tbResList Print — MSM Methylsulfonylmethane

Filters: qv=124, qv2=%, rfv=%

Product

MSM Methylsulfonylmethane
Description: <b>MSM (Methylsulfonylmethane)</b> is a naturally occurring organosulfur compound often used as a dietary supplement for its anti-inflammatory and antioxidant effects. While most well-known for joint health.<br>
-MSM is actually a metabolite of DMSO (dimethyl sulfoxide)
<pre>
-Generally Recognized as Safe Possible Interactions: aspirin, warfarin, NSAIDS<br>
-Supplement dosage: 500mg 2-3times/day<br>

-Anti-inflammatory: ↓NF-κB, ↓COX-2 and iNOS
-↓STAT3
-↓Cyclin D1 and CDK4, halting cell cycle progression.
-↓MMP-2, MMP-9, VEGF limiting invasion.




</pre>


<br>
<b>Methylsulfonylmethane (MSM) — Cancer-Oriented Time-Scale Flagged Pathway Table</b>
<!-- Methylsulfonylmethane (MSM) — Cancer-Oriented Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>NF-κB inflammatory transcription</td>
<td>NF-κB ↓; COX-2/cytokines ↓ (reported)</td>
<td>Inflammation tone ↓</td>
<td>R, G</td>
<td>Anti-inflammatory signaling</td>
<td>One of the most consistent findings in MSM studies is suppression of NF-κB-linked inflammatory signaling.</td>
</tr>

<tr>
<td>2</td>
<td>STAT3 signaling</td>
<td>STAT3 phosphorylation ↓ (reported)</td>
<td>↔</td>
<td>R, G</td>
<td>Pro-survival pathway suppression</td>
<td>STAT3 inhibition has been reported in some breast and other tumor models; relevance depends on tumor type.</td>
</tr>

<tr>
<td>3</td>
<td>PI3K / AKT pathway</td>
<td>AKT signaling ↓ (reported; model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth modulation</td>
<td>Observed in certain cell lines; should be presented as context-dependent rather than universal.</td>
</tr>

<tr>
<td>4</td>
<td>ROS / redox modulation</td>
<td>ROS ↓ (often); oxidative stress tone ↓</td>
<td>Oxidative injury ↓</td>
<td>P, R, G</td>
<td>Redox buffering</td>
<td>MSM is generally described as anti-oxidative/anti-inflammatory rather than pro-oxidant; not a ROS-amplifying therapy.</td>
</tr>

<tr>
<td>5</td>
<td>Apoptosis induction</td>
<td>Caspases ↑; Bax ↑; Bcl-2 ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Cell death signaling</td>
<td>Apoptotic effects reported in vitro; usually downstream of inflammatory and survival pathway suppression.</td>
</tr>

<tr>
<td>6</td>
<td>Cell-cycle regulation</td>
<td>Cell-cycle arrest ↑ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Observed in some cancer cell systems; mechanism linked to signaling changes.</td>
</tr>

<tr>
<td>7</td>
<td>Migration / invasion (MMPs)</td>
<td>MMP expression ↓; migration ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Reduction in metastasis markers reported in certain preclinical models.</td>
</tr>

<tr>
<td>8</td>
<td>ER stress modulation</td>
<td>Stress signaling modulation (context-dependent)</td>
<td>Proteostasis support</td>
<td>R, G</td>
<td>Stress pathway modulation</td>
<td>Less consistent than NF-κB effects; should be kept qualified.</td>
</tr>

<tr>
<td>9</td>
<td>Chemo-/radiation interaction (theoretical)</td>
<td>May reduce inflammatory toxicity; may blunt ROS-based therapies</td>
<td>Normal tissue protection possible</td>
<td>G</td>
<td>Adjunct positioning</td>
<td>Because MSM is anti-oxidative/anti-inflammatory, positioning with strong pro-oxidant therapies should be considered carefully.</td>
</tr>

