1↑, 2,   TIMP2↑, 2,   TumCA↓, 1,   TumCI↓, 5,   TumCMig↓, 3,   TumCP↓, 10,   TumCP↑, 1,   TumMeta↑, 1,   TumMeta↓, 1,   β-catenin/ZEB1↓, 4,  

Angiogenesis & Vasculature

angioG↓, 2,   EGFR↓, 1,   Hif1a↓, 2,   NO↓, 1,   VEGF↓, 2,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 7,   IFN-γ↑, 1,   IL1↑, 1,   IL10↓, 1,   IL10↑, 1,   IL12↓, 1,   IL1β↓, 3,   IL2↑, 1,   IL4↓, 1,   IL4↑, 2,   IL6↓, 4,   Inflam↓, 4,   JAK1↓, 2,   NF-kB↓, 12,   NF-kB↑, 1,   NF-kB↝, 1,   p65↓, 1,   PGE2↓, 6,   PSA↓, 2,   PSA∅, 1,   TNF-α↓, 5,   TNF-α↑, 1,  

Cellular Microenvironment

NOX↓, 1,  

Hormonal & Nuclear Receptors

GR↑, 1,  

Drug Metabolism & Resistance

BioAv↓, 3,   BioAv↑, 4,   BioAv↝, 1,   ChemoSen↑, 9,   ChemoSen↓, 1,   Dose↓, 1,   Dose↑, 2,   Dose↝, 3,   eff↑, 10,   eff↓, 2,   eff?, 1,   P450↓, 1,   RadioS↓, 1,   selectivity↑, 4,  

Clinical Biomarkers

BP↓, 1,   CA125↓, 1,   EGFR↓, 1,   EZH2↓, 1,   IL6↓, 4,   Ki-67↓, 1,   PSA↓, 2,   PSA∅, 1,   TP53↑, 1,  

Functional Outcomes

AntiCan↑, 8,   AntiDiabetic↑, 1,   cardioP↑, 4,   chemoP↑, 3,   hepatoP↑, 1,   neuroP↑, 2,   OS↑, 1,   QoL↑, 1,   RenoP↑, 1,   Risk↓, 7,   TumVol↓, 1,   TumW↓, 1,  
Total Targets: 199

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 29,   ARE↑, 1,   Catalase↝, 1,   Catalase↑, 4,   GPx↝, 1,   GPx↑, 5,   GSH↑, 5,   GSH/GSSG↓, 1,   GSR↑, 1,   GSTs↑, 2,   GSTs↓, 1,   H2O2↓, 1,   HO-1↑, 5,   Keap1↓, 1,   lipid-P↓, 4,   MDA↓, 4,   MPO↓, 1,   NOX4↓, 2,   NQO1↑, 3,   Nrf1↑, 1,   NRF2↑, 10,   NRF2↓, 1,   ROS↑, 1,   ROS⇅, 4,   ROS↓, 19,   SOD↝, 1,   SOD↑, 6,   TAC↑, 2,   VitC↑, 1,   VitE↑, 1,  

Mitochondria & Bioenergetics

MMP↑, 1,   MMP↓, 1,   mtDam↓, 3,   OCR↓, 1,  

Core Metabolism/Glycolysis

ACC↓, 1,   ALAT↓, 1,   AMPK↑, 1,   CRM↑, 1,   FASN↓, 1,   LDL↓, 2,   SIRT1↑, 1,   SREBP1↓, 1,  

Cell Death

Akt↓, 2,   Akt↑, 2,   APAF1↓, 1,   Apoptosis↓, 4,   BAX↓, 2,   Bcl-2↑, 2,   cl‑Casp3↓, 1,   Casp3↓, 1,   cl‑Casp9↓, 1,   Casp9↓, 1,   Cyt‑c↓, 1,   iNOS↓, 2,   JNK↓, 2,   MAPK↓, 2,   p38↓, 2,   Pyro↓, 1,  

