tbResList Print — MAG Magnolol

Filters: qv=121, qv2=%, rfv=%

Product

MAG Magnolol
Description: <b>Lignan</b> found in bark of some magnolia species.<br>
Magnolol (MAG) — a bioactive biphenolic compound from Magnolia officinalis<br>
derived from the bark (roots and branches) of Magnolia species such as M. officinalis, M. obovata, and M. grandiflora<br>
The two main bioactive compounds isolated from these plants are MAG (5,5ʹ-diallyl-2,2ʹ-dihydroxybiphenyl) and <b>Honokiol</b> (3,5ʹ-diallyl-4,2ʹ-dihydroxybiphenyl) (Fig. 1) which are phenolic regioisomers. <br>
In the bark extracts of Magnolia plants, the composition of MAG ranges from 1 to 10%, while Honokiol comprises 1 to 5%<br>
Magnolol is a biphenolic neolignan isolated from the bark of Magnolia officinalis. It is structurally related to honokiol and is studied for anti-inflammatory, antioxidant, antimicrobial, and neuroactive effects. In preclinical oncology models, magnolol is reported to modulate NF-κB, STAT3, PI3K/AKT, MAPK, Wnt/β-catenin, and redox pathways, with downstream effects on cell-cycle arrest, apoptosis, invasion/EMT, and angiogenesis. Oral bioavailability is limited and many cytotoxic concentrations reported in vitro are in the tens of µM range, often above typical systemic levels from standard supplementation.<br>
<br>

major pathways and molecular targets involved in magnolol’s anticancer actions:<br>
-Apoptosis: ↑ Bax, ↓ Bcl-2, ↑ cytochrome c, ↑ caspase-9, ↑ caspase-3 <br>
-Arrests cell cycle at G0/G1 or G2/M phase:↓ Cyclin D1, CDK4, CDK6, Cyclin B1, CDK1<br>
-Inhibits NF-κB activation: ↓ IκBα, COX-2, TNF-α<br>
-Inhibits PI3K, Akt, and mTOR phosphorylation<br>
-Suppresses angiogenesis: ↓ Bcl-XL, Mcl-1, VEGF, cyclin D1<br>
-Inhibits β-catenin nuclear translocation<br>
-increase ROS production in tumor cells → triggers mitochondrial apoptosis<br>
-Magnolol activates Nrf2 in normal cells → upregulates HO-1, NQO1: Protects normal tissue from oxidative stress during chemotherapy or inflammation.<br>
<br>
Most in-vitro IC50 values fall in the 10–100 µM range, often above typical systemic exposure.<br>
<br>


<!-- Magnolol (MAG) — Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>NF-κB inflammatory / survival transcription</td>
<td>NF-κB ↓; COX-2, cytokines, Bcl-2 family ↓ (reported)</td>
<td>Inflammation tone ↓</td>
<td>R, G</td>
<td>Anti-inflammatory + anti-survival transcription</td>
<td>One of the most consistently reported mechanisms in both inflammatory and tumor models.</td>
</tr>

<tr>
<td>2</td>
<td>STAT3 signaling</td>
<td>STAT3 phosphorylation ↓ (reported)</td>
<td>↔</td>
<td>R, G</td>
<td>Oncogenic transcription suppression</td>
<td>Reported in several cancer cell systems; contributes to reduced proliferation and survival signaling.</td>
</tr>

<tr>
<td>3</td>
<td>PI3K → AKT → mTOR pathway</td>
<td>PI3K/AKT signaling ↓ (model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth/survival modulation</td>
<td>Frequently described as downstream of inflammatory pathway suppression; context-dependent strength.</td>
</tr>

<tr>
<td>4</td>
<td>Nrf2 / ARE antioxidant response</td>
<td>Modulation context-dependent; may decrease oxidative stress or alter redox tone</td>
<td>Nrf2 ↑; HO-1 ↑; GSH ↑ (cytoprotective)</td>
<td>R, G</td>
<td>Redox regulation</td>
<td>Magnolol activates Nrf2 in non-malignant oxidative stress models; tumor direction varies and may influence therapy sensitivity.</td>
</tr>


<tr>
<td>5</td>
<td>MAPK pathways (ERK / JNK / p38)</td>
<td>MAPK modulation (stress activation or ERK suppression; context-dependent)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Signal reprogramming</td>
<td>JNK/p38 activation and ERK modulation reported variably depending on cell type and dose.</td>
</tr>

