tbResList Print — MEL Melatonin

Filters: qv=122, qv2=%, rfv=%

Product

MEL Melatonin
Description: <b>Hormone</b> in the body made by pineal gland.<br>
• Melatonin is a potent antioxidant. It neutralizes reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are involved in DNA damage and cancer progression.<br>
• Melatonin has been shown to modulate apoptotic pathways by influencing mitochondrial permeability, cytochrome c release, and caspase activation.<br>
• In several cancer cell models, melatonin appears to promote apoptosis in malignant cells while sparing normal cells.<br>
<br>
The most well-known indolamines are serotonin and melatonin, both of which play significant roles in regulating mood, sleep, and overall mental well-being.<br>
<br>
Melatonin doses (20 mg to even 40 mg per day), often given as an adjuvant treatment for cancer.<br>
-The plasma half-life of melatonin is generally in the range of approximately 20 to 60 minutes<br>
-It has been suggested that administering melatonin at the appropriate phase of the circadian cycle may enhance its anti-tumor activity and reduce the side effects of chemotherapy and radiation therapy.<br>
<br>
Bio-availability: Oral melatonin has a low and variable bio-availability (often estimated between 3% and 33%), which means that only a fraction of the ingested dose reaches the bloodstream unchanged.<br>
<br>
For proOxidant effect might need >10uM, which might be 100mg dose (assuming 10% bio-availability) Might also be required X10 levels?<br>
-It remains unknown whether the pro-oxidant action exists in vivo. the vast majority of evidence indicates that melatonin is a potent antioxidant in vivo even at pharmacological concentrations.<br>
<br>
Interactions:<br>
-Melatonin could potentially add to the blood pressure–lowering properties of antihypertensive drugs.<br>
-Patients using insulin should be monitored for changes in blood glucose levels.<br>
-Melatonin might interact with drugs like warfarin, aspirin, or clopidogrel.(antiplatelet)<br>
<br>
<br>
Melatonin Cancer Relevant Pathways
<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>Circadian signaling (MT1 / MT2 receptors)</td>
<td>↓ proliferative circadian disruption</td>
<td>↑ circadian synchronization</td>
<td>Driver</td>
<td>Chronobiology normalization</td>
<td>Melatonin restores circadian control; cancer cells lose growth advantages from circadian dysregulation</td>
</tr>

<tr>
<td>2</td>
<td>Reactive oxygen species (ROS)</td>
<td>↓ ROS (baseline); context-dependent ↑ stress signaling</td>
<td>↓ ROS (strong buffering)</td>
<td>Driver</td>
<td>Antioxidant dominance with signaling effects</td>
<td>Melatonin is a potent direct and indirect antioxidant; cancer cells may still undergo stress-mediated growth inhibition</td>
</tr>

<tr>
<td>3</td>
<td>Mitochondrial function</td>
<td>↓ metabolic flexibility; ↑ apoptosis sensitivity</td>
<td>↑ mitochondrial efficiency</td>
<td>Secondary</td>
<td>Mitochondrial stabilization vs vulnerability</td>
<td>Melatonin improves mitochondrial function in normal cells while limiting metabolic plasticity in cancer cells</td>
</tr>

<tr>
<td>4</td>
<td>Estrogen signaling (ERα modulation)</td>
<td>↓ estrogen-driven proliferation</td>
<td>↔ minimal</td>
<td>Secondary</td>
<td>Hormone-dependent growth suppression</td>
<td>Particularly relevant in breast and hormone-responsive cancers</td>
</tr>

<tr>
<td>5</td>
<td>NF-κB signaling</td>
<td>↓ inflammatory / survival signaling</td>
<td>↓ inflammatory tone</td>
<td>Secondary</td>
<td>Anti-inflammatory modulation</td>
<td>NF-κB suppression contributes to reduced tumor-promoting inflammation</td>
</tr>

<tr>
<td>6</td>
<td>Cell cycle regulation</td>
<td>↓ proliferation / ↑ arrest</td>
<td>↔ spared</td>
<td>Phenotypic</td>
<td>Cytostatic growth control</td>
<td>Growth inhibition reflects upstream circadian and hormonal effects</td>
</tr>

<tr>
<td>7</td>
<td>Apoptosis sensitivity</td>
<td>↑ sensitivity to apoptosis (chemo/RT)</td>
<td>↓ apoptosis</td>
<td>Phenotypic</td>
<td>Therapy sensitization</td>
<td>Melatonin enhances response to chemo- and radiotherapy while protecting normal tissue</td>
</tr>

</table>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 2,   Catalase↑, 1,   GPx↑, 1,   GSH↓, 1,   ROS↑, 2,   ROS↝, 1,   SOD↑, 1,   Trx1↓, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,  