Protein Folding & ER Stress

ER Stress↓, 1,  

Autophagy & Lysosomes

p62↑, 1,  

DNA Damage & Repair

DNAdam↓, 2,  

Proliferation, Differentiation & Cell State

ERK↓, 1,   mTOR↓, 1,   PI3K↑, 2,   STAT3↓, 1,  

Migration

AntiAg↑, 3,   Ca+2↓, 1,   Ca+2↝, 1,   Ki-67↓, 1,   MMP2↓, 1,   MMP2↑, 1,   MMPs↓, 1,   Rac1↑, 1,   RAGE↓, 1,   ROCK1↓, 1,   TGF-β1↑, 1,   TIMP2↑, 1,   uPA↓, 1,   VCAM-1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   NO↓, 3,   VEGF↓, 1,  

Barriers & Transport

BBB↑, 2,  

Immune & Inflammatory Signaling

COX2↓, 6,   ICAM-1↓, 2,   IFN-γ↓, 1,   IL1↓, 4,   IL10↑, 1,   IL10↓, 1,   IL12↓, 1,   IL1β↓, 5,   IL22↓, 1,   IL6↓, 8,   IL8↓, 3,   IL8↑, 1,   Inflam↓, 13,   NF-kB↓, 10,   p65↓, 1,   TLR2↓, 1,   TLR4↓, 1,   TNF-α↓, 10,  

Synaptic & Neurotransmission

BDNF↑, 6,   PSD95↑, 1,   tau↓, 1,   TrkB↑, 1,  

Protein Aggregation

Aβ↓, 1,   BACE↓, 1,   NLRP3↓, 1,  

Hormonal & Nuclear Receptors

GR↝, 1,  

Drug Metabolism & Resistance

BioAv↓, 4,   BioAv↑, 6,   BioAv↝, 4,   Dose?, 1,   Dose↝, 3,   Dose↑, 1,   eff↑, 6,   Half-Life↑, 2,   P450↑, 1,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 1,   BP↓, 2,   creat↓, 1,   GutMicro↑, 1,   IL6↓, 8,   Ki-67↓, 1,   RAGE↓, 1,  

Functional Outcomes

AntiCan↑, 5,   cardioP↑, 8,   chemoP↑, 1,   cognitive↑, 4,   hepatoP↑, 1,   memory↑, 4,   neuroP↑, 10,   radioP↑, 2,   RenoP↑, 3,   Risk↓, 2,   toxicity∅, 2,  
Total Targets: 137