<tr>
<td>6</td>
<td>Cell-cycle arrest (G0/G1 or G2/M)</td>
<td>Cell-cycle arrest ↑ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Associated with Cyclin D1/CDK modulation and checkpoint protein regulation.</td>
</tr>

<tr>
<td>7</td>
<td>Intrinsic apoptosis (mitochondrial pathway)</td>
<td>Apoptosis ↑; caspases ↑; Bax/Bcl-2 ratio ↑ (reported)</td>
<td>↔ (generally less activation)</td>
<td>G</td>
<td>Cell death execution</td>
<td>Often downstream of survival pathway inhibition and ROS signaling shifts.</td>
</tr>

<tr>
<td>8</td>
<td>ROS / redox modulation</td>
<td>ROS ↑ in some tumor models; antioxidant effects in non-tumor systems</td>
<td>Oxidative stress ↓ in inflammatory models</td>
<td>P, R, G</td>
<td>Context-dependent redox modulation</td>
<td>Biphasic redox behavior similar to other polyphenols; not a universally tumor-selective pro-oxidant.</td>
</tr>

<tr>
<td>9</td>
<td>Wnt/β-catenin signaling</td>
<td>β-catenin signaling ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Proliferation/invasion modulation</td>
<td>Reported particularly in colorectal and hepatocellular carcinoma models; keep model-qualified.</td>
</tr>

<tr>
<td>10</td>
<td>Invasion / metastasis (MMPs / EMT)</td>
<td>MMP2/MMP9 ↓; EMT markers ↓; migration ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Often secondary to NF-κB/STAT3 pathway suppression.</td>
</tr>

<tr>
<td>11</td>
<td>Bioavailability constraint</td>
<td>Limited oral bioavailability; rapid metabolism</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>Plasma levels after oral dosing are typically lower than many in-vitro cytotoxic concentrations.</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid signaling/redox interactions)</li>
<li><b>R</b>: 30 min–3 hr (acute transcription and stress-response signaling shifts)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↓, 1,   CYP1A1↓, 1,   H2O2↓, 1,   OXPHOS↓, 1,   ROS↑, 3,  

Mitochondria & Bioenergetics

CDC2↓, 1,   MMP↓, 2,   mtDam↑, 1,   XIAP↓, 1,  

Core Metabolism/Glycolysis

p‑AMPK↑, 1,   IDO1↓, 1,   LDH↓, 1,  

Cell Death

Akt↓, 6,   p‑Akt↓, 2,   Apoptosis↑, 13,   BAD↑, 1,   BAX↑, 4,   Bax:Bcl2↑, 1,   Bcl-2↓, 6,   Bcl-xL↓, 1,   Casp3↑, 8,   cl‑Casp3↑, 1,   Casp6↑, 1,   Casp8↑, 2,   Casp9↑, 5,   cl‑Casp9↑, 1,   Cyt‑c↑, 4,   DR5↝, 1,   cl‑GSDME↑, 1,   iNOS↓, 1,   p‑JNK↓, 1,   JNK↑, 1,   MAPK↓, 2,   Mcl-1↓, 1,   p27↑, 1,   p‑p38↓, 1,   Pyro↑, 1,   survivin↓, 1,  

Transcription & Epigenetics

tumCV↓, 3,  

Protein Folding & ER Stress

ER Stress↑, 1,  

DNA Damage & Repair

DNAdam↑, 3,   P53↑, 3,   cl‑PARP↑, 1,   PCNA↓, 2,  

Cell Cycle & Senescence

CDK2↓, 2,   CDK4↓, 3,   cycA1/CCNA1↓, 2,   CycB/CCNB1↓, 2,   cycD1/CCND1↓, 5,   cycE/CCNE↓, 1,   P21↑, 5,   TumCCA↑, 10,   TumCCA↓, 1,  

Proliferation, Differentiation & Cell State

4E-BP1↓, 1,   CSCs↓, 1,   EMT↓, 1,   p‑ERK↓, 1,   FOXO3↓, 1,   HDAC↓, 1,   mTOR↓, 4,   P70S6K↓, 1,   p‑PI3K↓, 2,   PI3K↓, 4,   PTEN↓, 1,   PTEN↑, 1,   STAT3↓, 1,   TumCG↓, 6,  