<tr>
<td>10</td>
<td>Translation constraint</td>
<td>Human anti-cancer efficacy not established</td>
<td>Generally well tolerated in common supplement ranges</td>
<td>—</td>
<td>Evidence limitation</td>
<td>Evidence base is largely preclinical; clinical oncology data are limited.</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (early redox/inflammatory signaling shifts)</li>
<li><b>R</b>: 30 min–3 hr (NF-κB / STAT3 pathway modulation)</li>
<li><b>G</b>: &gt;3 hr (cell-cycle, apoptosis, invasion phenotype changes)</li>
</ul>

<br><br>


For Alzheimer's (AD):<br>
Methylsulfonylmethane (MSM) in neurobiology is primarily framed as an anti-inflammatory and redox-buffering molecule, not a direct amyloid-clearing or tau-targeting drug. Evidence is largely preclinical (cell + animal models). Position it as a neuroinflammation and oxidative stress modulator.<br>
<pre>
-Anti-inflammatory: ↓TNF-α, IL-1β, IL-6
-↓ROS, ↑GSH, ↓NO
-may reduce Aβ plaque burden and tau hyperphosphorylation indirectly
-improves memory in rodents
</pre>



<br>
<b>Methylsulfonylmethane (MSM) — Alzheimer’s Disease (AD) Time-Scale Flagged Pathway Table</b>
<!-- Methylsulfonylmethane (MSM) — Alzheimer’s Disease (AD) Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>AD / Brain Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Neuroinflammation (NF-κB / cytokine signaling)</td>
<td>Microglial activation ↓; IL-1β/TNF-α ↓ (reported)</td>
<td>R, G</td>
<td>Anti-inflammatory modulation</td>
<td>MSM’s most consistent neuro-relevant signal is suppression of NF-κB-driven inflammatory tone, which is implicated in AD progression.</td>
</tr>

<tr>
<td>2</td>
<td>Oxidative stress / redox buffering</td>
<td>Lipid peroxidation ↓; ROS tone ↓ (reported)</td>
<td>R, G</td>
<td>Neuroprotection (stress buffering)</td>
<td>MSM is generally described as antioxidant/anti-inflammatory rather than pro-oxidant; may help mitigate oxidative injury.</td>
</tr>

<tr>
<td>3</td>
<td>Mitochondrial function support</td>
<td>Mitochondrial stress ↓ (context-dependent)</td>
<td>R, G</td>
<td>Bioenergetic stabilization</td>
<td>Indirect support through reduced oxidative and inflammatory burden; not a primary mitochondrial activator.</td>
</tr>

<tr>
<td>4</td>
<td>ER stress / proteostasis modulation</td>
<td>UPR signaling ↓ (reported in stress models)</td>
<td>R, G</td>
<td>Proteostasis buffering</td>
<td>ER stress is relevant in AD pathology; MSM may attenuate stress signaling in some models.</td>
</tr>

<tr>
<td>5</td>
<td>Calcium homeostasis modulation</td>
<td>Excitotoxic stress ↓ (indirect)</td>
<td>P, R</td>
<td>Signal stabilization</td>
<td>Primarily indirect via inflammatory and oxidative stress reduction.</td>
</tr>

<tr>
<td>6</td>
<td>Aβ pathology (direct evidence)</td>
<td>Limited direct evidence of amyloid reduction</td>
<td>G</td>
<td>Indirect modulation</td>
<td>If effects occur, they are likely secondary to reduced oxidative stress and inflammation rather than direct amyloid targeting.</td>
</tr>

<tr>
<td>7</td>
<td>Tau phosphorylation</td>
<td>Limited direct mechanistic evidence</td>
<td>G</td>
<td>Indirect modulation</td>
<td>No strong mechanistic evidence that MSM directly modulates tau kinases; effects likely indirect.</td>
</tr>

<tr>
<td>8</td>
<td>Blood–brain barrier (BBB) considerations</td>
<td>CNS exposure plausible but not strongly quantified</td>
<td>R</td>
<td>PK consideration</td>
<td>Systemic exposure is good; CNS-specific pharmacokinetics are less clearly defined.</td>
</tr>