Research papers

Year Title Authors PMID Link Flag
2014Metabolic treatment of cancer: intermediate results of a prospective case seriesLaurent Schwartz 24511042https://pubmed.ncbi.nlm.nih.gov/24511042/0
2004Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detectionMelody J Brown15277161https://pubmed.ncbi.nlm.nih.gov/15277161/0
2000Antioxidant and pro-oxidant effects of lycopene in comparison with beta-carotene on oxidant-induced damage in Hs68 cellsS Yeh11137891https://pubmed.ncbi.nlm.nih.gov/11137891/0
2022An update of Nrf2 activators and inhibitors in cancer prevention/promotionFarhad PouremamaliPMC9245222https://pmc.ncbi.nlm.nih.gov/articles/PMC9245222/0
2025Dietary intake of tomato and lycopene, blood levels of lycopene, and risk of total and specific cancers in adults: a systematic review and dose–response meta-analysis of prospective cohort studiesArghavan Balalihttps://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2025.1516048/full0
2025Enhancing Anticancer Treatment Efficacy With Lycopene: A Comprehensive Review of Clinical and Preclinical EvidenceRavichandran Vishwahttps://onlinelibrary.wiley.com/doi/10.1002/jbt.705570
2025Lycopene Alleviates Depression-Like Behavior in Chronic Social Defeat Stress-Induced Mice by Promoting Synaptic Plasticity via the BDNF-TrkB PathwayHeyan XuPMC11751711https://pmc.ncbi.nlm.nih.gov/articles/PMC11751711/0
2025A Comprehensive Review on the Molecular Mechanism of Lycopene in Cancer TherapyMuhammad Maazhttps://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.706080
2025Lycopene as a potential anticancer agent: Current evidence on synergism, drug delivery systems and epidemiology (Review)SILIANG YINhttps://www.spandidos-publications.com/10.3892/ol.2025.15208/download0
2024Lycopene: A Potent Antioxidant with Multiple Health BenefitsMercy Omoye ShafePMC11179732https://pmc.ncbi.nlm.nih.gov/articles/PMC11179732/0
2024Lycopene inhibits pyroptosis of endothelial progenitor cells induced by ox-LDL through the AMPK/mTOR/NLRP3 pathwayChujun TanPMC11197008https://pmc.ncbi.nlm.nih.gov/articles/PMC11197008/0
2024Lycopene exerts cytotoxic effects by mitochondrial reactive oxygen species–induced apoptosis in glioblastoma multiformeKo, Huey-Jiunhttps://journals.lww.com/fjs/fulltext/2024/09000/lycopene_exerts_cytotoxic_effects_by_mitochondrial.2.aspx0
2024Updates on the Anticancer Profile of Lycopene and its Probable Mechanism against Breast and Gynecological CancerSuman Khuranhttps://www.benthamdirect.com/content/journals/npj/10.2174/01221031553313652411180614430
2024The Anti-proliferation Effects of Lycopene on Breast Cancer CellsTixieanna Dissmorehttps://scholarsrepository.llu.edu/etd/2600/0
2024Recent insights on pharmacological potential of lycopene and its nanoformulations: an emerging paradigm towards improvement of human healthAmit Kumar Tripathihttps://link.springer.com/article/10.1007/s11101-024-09922-20
2023Lycopene suppresses gastric cancer cell growth without affecting normal gastric epithelial cellsYing Zhouhttps://www.sciencedirect.com/science/article/abs/pii/S09552863230004750
2023The Importance of Antioxidant Activity for the Health-Promoting Effect of LycopeneAnna KulawikPMC10490373https://pmc.ncbi.nlm.nih.gov/articles/PMC10490373/?utm_source=chatgpt.com0
2023A mechanistic updated overview on lycopene as potential anticancer agentGulay Ozkanhttps://www.researchgate.net/publication/368823855_A_mechanistic_updated_overview_on_lycopene_as_potential_anticancer_agent0
2023Recent technological strategies for enhancing the stability of lycopene in processing and productionYanxin Lihttps://www.sciencedirect.com/science/article/abs/pii/S03088146220276130
