tbResList Print — Myr Myricetin

Filters: qv=127, qv2=%, rfv=%

Product

Myr Myricetin
Description: <b>Myricetin</b> (MYR; 3,3′,4′,5,5′,7-hexahydroxyflavone) is a dietary flavonol polyphenol abundant in berries, tea, red wine, and some medicinal plants. Its dominant biology is redox-active modulation with context-dependent pro-oxidant capacity, ranking conceptually as: <br>
(1) ROS modulation (scavenging at low dose; pro-oxidant at higher dose or with metal redox cycling), <br>
(2) PI3K/Akt/mTOR and MAPK pathway inhibition, <br>
(3) NF-κB suppression and inflammatory signaling control, and <br>
(4) mitochondrial apoptosis induction (caspase activation, ΔΨm disruption). <br>
Bioavailability is limited by low aqueous solubility and rapid conjugation (glucuronidation/sulfation); reported human plasma levels after dietary exposure are typically sub-micromolar (<1 µM), while many in-vitro cancer studies use 10–100 µM, often exceeding realistic systemic exposure. Clinical evidence remains preclinical-dominant; no robust RCT-grade anticancer efficacy established. Redox duality implies potential chemo-sensitization in oxidative tumors but also theoretical protection of normal tissue.<br>
<br>
-Possible inhibitory effects on mammalian TrxRs (thioredoxin reductase)<br>


<br>
<h3>Myricetin (MYR) — Cancer-Relevant Pathway Effects</h3>
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells (↑/↓/↔ + qualifiers)</th>
<th>Normal Cells (↑/↓/↔ + qualifiers)</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>ROS Modulation</td>
<td>↑ ROS (high conc., pro-oxidant); ↓ ROS (low conc.)</td>
<td>↓ ROS (protective; dose-dependent)</td>
<td>P–R</td>
<td>Redox stress induction or buffering</td>
<td>Metal-chelating flavonol; can shift to pro-oxidant under tumor oxidative stress, enabling apoptosis.</td>
</tr>

<tr>
<td>2</td>
<td>PI3K/Akt/mTOR</td>
<td>↓ Akt phosphorylation (model-dependent)</td>
<td>↔ / mild inhibition</td>
<td>R–G</td>
<td>Anti-proliferative signaling</td>
<td>Common in breast, colon, and prostate cell models; often ≥10 µM required.</td>
</tr>

<tr>
<td>3</td>
<td>MAPK (ERK/JNK/p38)</td>
<td>↓ ERK; ↑ JNK/p38 (stress-activated; context)</td>
<td>↔ / adaptive stress response</td>
<td>R</td>
<td>Pro-apoptotic signaling shift</td>
<td>Promotes apoptotic cascades via stress kinase activation.</td>
</tr>

<tr>
<td>4</td>
<td>NF-κB</td>
<td>↓ NF-κB activation</td>
<td>↓ NF-κB (anti-inflammatory)</td>
<td>R–G</td>
<td>Anti-inflammatory modulation</td>
<td>May reduce tumor-promoting inflammation.</td>
</tr>

<tr>
<td>5</td>
<td>Mitochondrial Apoptosis (Caspase / ΔΨm)</td>
<td>↑ Bax; ↓ Bcl-2; ↑ caspase-3</td>
<td>↔ / protective at low dose</td>
<td>R–G</td>
<td>Intrinsic apoptosis activation</td>
<td>Frequently observed in leukemia and solid tumor models at supra-physiologic doses.</td>
</tr>

<tr>
<td>6</td>
<td>NRF2 Axis</td>
<td>↔ / mild ↑ (context-dependent)</td>
<td>↑ NRF2 (cytoprotection)</td>
<td>R–G</td>
<td>Adaptive antioxidant response</td>
<td>Less potent NRF2 activator than electrophilic isothiocyanates.</td>
</tr>

