tbResList Print — Mg Magnesium

Filters: qv=120, qv2=%, rfv=%

Product

Mg Magnesium
Description: <b>Magnesium (Mg²⁺)</b> is an essential divalent cation and enzymatic cofactor involved in >300 biochemical reactions. It is not a phytochemical or drug but a physiological mineral regulating ATP stability, kinase activity, membrane potential, and Ca²⁺ channel function. Its dominant biology ranks as: (1) ATP-dependent enzymatic support and genomic stability, (2) Ca²⁺ antagonism and membrane stabilization, (3) modulation of inflammation and oxidative stress, and (4) indirect effects on insulin signaling and vascular tone. Bioavailability depends on salt form (e.g., citrate > oxide), with serum tightly regulated (~0.7–1.0 mmol/L). In vitro cancer studies often manipulate Mg²⁺ concentrations outside physiologic range, limiting translational relevance. Clinically, magnesium status correlates with metabolic, cardiovascular, and possibly cancer risk, but it is not an established anticancer therapeutic. Effects are systemic-regulatory rather than cytotoxic.<br>
<br>
Mineral for normal bone structure. Found in nuts, legumes, fiber rich whole grains, low-fat dairy products, greens - spinach, swiss chard, collard greens.<br>
RDA. 51+ years male420 mg. Female 320 mg<br>
Pumpkin seeds (hulled, roasted): 1 oz = 150 mg of magnesium<br>
Peanuts (dry roasted): 1 oz = 49 mg of magnesium.<br>
Shredded wheat (plain, unfrosted): 1 cup = 56 mg of magnesium.<br>
Milk (nonfat): 1 cup = 24 to 27 mg of magnesium<br>
Yogurt (plain, low fat): 8 oz = 42 mg of magnesium.<br>
Dark chocolate (70%-85% cocoa): 1 oz = 64 milligrams of magnesium.<br>
Water saskatoon 19mg/L<br>
<br>
Magnesium acts as a natural calcium antagonist<br>
Magnesium deficiency contributes to an exaggerated response to immune stress and oxidative stress is the consequence of the inflammatory response.<br>
Simultaneously, magnesium ion deficiency, which antagonize calcium ions, increases intracellular calcium overload, activating numerous calcium-dependent kinases and proteins, such as nitric oxide synthase and calcium-dependent calcium-binding proteins, further augmenting ROS production.<br>
<br>
Magnesium (Mg) is an essential mineral that plays a crucial role in various cellular processes, including energy production, DNA synthesis, and cell signaling. <br>
-Mg deficiency has been linked to an increased risk of cancer.<br>
-May theoretically improve Ascorbic Acid (IV) efficacy.<br>

<br>
<h3>Magnesium (Mg²⁺) — Cancer-Relevant Pathway Effects (Revised)</h3>
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells (↑/↓/↔ + qualifiers)</th>
<th>Normal Cells (↑/↓/↔ + qualifiers)</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Ca²⁺ Antagonism / Channel Regulation</td>
<td>↓ Ca²⁺ overload (if Mg sufficient)</td>
<td>↓ excitotoxic & stress Ca²⁺ influx</td>
<td>P–R</td>
<td>Membrane stabilization</td>
<td>Mg deficiency permits Ca²⁺ dysregulation → activation of Ca²⁺-dependent kinases, NOS, mitochondrial stress → ↑ ROS.</td>
</tr>

<tr>
<td>2</td>
<td>ROS / Oxidative Stress</td>
<td>↓ ROS (if deficiency corrected)</td>
<td>↓ oxidative damage</td>
<td>P–R</td>
<td>Redox stabilization</td>
<td>Mg deficiency associated with ↑ mitochondrial ROS, lipid peroxidation, inflammatory signaling.</td>
</tr>

<tr>
<td>3</td>
<td>ATP Stability / Kinase Function</td>
<td>↔ (supports proliferation if sufficient)</td>
<td>↑ genomic & metabolic stability</td>
<td>P</td>
<td>Enzymatic cofactor</td>
<td>Mg-ATP complex required for kinase activity; not selectively antiproliferative.</td>
</tr>