2023Lycopene Supplementation for Patients Under Cancer Therapy: A Systematic Review and Meta-Analysis of Randomized Controlled TrialsL. Jurado-Fasolihttps://www.sciencedirect.com/science/article/pii/S22108033230010330
2023Pharmacological potentials of lycopene against aging and aging‐related disorders: A reviewMehedy Hasan AbirPMC10563689https://pmc.ncbi.nlm.nih.gov/articles/PMC10563689/0
2022Antioxidant and anti-inflammatory activities of lycopene against 5-fluorouracil-induced cytotoxicity in Caco2 cellsNorah M AlhoshaniPMC9715638https://pmc.ncbi.nlm.nih.gov/articles/PMC9715638/0
2022The Protective Anticancer Effect of Natural Lycopene Supercritical CO2 Watermelon Extracts in Adenocarcinoma Lung Cancer CellsCaterina Di Sanohttps://www.mdpi.com/2076-3921/11/6/11500
2022Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular DiseasesMay Nasser Bin-JumahPMC8868303https://pmc.ncbi.nlm.nih.gov/articles/PMC8868303/0
2022Lycopene enhances the sensitivity of castration-resistant prostate cancer to enzalutamide through the AKT/EZH2/ androgen receptor signaling pathwayXiong Chen35533600https://pubmed.ncbi.nlm.nih.gov/35533600/0
2022The Anti-Cancer Activity of Lycopene: A Systematic Review of Human and Animal StudiesAleksandra KapałaPMC9741066https://pmc.ncbi.nlm.nih.gov/articles/PMC9741066/0
2022Lycopene Scavenges Cellular ROS, Modulates Autophagy and Improves Survival through 7SK snRNA Interaction in Smooth Muscle CellsAyed A ShatiPMC9688495https://pmc.ncbi.nlm.nih.gov/articles/PMC9688495/0
2022Lycopene attenuates the inflammation and apoptosis in aristolochic acid nephropathy by targeting the Nrf2 antioxidant systemYu WangPMC9530962https://pmc.ncbi.nlm.nih.gov/articles/PMC9530962/0
2022Lycopene in the Prevention of Cardiovascular DiseasesSylwia PrzybylskaPMC8880080https://pmc.ncbi.nlm.nih.gov/articles/PMC8880080/0
2021Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for CancerStefania MarzoccoPMC8434243https://pmc.ncbi.nlm.nih.gov/articles/PMC8434243/0
2021Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agentXunyu Songhttps://www.sciencedirect.com/science/article/pii/S1044579X2100078X0
2021New Insights into Molecular Mechanism behind Anti-Cancer Activities of LycopeneBoon-Peng PuahPMC8270321https://pmc.ncbi.nlm.nih.gov/articles/PMC8270321/0
2021Investigating into anti-cancer potential of lycopene: Molecular targetsWang Jia Qihttps://www.sciencedirect.com/science/article/pii/S07533322210033100
2020Lycopene alleviates oxidative stress via the PI3K/Akt/Nrf2pathway in a cell model of Alzheimer’s diseaseYinchao FangPMC7289143https://pmc.ncbi.nlm.nih.gov/articles/PMC7289143/0
2020Pro-oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging EvidenceJuhyun ShinPMC7346220https://pmc.ncbi.nlm.nih.gov/articles/PMC7346220/0
2020Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectivesRamesh Kumar Sainihttps://www.sciencedirect.com/science/article/abs/pii/S10436618193234240
2020Antioxidant and Pro-oxidant Activities of CarotenoidsMariana Lucashttps://link.springer.com/referenceworkentry/10.1007/978-3-030-45299-5_4-10
2020Lycopene alleviates oxidative stress via the PI3K/Akt/Nrf2pathway in a cell model of Alzheimer's diseaseYinchao FangPMC7289143https://pmc.ncbi.nlm.nih.gov/articles/PMC7289143/0
2020Lycopene Protects against Smoking-Induced Lung Cancer by Inducing Base Excision RepairJunrui ChengPMC7402151https://pmc.ncbi.nlm.nih.gov/articles/PMC7402151/0
2020Potential inhibitory effect of lycopene on prostate cancerMahdi Mirahmadihttps://www.sciencedirect.com/science/article/pii/S07533322203065210