<tr>
<td>9</td>
<td>Cognitive outcome evidence</td>
<td>Limited direct human AD trial data</td>
<td>—</td>
<td>Translation constraint</td>
<td>Evidence base is largely mechanistic/preclinical; clinical AD efficacy not established.</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (early redox/inflammatory signaling shifts)</li>
<li><b>R</b>: 30 min–3 hr (microglial signaling + oxidative stress modulation)</li>
<li><b>G</b>: &gt;3 hr (phenotype-level neuroprotection effects)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Cell Death

Apoptosis↑, 1,   necrosis↑, 1,  

Transcription & Epigenetics

tumCV↓, 2,  

Protein Folding & ER Stress

HSP90↓, 1,  

Cell Cycle & Senescence

TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

IGF-1↓, 1,   IGF-1?, 1,   IGF-1R↓, 1,   STAT3↓, 1,   STAT5↓, 1,  

Migration

Brk/PTK6↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 1,   VEGF↓, 2,  
Total Targets: 13

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 1,   Catalase↑, 1,   GPx↑, 1,   GSH↑, 2,   HO-1↑, 1,   MDA↓, 1,   NRF2↑, 2,   ROS↓, 3,   SOD↑, 1,   Trx1↑, 1,   uricA↓, 1,  

Cell Death

iNOS↓, 1,  

Proliferation, Differentiation & Cell State

STAT↓, 1,  

Migration

Cartilage↑, 1,   TXNIP↓, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   IL1↓, 1,   IL1β↓, 1,   IL6↓, 1,   Inflam↓, 3,   NF-kB↓, 2,   TNF-α↓, 1,  

Cellular Microenvironment

NOX↓, 1,  

Synaptic & Neurotransmission

AChE↓, 1,   BDNF↑, 1,   p‑tau↓, 1,  

Protein Aggregation

Aβ↓, 1,   NLRP3↓, 2,  

Hormonal & Nuclear Receptors

ER(estro)↑, 1,  

Drug Metabolism & Resistance

Dose↝, 3,   eff↓, 1,   eff↑, 2,   Half-Life↝, 1,  

Clinical Biomarkers

IL6↓, 1,  

Functional Outcomes

AntiAge↑, 1,   memory↑, 1,   Mood↑, 1,   neuroP↑, 1,   Pain↓, 2,   QoL↑, 1,  
Total Targets: 41

Research papers

Year Title Authors PMID Link Flag
2020Modulatory effect of methylsulfonylmethane against BPA/γ-radiation induced neurodegenerative alterations in rats: Influence of TREM-2/DAP-12/Syk pathwayMohamed K Abdel-Rafei32926927https://pubmed.ncbi.nlm.nih.gov/32926927/0
2020Beauty from within: Oral administration of a sulfur-containing supplement methylsulfonylmethane improves signs of skin ageingNeelam Muizzuddin32083522https://pubmed.ncbi.nlm.nih.gov/32083522/0
2017Methylsulfonylmethane: Applications and Safety of a Novel Dietary SupplementMatthew ButawanPMC5372953https://pmc.ncbi.nlm.nih.gov/articles/PMC5372953/0
2017DMSO modulates CNS function in a preclinical Alzheimer's disease modelLorène Penazzihttps://www.sciencedirect.com/science/article/pii/S00283908163047490
2016The Influence of Methylsulfonylmethane on Inflammation-Associated Cytokine Release before and following Strenuous ExerciseMariè van der MerwePMC5097813https://pmc.ncbi.nlm.nih.gov/articles/PMC5097813/0
2012Methylsulfonylmethane Suppresses Breast Cancer Growth by Down-Regulating STAT3 and STAT5b PathwaysEun Joung LimPMC3317666https://pmc.ncbi.nlm.nih.gov/articles/PMC3317666/0
2005Efficacy of methylsulfonylmethane (MSM) in osteoarthritis pain of the knee: a pilot clinical trialL S Kim16309928https://pubmed.ncbi.nlm.nih.gov/163099280
2001Accumulation of methylsulfonylmethane in the human brain: identification by multinuclear magnetic resonance spectroscopyA Lin11641045https://pubmed.ncbi.nlm.nih.gov/11641045/0