<tr>
<td>4</td>
<td>DNA Repair / Genomic Stability</td>
<td>↑ repair capacity (adequate Mg)</td>
<td>↑ DNA stability</td>
<td>G</td>
<td>Mutation prevention</td>
<td>Cofactor for DNA polymerases and repair enzymes; deficiency linked to chromosomal instability.</td>
</tr>

<tr>
<td>5</td>
<td>Inflammation (NF-κB / cytokines)</td>
<td>↓ pro-inflammatory signaling (adequate Mg)</td>
<td>↓ systemic inflammation</td>
<td>R–G</td>
<td>Inflammatory modulation</td>
<td>Low Mg status associated with ↑ CRP, IL-6, TNF-α.</td>
</tr>

<tr>
<td>6</td>
<td>Apoptosis</td>
<td>↔ (not selectively induced)</td>
<td>↔ / protective at physiologic levels</td>
<td>—</td>
<td>Not primary axis</td>
<td>Magnesium is not a direct cytotoxic inducer of apoptosis at physiologic concentrations.</td>
</tr>

<tr>
<td>7</td>
<td>Insulin / mTOR Axis</td>
<td>↔ indirect metabolic modulation</td>
<td>↑ insulin sensitivity</td>
<td>R–G</td>
<td>Metabolic regulation</td>
<td>Deficiency linked to insulin resistance and metabolic inflammation.</td>
</tr>

<tr>
<td>8</td>
<td>IV Ascorbate Interaction</td>
<td>↔ theoretical redox modulation</td>
<td>↔</td>
<td>—</td>
<td>Speculative synergy</td>
<td>Adequate Mg may support ATP/redox systems; clinical enhancement of IV vitamin C not established.</td>
</tr>

<tr>
<td>9</td>
<td>Clinical Translation Constraint</td>
<td colspan="2">Homeostatically regulated; supplementation corrects deficiency but is not direct anticancer therapy</td>
<td>—</td>
<td>Physiologic limitation</td>
<td>Epidemiologic association between low Mg and colorectal cancer risk; causality not definitive.</td>
</tr>

</table>

<div><b>TSF Legend:</b> P: 0–30 min &nbsp; R: 30 min–3 hr &nbsp; G: &gt;3 hr</div>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

ROS↑, 2,  

Mitochondria & Bioenergetics

ATP↓, 1,  

Core Metabolism/Glycolysis

NAD↓, 1,  

Cell Death

Apoptosis↑, 3,   proCasp3↑, 1,   Casp3↑, 1,   MAPK↑, 1,   TumCD↑, 1,  

Transcription & Epigenetics

other↓, 1,   other↑, 2,  

Protein Folding & ER Stress

ER Stress↑, 1,  

DNA Damage & Repair

DNAdam↑, 1,  

Cell Cycle & Senescence

P21↑, 1,   TumCCA↑, 2,  

Proliferation, Differentiation & Cell State

TRPM7↓, 1,   TumCG↓, 1,  

Barriers & Transport

SVCT-2↝, 1,  

Immune & Inflammatory Signaling

CRP↓, 1,   VitD↑, 1,  

Drug Metabolism & Resistance

eff↑, 1,  

Clinical Biomarkers

CRP↓, 1,   VitD↑, 1,  

Functional Outcomes

AntiCan↑, 1,   ChemoSideEff↓, 1,   OS↑, 1,   Risk↓, 1,   TumVol↓, 1,  
Total Targets: 27