Core Metabolism/Glycolysis

Ac-histone H3↑, 1,   CAIX↑, 1,   GlucoseCon↓, 1,   Glycolysis↓, 1,   lactateProd↓, 1,   LDHA↓, 1,   MCT4↓, 1,   PDH↓, 1,   Warburg↓, 1,  

Cell Death

Akt↓, 2,   Apoptosis↑, 1,   Apoptosis↓, 1,   BAX↑, 3,   Bax:Bcl2↑, 1,   Bcl-2↓, 3,   Casp3↑, 2,   Casp9↑, 1,   DR5↑, 1,   JNK↑, 1,   MAPK↑, 1,   p27↑, 1,   PUMA↑, 1,   TumCD↑, 2,   YAP/TEAD↓, 1,  

Kinase & Signal Transduction

p‑p70S6↓, 1,  

Transcription & Epigenetics

KISS1↑, 1,   other↑, 1,   tumCV↓, 1,  

Protein Folding & ER Stress

CHOP↑, 1,   ER Stress↑, 1,   XBP-1↑, 1,  

DNA Damage & Repair

DNAdam↑, 1,   DNArepair↑, 2,   P53↑, 1,   PCNA↓, 1,  

Cell Cycle & Senescence

CDK4↓, 2,   CycB/CCNB1↓, 1,   cycD1/CCND1↓, 1,   P21↑, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

HDAC1↓, 1,   IGF-1R↓, 1,   PI3K↓, 1,   PTEN↑, 1,   STAT3↓, 1,   TAZ↓, 1,   TumCG↓, 2,   TumCG↑, 1,  

Migration

E-cadherin↑, 1,   Ki-67↓, 1,   MMP13↓, 1,   MMP2↓, 1,   MMP9↓, 1,   Treg lymp↓, 1,   TumCMig↓, 1,   TumCP↓, 3,   TumMeta↓, 1,   TumMeta↑, 1,   TXNIP↑, 1,   Vim↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   Hif1a↓, 2,   NO↓, 1,   VEGF↓, 3,  

Barriers & Transport

GLUT1↑, 1,   GLUT3↑, 1,  

Immune & Inflammatory Signaling

CD4+↑, 1,   COX2↓, 1,   FOXP3↓, 1,   IL1β↓, 1,   IL6↓, 2,   IL8↓, 1,   Inflam↑, 1,   Inflam↓, 1,   NF-kB↓, 1,   NK cell↑, 2,   PD-L1↓, 1,   T-Cell↑, 1,   Th1 response↑, 1,   TNF-α↓, 1,   TNF-α↑, 1,  

Cellular Microenvironment

i-pH↓, 1,  

Hormonal & Nuclear Receptors

RANKL↓, 1,  

Drug Metabolism & Resistance

BioAv↝, 1,   ChemoSen↑, 5,   Dose∅, 4,   Dose↑, 3,   Dose↓, 1,   eff↓, 2,   eff↑, 12,   RadioS↑, 1,   selectivity↑, 5,  

Clinical Biomarkers

IL6↓, 2,   Ki-67↓, 1,   PD-L1↓, 1,  

Functional Outcomes

AntiCan↑, 1,   AntiTum↑, 1,   chemoP↑, 3,   ChemoSideEff↓, 2,   neuroP↑, 2,   OS↑, 4,   OS∅, 1,   QoL↑, 2,   radioP↑, 5,   Remission↑, 3,   Risk↓, 2,   TumVol↓, 1,  
Total Targets: 116

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 3,   antiOx↓, 1,   Catalase↑, 1,   Copper↓, 1,   Fenton↓, 1,   GPx↑, 2,   GSH↑, 3,   GSR↑, 1,   HO-1↑, 1,   Iron↓, 1,   lipid-P↓, 1,   NRF2↑, 1,   ROS↓, 6,   SOD↑, 1,  

Mitochondria & Bioenergetics

ATP↑, 2,   mitResp↑, 2,  

Cell Death

Casp3↓, 1,   iNOS↓, 1,  

Proliferation, Differentiation & Cell State

CLOCK↝, 1,  

Migration

Ca+2↝, 1,   PKCδ?, 1,  

Angiogenesis & Vasculature

NO↓, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

IL1β↓, 1,   NF-kB↑, 1,  

Synaptic & Neurotransmission

ADAM10↑, 3,  

Drug Metabolism & Resistance

eff↑, 1,  

Clinical Biomarkers

BMD↑, 1,   NOS2↓, 1,  

Functional Outcomes

AntiTum↑, 1,   cardioP↑, 1,   CardioT↓, 1,   neuroP↑, 1,   RenoP↑, 1,   Sleep↑, 1,   toxicity∅, 2,   toxicity↓, 1,  
Total Targets: 37