<tr>
<td>7</td>
<td>Ca²⁺ Signaling</td>
<td>↑ intracellular Ca²⁺ (mitochondrial stress; model-dependent)</td>
<td>↔</td>
<td>R</td>
<td>Apoptosis facilitation</td>
<td>Reported in some hepatoma and leukemia models.</td>
</tr>

<tr>
<td>8</td>
<td>Ferroptosis</td>
<td>↔ / potentially ↓ (iron-chelating)</td>
<td>↔</td>
<td>—</td>
<td>Lipid peroxidation modulation</td>
<td>Chelation may counter ferroptosis unless combined with pro-oxidant triggers.</td>
</tr>

<tr>
<td>9</td>
<td>Clinical Translation Constraint</td>
<td colspan="2">Low oral bioavailability; plasma &lt;1 µM; most anticancer studies use 10–100 µM</td>
<td>—</td>
<td>PK limitation</td>
<td>Conjugation and rapid metabolism limit systemic tumor exposure.</td>
</tr>

</table>

<div><b>TSF Legend:</b> P: 0–30 min &nbsp; R: 30 min–3 hr &nbsp; G: &gt;3 hr</div>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Ferroptosis↑, 1,   GPx4↓, 1,   GSH↓, 1,   Iron↑, 1,   MDA↑, 1,   NOX4↑, 1,   NRF2↓, 1,   ROS↑, 2,   SIRT3↑, 1,   TrxR↓, 2,  

Mitochondria & Bioenergetics

MEK↓, 1,   MKK4↓, 1,   Raf↓, 1,  

Core Metabolism/Glycolysis

IDO1↓, 1,  

Cell Death

Akt↓, 1,   p‑Akt↓, 1,   Bax:Bcl2↑, 2,   BMP2↓, 1,   cl‑Casp3↑, 1,   Ferroptosis↑, 1,   MAPK↓, 1,   p38↓, 1,  

Autophagy & Lysosomes

TumAuto↑, 1,  

DNA Damage & Repair

p‑PARP↑, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

EMT↓, 1,   ERK↓, 1,   p‑ERK↓, 1,   PI3K↓, 1,  

Migration

F-actin↓, 1,   MMP2↓, 1,   MMP9↓, 1,   SMAD3↓, 1,   TumCMig↓, 1,  

Angiogenesis & Vasculature

EGFR↓, 1,   VEGF↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   PD-L1↓, 1,  

Drug Metabolism & Resistance

eff↑, 1,   eff↓, 1,  

Clinical Biomarkers

EGFR↓, 1,   PD-L1↓, 1,  
Total Targets: 43

Pathway results for Effect on Normal Cells

Cell Death

Akt↑, 1,  

Proliferation, Differentiation & Cell State

PI3K↑, 1,  
Total Targets: 2

Research papers

Year Title Authors PMID Link Flag
2024Myricetin Induces Ferroptosis and Inhibits Gastric Cancer Progression by Targeting NOX4Yi Lu38483540https://pubmed.ncbi.nlm.nih.gov/38483540/0
2023Myricetin suppresses TGF-β-induced epithelial-to-mesenchymal transition in ovarian cancerHui-Wen YangPMC10665490https://pmc.ncbi.nlm.nih.gov/articles/PMC10665490/0
2022Myricetin inhibits interferon-γ-induced PD-L1 and IDO1 expression in lung cancer cellsYu-Chi Chen35120895https://pubmed.ncbi.nlm.nih.gov/35120895/0
2022Myricetin: targeting signaling networks in cancer and its implication in chemotherapyZeeshan JavedPMC9336020https://pmc.ncbi.nlm.nih.gov/articles/PMC9336020/0
2020Thioredoxin-dependent system. Application of inhibitorsAnna Jastrząbhttps://www.tandfonline.com/doi/full/10.1080/14756366.2020.1867121#abstract0
2006Inhibition of Mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activityJun Lu16618767https://pubmed.ncbi.nlm.nih.gov/16618767/0