tbResList Print — M-Blu Methylene blue

Filters: qv=12, qv2=%, rfv=%

Product

M-Blu Methylene blue
Description: <b>Methylene blue (MB)</b>, also known as methylthioninium chloride, is a thiazine dye that can be used as a medication, and can be administered orally, subcutaneously or intravenously.<br>
Mainly used to treat methemoglobinemia by chemically reducing the ferric iron in hemoglobin to ferrous iron<br>
Methylene blue is commonly used in medical practice, especially as a dye in microbiological staining<br>
Antidote in cyanide poisoning: an oxidation-reduction indicator: an antiseptic<br>
<br>
Pathways:<br>
- may increases the oxygen consumption of normal tissues having aerobic glycolysis, and of tumors<br>
- generate reactive oxygen species (ROS) upon light activation<br>
-effects on mitochondrial metabolism may contribute to modulation of apoptosis and energy metabolism in cancer cells.<br>
-can affect the generation of reactive oxygen species.<br>
-Historically, it was used in patients with urinary tract infection <br>
-MB has also been used as a tracer for cancer diagnosis and as a photosensitizer for cancer treatment <br>
-shifts redox balance and can promote OXPHOS over glycolysis in some models(reverse Warburg effect)<br>
-can cross BBB and reach brain at concentrations 10 times higher than that in the circulation<br>
-causes shift from shift from glycolysis to oxidative phosphorylation.<br>
-reduces glutathione reductase GSR (an enzyme of glutathione metabolism), context- and concentration-dependent
<br>
<br>



<!-- Methylene Blue (MB) — Cancer-Oriented Time-Scale Flagged Pathway Table -->
<!-- Methylene Blue (M-Blu) — Cancer-Oriented Time-Scale Flagged Pathway Table (Refined) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Mitochondrial redox cycling (electron shuttle)</td>
<td>Redox modulation; NADH oxidation ↑ (context)</td>
<td>Mitochondrial efficiency ↑ at low doses (reported)</td>
<td>P, R</td>
<td>Bioenergetic modulation</td>
<td>MB can accept electrons from NADH and donate downstream in the ETC; effects are dose-dependent and context-specific.</td>
</tr>

<tr>
<td>2</td>
<td>OXPHOS vs glycolysis balance</td>
<td>Shift toward oxidative metabolism reported in some tumor models</td>
<td>Improved mitochondrial coupling (low dose)</td>
<td>R</td>
<td>Metabolic reprogramming</td>
<td>Sometimes described as “Warburg reversal,” but more accurately a redox/respiratory modulation that varies by system.</td>
</tr>

<tr>
<td>3</td>
<td>ROS modulation (biphasic)</td>
<td>ROS ↑ at higher doses; apoptosis ↑ (reported)</td>
<td>ROS ↓ or stabilized at lower doses</td>
<td>P, R</td>
<td>Redox destabilization (dose-dependent)</td>
<td>Acts antioxidant at low concentrations; can become pro-oxidant as concentration increases.</td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial membrane potential (ΔΨm)</td>
<td>ΔΨm collapse at higher doses (reported)</td>
<td>Stabilization possible at low doses</td>
<td>R</td>
<td>Mitochondrial stress</td>
<td>High-dose exposure can impair mitochondrial integrity and promote apoptosis.</td>
</tr>

<tr>
<td>5</td>
<td>Intrinsic apoptosis signaling</td>
<td>Caspases ↑; apoptosis ↑ (reported in vitro)</td>
<td>↔</td>
<td>G</td>
<td>Cell death execution</td>
<td>Generally downstream of ROS and mitochondrial perturbation.</td>
</tr>

<tr>
<td>6</td>
<td>Photodynamic ROS generation (light-activated)</td>
<td>ROS ↑↑ when photoactivated</td>
<td>Localized ROS if illuminated</td>
<td>P</td>
<td>Photoactivated cytotoxicity</td>
<td>Distinct mechanism: MB acts as a photosensitizer under light exposure.</td>
</tr>

<tr>
<td>7</td>
<td>Glutathione system modulation (GSR / redox enzymes)</td>
<td>Redox enzyme modulation reported (model-dependent)</td>
<td>Redox buffering alteration possible</td>
<td>R</td>
<td>Redox regulation</td>
<td>Some reports show interaction with glutathione metabolism; not a dominant universal pathway.</td>
</tr>

<tr>
<td>8</td>
<td>Blood–brain barrier penetration</td>
<td>—</td>
<td>CNS accumulation (high tissue levels)</td>
<td>P, R</td>
<td>Pharmacokinetic property</td>
<td>MB crosses the BBB and can accumulate in brain tissue at higher concentrations than plasma.</td>
</tr>

<tr>
<td>9</td>
<td>Monoamine oxidase (MAO) inhibition</td>
<td>—</td>
<td>MAO-A inhibition (clinically relevant)</td>
<td>R</td>
<td>Off-target pharmacology</td>
<td>Important interaction risk with SSRIs/SNRIs (serotonin syndrome).</td>
</tr>