2020Lycopene prevents carcinogen-induced cutaneous tumor by enhancing activation of the Nrf2 pathway through p62-triggered autophagic Keap1 degradationSiliang WangPMC7244072https://pmc.ncbi.nlm.nih.gov/articles/PMC7244072/0
2020Lycopene as a Natural Antioxidant Used to Prevent Human Health DisordersMuhammad ImranPMC7464847https://pmc.ncbi.nlm.nih.gov/articles/PMC7464847/0
2020Lycopene Inhibits Epithelial–Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal PathwayRan WangPMC7321693https://pmc.ncbi.nlm.nih.gov/articles/PMC7321693/0
2020Lycopene in human healthMélanie Caseirohttps://www.sciencedirect.com/science/article/abs/pii/S00236438203031210
2019Lycopene Inhibits Activation of Epidermal Growth Factor Receptor and Expression of Cyclooxygenase-2 in Gastric Cancer CellsHwana HanPMC6770769https://pmc.ncbi.nlm.nih.gov/articles/PMC6770769/0
2019Lycopene Inhibits Reactive Oxygen Species-Mediated NF-κB Signaling and Induces Apoptosis in Pancreatic Cancer CellsYoonseon Jeonghttps://www.mdpi.com/2072-6643/11/4/7620
2019A review for the pharmacological effect of lycopene in central nervous system disordersDongjian Chenhttps://www.sciencedirect.com/science/article/pii/S07533322183748690
2019Lycopene treatment inhibits activation of Jak1/Stat3 and Wnt/β-catenin signaling and attenuates hyperproliferation in gastric epithelial cellsBohye Parkhttps://www.sciencedirect.com/science/article/abs/pii/S02715317183013250
2019Nutritional Importance of Carotenoids and Their Effect on Liver Health: A ReviewLaura Inés Elvira-ToralesPMC6681007https://pmc.ncbi.nlm.nih.gov/articles/PMC6681007/0
2019Lycopene improves the efficiency of anti-PD-1 therapy via activating IFN signaling of lung cancer cellsXiufeng JiangPMC6429703https://pmc.ncbi.nlm.nih.gov/articles/PMC6429703/0
2019Lycopene induces apoptosis by inhibiting nuclear translocation of β-catenin in gastric cancer cellsM Kim31741457https://pubmed.ncbi.nlm.nih.gov/31741457/0
2019Lycopene protects against myocardial ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore openingXuying Lihttps://www.tandfonline.com/doi/full/10.2147/DDDT.S1947530
2019The role of carotenoids in the prevention of human pathologiesH TapieroPMC6361147https://pmc.ncbi.nlm.nih.gov/articles/PMC6361147/0
2018Anti-inflammatory Activity of β-Carotene, Lycopene and Tri-n-butylborane, a Scavenger of Reactive Oxygen SpeciesAKIFUMI KAWATAPMC5905192https://pmc.ncbi.nlm.nih.gov/articles/PMC5905192/0
2018Lycopene and Vascular HealthIoana MozosPMC5974099https://pmc.ncbi.nlm.nih.gov/articles/PMC5974099/0
2018Anticancer Properties of LycopeneKazim Sahinhttps://link.springer.com/rwe/10.1007/978-3-319-54528-8_88-10
2017Lycopene, resveratrol, vitamin C and FeSO4 increase damage produced by pro-oxidant carcinogen 4-nitroquinoline-1-oxide in Drosophila melanogaster: Xenobiotic metabolism implications.I. Dueñas-Garcíahttps://www.semanticscholar.org/paper/Lycopene%2C-resveratrol%2C-vitamin-C-and-FeSO4-increase-Due%C3%B1as-Garc%C3%ADa-Heres-Pulido/bda54f083ab984160e34f0c823cdc9237462da4e0
2017Inhibitory Effect of Lycopene on Amyloid-β-Induced Apoptosis in Neuronal CellsSinwoo HwangPMC5579676https://pmc.ncbi.nlm.nih.gov/articles/PMC5579676/0
2017Lycopene reduces ovarian tumor growth and intraperitoneal metastatic loadNina Pauline HolzapfelPMC5489781https://pmc.ncbi.nlm.nih.gov/articles/PMC5489781/0
2017Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cellsJae Hoon ChaPMC5376536https://pmc.ncbi.nlm.nih.gov/articles/PMC5376536/0
2017The antioxidant and anti-inflammatory properties of lycopene in mice lungs exposed to cigarette smokeKeila Karine Duarte Campos28651168https://pubmed.ncbi.nlm.nih.gov/28651168/0