Research papers

Year Title Authors PMID Link Flag
2021Impact of Andrographolide and Melatonin Combinatorial Drug Therapy on Metastatic Colon Cancer Cells and OrganoidsNeha ShardaPMC8182223https://pmc.ncbi.nlm.nih.gov/articles/PMC8182223/0
2022Effect of astaxanthin and melatonin on cell viability and DNA damage in human breast cancer cell linesAida Karimianhttps://www.sciencedirect.com/science/article/abs/pii/S00651281210015490
2017Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cellsAida Rodriguez-Garcia28391184https://pubmed.ncbi.nlm.nih.gov/28391184/0
2025Melatonin: beyond circadian regulation - exploring its diverse physiological roles and therapeutic potentialMin Jiahttps://www.sciencedirect.com/science/article/abs/pii/S10870792250007600
2024Antitumoral melatonin-loaded nanostructured lipid carriersLorena Bonilla-VidalPMC11457606https://pubmed.ncbi.nlm.nih.gov/39092498/0
2023Therapeutic Potential of Melatonin Counteracting Chemotherapy-Induced Toxicity in Breast Cancer Patients: A Systematic ReviewEva RamosPMC10303424https://pmc.ncbi.nlm.nih.gov/articles/PMC10303424/0
2023A Systematic Review of the Chemo/Radioprotective Effects of Melatonin against Ototoxic Adverse Effects Induced by Chemotherapy and RadiotherapyUsama Basirat37138418https://pubmed.ncbi.nlm.nih.gov/37138418/0
2022Melatonin Treatment Triggers Metabolic and Intracellular pH Imbalance in GlioblastomaBeatriz I Fernandez-GilPMC9654239https://pmc.ncbi.nlm.nih.gov/articles/PMC9654239/0
2021Melatonin in Cancer Treatment: Current Knowledge and Future OpportunitiesWamidh H TalibPMC8123278https://pmc.ncbi.nlm.nih.gov/articles/PMC8123278/0
2021Melatonin Downregulates PD-L1 Expression and Modulates Tumor Immunity in KRAS-Mutant Non-Small Cell Lung CancerYi-Chun ChaoPMC8199131https://pmc.ncbi.nlm.nih.gov/articles/PMC8199131/0
2020Utilizing Melatonin to Alleviate Side Effects of Chemotherapy: A Potentially Good Partner for Treating Cancer with AgeingZhiqiang MaPMC7260648https://pmc.ncbi.nlm.nih.gov/articles/PMC7260648/0
2018Therapeutic strategies of melatonin in cancer patients: a systematic review and meta-analysisYi WangPMC6231436https://pmc.ncbi.nlm.nih.gov/articles/PMC6231436/0
2017What is known about melatonin, chemotherapy and altered gene expression in breast cancer (Review)Carlos Mart�nez‑Campahttps://www.researchgate.net/publication/313583823_What_is_known_about_melatonin_chemotherapy_and_altered_gene_expression_in_breast_cancer_Review0
2016Melatonin as an antioxidant: under promises but over deliversRussel J Reiter27500468https://pubmed.ncbi.nlm.nih.gov/27500468/0
2015HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathwaysChongxi Fan26184924https://pubmed.ncbi.nlm.nih.gov/26184924/0
2014Melatonin: a well-documented antioxidant with conditional pro-oxidant actionsHong-Mei Zhang25060102https://pubmed.ncbi.nlm.nih.gov/25060102/0
2014Melatonin in patients with cancer receiving chemotherapy: a randomized, double-blind, placebo-controlled trialAumkhae Sookprasert25503168https://pubmed.ncbi.nlm.nih.gov/25503168/0
2012The efficacy and safety of melatonin in concurrent chemotherapy or radiotherapy for solid tumors: a meta-analysis of randomized controlled trialsYe-min Wang22271210https://pubmed.ncbi.nlm.nih.gov/22271210/0
2012Melatonin as adjuvant cancer care with and without chemotherapy: a systematic review and meta-analysis of randomized trialsDugald Seely22019490https://pubmed.ncbi.nlm.nih.gov/22019490/0
2009Melatonin down-regulates HIF-1 alpha expression through inhibition of protein translation in prostate cancer cellsJong-Wook Park19552765https://pubmed.ncbi.nlm.nih.gov/19552765/0
2020Target Enzymes Considered for the Treatment of Alzheimer's Disease and Parkinson's DiseaseNamdoo KimPMC7669341https://pmc.ncbi.nlm.nih.gov/articles/PMC7669341/0
2021The effects of melatonin and vitamin D3 on the gene expression of BCl-2 and BAX in MCF-7 breast cancer cell lineAbir A. Alamrohttps://www.sciencedirect.com/science/article/pii/S10183647203040060