<tr>
<td>10</td>
<td>Safety constraints (G6PD deficiency; serotonin syndrome)</td>
<td>—</td>
<td>Hemolysis risk (G6PD); serotonin toxicity risk</td>
<td>—</td>
<td>Clinical risk management</td>
<td>Well-established safety considerations in clinical use.</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid redox cycling; photoactivation)</li>
<li><b>R</b>: 30 min–3 hr (mitochondrial and redox signaling shifts)</li>
<li><b>G</b>: &gt;3 hr (apoptosis/autophagy outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 1,   GSR↓, 1,   mt-OXPHOS↑, 1,   OXPHOS↑, 3,   ROS↑, 6,   ROS⇅, 1,   SOD↑, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,   MMP↓, 1,   mtDam↑, 1,   OCR↑, 4,  

Core Metabolism/Glycolysis

ACC↓, 1,   AMPK↑, 2,   ECAR↓, 1,   GlucoseCon↑, 1,   GlutaM↓, 1,   Glycolysis↓, 3,   lactateProd↓, 3,   LDH↓, 1,   LDH↑, 1,   NADPH↓, 1,   Warburg↓, 3,  

Cell Death

Bcl-2↓, 1,   Cyt‑c↝, 1,   p‑MAPK↑, 1,   Mcl-1↓, 1,   TumCD↑, 1,  

Transcription & Epigenetics

other↓, 1,   tumCV↓, 3,  

Protein Folding & ER Stress

HSP70/HSPA5↓, 1,  

DNA Damage & Repair

cl‑PARP↑, 1,  

Cell Cycle & Senescence

Cyc↓, 1,   TumCCA↑, 2,  

Proliferation, Differentiation & Cell State

TumCG↓, 2,  

Migration

TumCP↓, 3,  

Barriers & Transport

BBB↑, 1,  

Synaptic & Neurotransmission

tau↓, 1,  

Drug Metabolism & Resistance

BioAv↝, 2,   eff↓, 1,   eff↑, 1,   Half-Life↝, 1,   selectivity↑, 1,  

Clinical Biomarkers

LDH↓, 1,   LDH↑, 1,  

Functional Outcomes

AntiCan↑, 1,   AntiTum↑, 1,   neuroP↑, 3,  
Total Targets: 47

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

mt-antiOx↑, 1,   ROS↓, 1,  

Mitochondria & Bioenergetics

OCR↑, 1,  

Core Metabolism/Glycolysis

ECAR↓, 1,   GlucoseCon↑, 1,   Glycolysis↓, 1,  

Proliferation, Differentiation & Cell State

mTOR↓, 1,  

Barriers & Transport

BBB↑, 1,  

Drug Metabolism & Resistance

eff↝, 1,  

Functional Outcomes

cognitive↑, 1,   memory↑, 1,  
Total Targets: 11

Research papers

Year Title Authors PMID Link Flag
2025Spectroscopic Study of Methylene Blue Interaction with Coenzymes and its Effect on Tumor MetabolismDV PominovaPMC11892571https://pmc.ncbi.nlm.nih.gov/articles/PMC11892571/0
2024Methylene Blue-Mediated Photodynamic Therapy in Combination With Doxorubicin: A Novel Approach in the Treatment of HT-29 Colon Cancer CellsNima Rastegar-PouyaniPMC11822234https://pmc.ncbi.nlm.nih.gov/articles/PMC11822234/0
2024In Vitro Methylene Blue and Carboplatin Combination Triggers Ovarian Cancer Cells DeathJorgelindo da Veiga MoreiraPMC11507203https://pmc.ncbi.nlm.nih.gov/articles/PMC11507203/0
2024The use of methylene blue to control the tumor oxygenation levelDaria Pominovahttps://www.sciencedirect.com/science/article/pii/S15721000240008630
2023Methylene blue in anticancer photodynamic therapy: systematic review of preclinical studiesAmir TaldaevPMC10568458https://pmc.ncbi.nlm.nih.gov/articles/PMC10568458/0
2021The effect of dual-frequency ultrasound waves on B16F10 melanoma cells: Sonodynamic therapy using nanoliposomes containing methylene blueAkbar Adelnia33085810https://pubmed.ncbi.nlm.nih.gov/33085810/0
2020Methylene blue and its importance in medicineYaren Kayabasihttps://www.researchgate.net/publication/347993459_Methylene_blue_and_its_importance_in_medicine0
2018Anticancer activity of methylene blue via inhibition of heat shock protein 70Dhaval Sanchala30257315https://pubmed.ncbi.nlm.nih.gov/30257315/0
2015Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dotsShao-Hua YangPMC4871783https://pmc.ncbi.nlm.nih.gov/articles/PMC4871783/0
2013Methylene blue-mediated photodynamic therapy enhances apoptosis in lung cancer cellsEun Jin Lim23708127https://pubmed.ncbi.nlm.nih.gov/23708127/0
2013Reversing the Warburg Effect as a Treatment for GlioblastomaEthan PoteetPMC3610988https://pmc.ncbi.nlm.nih.gov/articles/PMC3610988/0
2011Apoptosis of ovarian cancer cells induced by methylene blue-mediated sonodynamic actionJunyan Xiang21147492https://pubmed.ncbi.nlm.nih.gov/21147492/0
2009The sonodynamic antitumor effect of methylene blue on sarcoma180 cells in vitroChiyo Komori19528509https://pubmed.ncbi.nlm.nih.gov/19528509/0