2017Supplementation of lycopene attenuates oxidative stress induced neuroinflammation and cognitive impairment via Nrf2/NF-κB transcriptional pathwayBeita Zhaohttps://www.sciencedirect.com/science/article/abs/pii/S02786915173056900
2016Lycopene modulates cellular proliferation, glycolysis and hepatic ultrastructure during hepatocellular carcinomaPrachi GuptaPMC5067442https://pmc.ncbi.nlm.nih.gov/articles/PMC5067442/0
2016Enhanced cytotoxic and apoptosis inducing activity of lycopene oxidation products in different cancer cell linesBangalore Prabhashankar Arathihttps://www.sciencedirect.com/science/article/abs/pii/S02786915163033130
2016Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: An in vitro studySwapna B SawardekarPMC4778201https://pmc.ncbi.nlm.nih.gov/articles/PMC4778201/0
2015Anticancer Effect of Lycopene in Gastric CarcinogenesisMi Jung Kimhttps://pmc.ncbi.nlm.nih.gov/articles/PMC4492364/0
2015Lycopene as A Carotenoid Provides Radioprotectant and Antioxidant Effects by Quenching Radiation-Induced Free Radical Singlet Oxygen: An OverviewJalil Pirayesh IslamianPMC4297477https://pmc.ncbi.nlm.nih.gov/articles/PMC4297477/0
2014Effects of lycopene on number and function of human peripheral blood endothelial progenitor cells cultivated with high glucoseYao-Chi ZengPMC4122707https://pmc.ncbi.nlm.nih.gov/articles/PMC4122707/0
2014Implicating the role of lycopene in restoration of mitochondrial enzymes and BDNF levels in β-amyloid induced Alzheimer׳s diseaseAtish Prakashhttps://www.sciencedirect.com/science/article/abs/pii/S00142999140057310
2014Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell linesMikako TakeshimaPMC4317951https://pmc.ncbi.nlm.nih.gov/articles/PMC4317951/0
2014Lycopene for the prevention and treatment of prostate disease.https://www.semanticscholar.org/paper/Lycopene-for-the-prevention-and-treatment-of-Ili%C4%87/f7d959461c8fc8cd465ede82bc5b963f70073bcc0
2014Serum lycopene, lutein and zeaxanthin, and the risk of Alzheimer's disease mortality in older adultsJin-young Min24247062https://pubmed.ncbi.nlm.nih.gov/24247062/0
2014Potential Role of Carotenoids as Antioxidants in Human Health and DiseaseJoanna FiedorPMC3942711https://pmc.ncbi.nlm.nih.gov/articles/PMC3942711/0
2012The role of lycopene and its derivatives in the regulation of transcription systems: implications for cancer preventionYoav Sharoni23053550https://pubmed.ncbi.nlm.nih.gov/23053550/0
2012Lycopene inhibits angiogenesis both in vitro and in vivo by inhibiting MMP-2/uPA system through VEGFR2-mediated PI3K-Akt and ERK/p38 signaling pathwaysMan-Ling Chen22707264https://pubmed.ncbi.nlm.nih.gov/22707264/0
2011Role of Lycopene in the Control of ROS-Mediated Cell Growth: Implications in Cancer PreventionP. Palozzahttps://www.benthamdirect.com/content/journals/cmc/10.2174/0929867117954968450
2010LycopeneBarrie Cassileth20394143https://pubmed.ncbi.nlm.nih.gov/20394143/0
2010Lycopene and chemotherapy toxicityKazim Sahin20924974https://pubmed.ncbi.nlm.nih.gov/20924974/0
2007Lycopene inhibits matrix metalloproteinase-9 expression and down-regulates the binding activity of nuclear factor-kappa B and stimulatory protein-1Chin-Shiu Huanghttps://www.sciencedirect.com/science/article/abs/pii/S09552863060019140
2005Inhibitory effects of lycopene on in vitro platelet activation and in vivo prevention of thrombus formationGeorge Hsiaohttps://www.sciencedirect.com/science/article/abs/pii/S00222143050013680
2022Synergistic protection of quercetin and lycopene against oxidative stress via SIRT1-Nox4-ROS axis in HUVEC cellsXuan ChenPMC9593281https://pmc.ncbi.nlm.nih.gov/articles/PMC9593281/0