Migration

CA↓, 1,   Ca+2↑, 3,   CD31↓, 1,   E-cadherin↑, 3,   Ki-67↓, 2,   MMP2↓, 3,   MMP7↓, 3,   MMP9↑, 1,   MMP9↓, 4,   N-cadherin↓, 1,   Slug↓, 1,   p‑SMAD2↓, 1,   p‑SMAD3↓, 1,   Snail↓, 1,   TGF-β↓, 1,   TumCA↓, 1,   TumCI↓, 6,   TumCMig↓, 7,   TumCMig↑, 1,   TumCP↓, 10,   TumMeta↓, 1,   uPA↓, 1,   Vim↓, 1,   vinculin↓, 1,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

angioG↓, 2,   Hif1a↓, 2,   VEGF↓, 2,   VEGFR2↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   FOXP3↓, 1,   p‑IκB↓, 1,   NF-kB↓, 6,   Th17↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   ChemoSen↑, 4,   eff↑, 4,   RadioS↑, 1,   selectivity↑, 4,  

Clinical Biomarkers

Ki-67↓, 2,   LDH↓, 1,  

Functional Outcomes

AntiCan↑, 8,   AntiTum↑, 2,   cachexia↓, 1,   chemoP↑, 1,   Weight↑, 1,  
Total Targets: 113

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 6,   Catalase↑, 1,   CYP2E1↓, 1,   GPx↑, 1,   MDA↓, 1,   NRF2↑, 1,   ROS↓, 2,   SOD↑, 1,  

Core Metabolism/Glycolysis

glucose↓, 1,   PPARγ↓, 1,   PPARγ↑, 1,  

Cell Death

cl‑Casp8↑, 1,   iNOS↓, 1,   MAPK↓, 1,  

DNA Damage & Repair

PARP↑, 1,  

Cell Cycle & Senescence

P21↑, 1,  

Proliferation, Differentiation & Cell State

IGF-1↑, 1,  

Migration

AntiAg↑, 2,  

Angiogenesis & Vasculature

angioG↓, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   IL10↑, 1,   Inflam↓, 5,   Inflam↑, 1,   M2 MC↑, 1,   NF-kB↓, 1,   PGE2↓, 1,   TLR2↓, 1,   TLR4↓, 1,  