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

ROS↓, 2,  

Immune & Inflammatory Signaling

VitD↑, 1,  

Cellular Microenvironment

pH↝, 1,  

Synaptic & Neurotransmission

BDNF↑, 2,  

Drug Metabolism & Resistance

BioAv↑, 1,  

Clinical Biomarkers

VitD↑, 1,  

Functional Outcomes

memory↑, 1,  
Total Targets: 7

Research papers

Year Title Authors PMID Link Flag
2024Magnesium Ion: A New Switch in Tumor TreatmentLeyi HuangPMC11351748https://pmc.ncbi.nlm.nih.gov/articles/PMC11351748/0
2024Methyl Jasmonate-induced Increase in Intracellular Magnesium Promotes Apoptosis in Breast Cancer CellsDong Kwon Yang38423661https://pubmed.ncbi.nlm.nih.gov/38423661/0
2024Mg alloys with antitumor and anticorrosion properties for orthopedic oncology: A review from mechanisms to application strategiesZhensheng LinPMC11026114https://pmc.ncbi.nlm.nih.gov/articles/PMC11026114/0
2023A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancerJ Health Popul NutrPMC10375690https://pmc.ncbi.nlm.nih.gov/articles/PMC10375690/0
2022The Supplement of Magnesium Element to Inhibit Colorectal Tumor CellsHeng LiPMC10073067https://pmc.ncbi.nlm.nih.gov/articles/PMC10073067/0
2021Oral magnesium supplements for cancer treatment‐induced hypomagnesemia: Results from a pilot randomized trialArif AwanPMC8669698https://pmc.ncbi.nlm.nih.gov/articles/PMC8669698/0
2021Degradable magnesium implants inhibit gallbladder cancerHongzhou Peng33964481https://pubmed.ncbi.nlm.nih.gov/33964481/0
2020Biodegradable Mg Implants Suppress the Growth of Ovarian TumorShuang Qiao33455395https://pubmed.ncbi.nlm.nih.gov/33455395/0
2020Magnesium: The overlooked electrolyte in blood cancers?Jennifer Gilehttps://www.sciencedirect.com/science/article/abs/pii/S0268960X203002660
2020Hypomagnesemia in the Cancer PatientBiruh T WorkenehPMC8785729https://pmc.ncbi.nlm.nih.gov/articles/PMC8785729/0
2020Magnesium intake is associated with a reduced risk of incident liver cancer, based on an analysis of the NIH-American Association of Retired Persons (NIH-AARP) Diet and Health Study prospective cohortShailja C ShahPMC8324220https://pmc.ncbi.nlm.nih.gov/articles/PMC8324220/0
2019Direct and indirect associations between dietary magnesium intake and breast cancer riskWu-Qing Huanghttps://www.nature.com/articles/s41598-019-42282-y0
2018Magnesium and Human Health: Perspectives and Research DirectionsAbdullah M Al AlawiPMC5926493https://pmc.ncbi.nlm.nih.gov/articles/PMC5926493/0
2018Dietary Intake of Magnesium or Calcium and Chemotherapy-Induced Peripheral Neuropathy in Colorectal Cancer PatientsEvertine WesselinkPMC5946183https://pmc.ncbi.nlm.nih.gov/articles/PMC5946183/0
2018Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?Nazan Uysal29679349https://pubmed.ncbi.nlm.nih.gov/29679349/0
2015https://pmc.ncbi.nlm.nih.gov/articles/PMC4759402/Meng-Hua TaoPMC4759402https://pmc.ncbi.nlm.nih.gov/articles/PMC4759402/0
2015Magnesium intake and incidence of pancreatic cancer: the VITamins and Lifestyle studyDaniel DibabaPMC4705892https://pmc.ncbi.nlm.nih.gov/articles/PMC4705892/0
2014Antidepressant-like activity of magnesium in the olfactory bulbectomy model is associated with the AMPA/BDNF pathwayBartlomiej PochwatPMC4297308https://pmc.ncbi.nlm.nih.gov/articles/PMC4297308/0
2012Magnesium and cancer: more questions than answersMarzia Leidihttps://www.ncbi.nlm.nih.gov/books/NBK507261/0
2011Magnesium and cancer: a dangerous liasonSara Castiglioni21933757https://pubmed.ncbi.nlm.nih.gov/21933757/0
2011Effects of Elevation of Brain Magnesium on Fear Conditioning, Fear Extinction, and Synaptic Plasticity in the Infralimbic Prefrontal Cortex and Lateral AmygdalaNashat AbumariaPMC6623582https://pmc.ncbi.nlm.nih.gov/articles/PMC6623582/0
2007Magnesium and the inflammatory response: potential physiopathological implicationsAndrzej Mazur16712775https://pubmed.ncbi.nlm.nih.gov/16712775/0
2019Enhanced Anticancer Effect of Adding Magnesium to Vitamin C Therapy: Inhibition of Hormetic Response by SVCT-2 ActivationSungrae ChoPMC6940627https://pmc.ncbi.nlm.nih.gov/articles/PMC6940627/0