Synaptic & Neurotransmission

AChE↑, 1,   BDNF↑, 1,  

Protein Aggregation

AGEs↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↝, 2,   eff↑, 1,  

Clinical Biomarkers

GutMicro↑, 1,  

Functional Outcomes

AntiDiabetic↑, 1,   cardioP↑, 2,   neuroP↑, 3,   toxicity↓, 3,  

Infection & Microbiome

Bacteria↓, 5,  
Total Targets: 41

Research papers

Year Title Authors PMID Link Flag
2025Honokiol-Magnolol-Baicalin Possesses Synergistic Anticancer Potential and Enhances the Efficacy of Anti-PD-1 Immunotherapy in Colorectal Cancer by Triggering GSDME-Dependent PyroptosisQuan GaoPMC11967828https://pmc.ncbi.nlm.nih.gov/articles/PMC11967828/0
2024Honokiol Is More Potent than Magnolol in Reducing Head and Neck Cancer Cell GrowthRobert Kleszczhttps://www.mdpi.com/1467-3045/46/10/6370
2025Magnolol facilitates mitochondrial-peroxisome dysfunction and induces oxeiptosis in lung cancer cells following transfer via tunneling nanotubesMeng-Hsuan Cheng40347844https://pubmed.ncbi.nlm.nih.gov/40347844/0
2025Mitochondrion-targeted magnolol derivatives exert synergistic anticancer activity by modulating energy metabolism and tumor microenvironmentYing Wang41145083https://pubmed.ncbi.nlm.nih.gov/41145083/0
2025Magnolol and its semi-synthetic derivatives: a comprehensive review of anti-cancer mechanisms, pharmacokinetics, and future therapeutic potentialAsmita RayamajhiPMC12058641https://pmc.ncbi.nlm.nih.gov/articles/PMC12058641/0
2024Magnolol Induces Apoptosis and Suppresses Immune Evasion in Non-small Cell Lung Cancer Xenograft ModelsPo-Ju Lin39348964https://pubmed.ncbi.nlm.nih.gov/39348964/0
2023Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathwaysYuanyuan ChenPMC10874772https://pmc.ncbi.nlm.nih.gov/articles/PMC10874772/0
2023Evaluating the Magnolol Anticancer Potential in MKN-45 Gastric Cancer CellsMahsa NaghashpourPMC9963572https://pmc.ncbi.nlm.nih.gov/articles/PMC9963572/0
2023Magnolol as STAT3 inhibitor for treating multiple sclerosis by restricting Th17 cellsJian-Yu Chen37301184https://pubmed.ncbi.nlm.nih.gov/37301184/0
2022Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic InsightXiaofeng WangPMC9570903https://pmc.ncbi.nlm.nih.gov/articles/PMC9570903/0
2022Magnolol inhibits cancer stemness and IL-6/Stat3 signaling in oral carcinomasChih-Yu Peng33551310https://pubmed.ncbi.nlm.nih.gov/33551310/0
2021Mitochondria-targeted magnolol inhibits OXPHOS, proliferation, and tumor growth via modulation of energetics and autophagy in melanoma cellsGang ChengPMC7883397https://pmc.ncbi.nlm.nih.gov/articles/PMC7883397/0
2021Effectiveness of Magnolol, a Lignan from Magnolia Bark, in Diabetes, Its Complications and Comorbidities—A ReviewKatarzyna Szałabska-RąpałaPMC8467064https://pmc.ncbi.nlm.nih.gov/articles/PMC8467064/0
2021Magnolol and Honokiol: Two Natural Compounds with Similar Chemical Structure but Different Physicochemical and Stability PropertiesIris UsachPMC7915353https://pmc.ncbi.nlm.nih.gov/articles/PMC7915353/0
2021Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An UpdateYiping Linhttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2021.632767/full0
2020Magnolol Attenuates Cisplatin-Induced Muscle Wasting by M2c Macrophage ActivationChanju LeePMC7018987https://pmc.ncbi.nlm.nih.gov/articles/PMC7018987/0
2020Magnolol Suppresses Pancreatic Cancer Development In Vivo and In Vitro via Negatively Regulating TGF-β/Smad SignalingShuo ChenPMC7738609https://pmc.ncbi.nlm.nih.gov/articles/PMC7738609/0
20202-O-Methylmagnolol, a Magnolol Derivative, Suppresses Hepatocellular Carcinoma Progression via Inhibiting Class I Histone Deacetylase ExpressionChi-Yuan ChenPMC7431949https://pmc.ncbi.nlm.nih.gov/articles/PMC7431949/0
2019Insights on the Multifunctional Activities of MagnololJianhong Zhanghttps://www.researchgate.net/publication/333332570_Insights_on_the_Multifunctional_Activities_of_Magnolol0
2019Magnolol inhibits growth and induces apoptosis in esophagus cancer KYSE-150 cell lines via the MAP kinase pathwayYu ChenPMC6688004https://pmc.ncbi.nlm.nih.gov/articles/PMC6688004/0
2018Safety and Toxicology of Magnolol and HonokiolAndrea Sarrica29925102https://pubmed.ncbi.nlm.nih.gov/29925102/0
2018Magnolol: A Neolignan from the Magnolia Family for the Prevention and Treatment of CancerAbhishek Manoj RanawarePMC6121321https://pmc.ncbi.nlm.nih.gov/articles/PMC6121321/0
2013Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cellsMeng-Chuan Chen23416116https://pubmed.ncbi.nlm.nih.gov/23416116/0
2012Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathwayJun Beom Park22975518https://pubmed.ncbi.nlm.nih.gov/22975518/0
2011Targeting apoptosis pathways in cancer with magnolol and honokiol, bioactive constituents of the bark of Magnolia officinalisH L Xu22466367https://pubmed.ncbi.nlm.nih.gov/22466367/0
2011Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathwaysAzhar RasulPMC3584565https://pmc.ncbi.nlm.nih.gov/articles/PMC3584565/0
2011Magnolol potently suppressed lipopolysaccharide-induced iNOS and COX-2 expression via downregulating MAPK and NF-κB signaling pathwaysChing-Shu Laihttps://www.sciencedirect.com/science/article/pii/S17564646110004910
2011Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of actionChandeshwari ChilampalliPMC3234292https://pmc.ncbi.nlm.nih.gov/articles/PMC3234292/0
2009Magnolol induces apoptosis via activation of both mitochondrial and death receptor pathways in A375-S2 cellsQingjun You20162409https://pubmed.ncbi.nlm.nih.gov/20162409/0
2002Magnolol suppresses proliferation of cultured human colon and liver cancer cells by inhibiting DNA synthesis and activating apoptosisShyr-Yi Lin11813258https://pubmed.ncbi.nlm.nih.gov/11813258/0
2001Molecular mechanisms of apoptosis induced by magnolol in colon and liver cancer cellsS Y Lin11746819https://pubmed.ncbi.nlm.nih.gov/11746819/0