tbResList Print — NarG Naringin

Filters: qv=128, qv2=%, rfv=%

Product

NarG Naringin
Description: <b>Flavonoid glycoside</b>. Responsible for the bitterness of grapefruit.<br>
Naringin is a flavonoid glycoside predominantly found in citrus fruits such as grapefruit and oranges. It is known for its antioxidant, anti-inflammatory, and potential anticancer properties.<br>
It is hydrolyzed in vivo to naringenin, which exhibits antioxidant and anti-inflammatory activities and modulates signaling pathways (e.g., Nrf2 and NF-κB). In preclinical cancer models, naringin/naringenin is associated with cell-cycle arrest, apoptosis, and reduced invasion/metastasis, often linked to upstream modulation of survival pathways (PI3K/AKT) and stress MAPKs. Oral systemic exposure is limited due to metabolism and conjugation.<br>
-Antioxidant Activity<br>
-Induction of Apoptosis<br>
-Cell Cycle Arrest (often G1 or G2/M)<br>
-Anti-inflammatory Effects<br>
<br>
-**a natural bioenhancer(effects vary) and reported to enhance the bioavailability of drugs by inhibiting cytochrome P450 (CYP3A4 especially grape fruit juice) and P-glycoprotein (P-gp). Naringin/naringenin can inhibit CYP3A4 and P-glycoprotein, contributing to grapefruit–drug interactions and potentially increasing exposure of certain medications.<br>
-Usually paired with other bioflavonoids such as quercetin, hesperidin and rutin.<br>
<br>
-Mainly obtained from grapefruit<br>
-Including enhanced solubility, improved bioavailability and targeted delivery.<br>
-Antioxidant<br>
-Inhibition of CYP19(weak/modest). Naringin suppresses the PI3K/AKT signalling pathway<br>
-Wnt/β-catenin, PI3K/Akt, NF-ĸB, and TGF-β pathways<br>
-Up-regulation of adenosine monophosphate-activated protein kinase (AMPK), and inhibition of gluconeogenesis<br>
-Antioxidant effects, by modulating reactive oxygen species (ROS) levels and increasing superoxide dismutase (SOD)<br>
-Naringenin can reduce carcinogenesis through pleiotropic processes such as antioxidative, apoptotic-inducing ROS generation, and cell cycle arrest<br>
-Revealed new mechanisms underlying the hypolipidemic effects of naringin and naringenin, including regulation of lipid digestion, reverse cholesterol transport, and low-density lipoprotein receptor expression<br>
-Low bioavailability (approximately 8.8%) when administered orally. Bioavailability: citrus flavonoid glycosides are hydrolyzed in the gut; systemic plasma levels are often much lower than in vitro MICs.<br>
<br>


<!-- Naringin — Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Nrf2/ARE antioxidant response</td>
<td>Stress adaptation modulation (context-dependent)</td>
<td>Nrf2 ↑; antioxidant enzymes ↑</td>
<td>R, G</td>
<td>Endogenous antioxidant upshift</td>
<td>Naringin and its aglycone naringenin are widely reported to activate Nrf2, elevate HO-1 and other antioxidant defenses, and reduce oxidative injury in many models.</td>
</tr>

<tr>
<td>2</td>
<td>NF-κB inflammatory signaling</td>
<td>NF-κB ↓; pro-inflammatory cytokines ↓ (reported)</td>
<td>Inflammation tone ↓</td>
<td>R, G</td>
<td>Anti-inflammatory signaling</td>
<td>Consistent evidence shows naringin/naringenin reduces pro-inflammatory signaling and cytokine expression in tumor and non-tumor contexts.</td>
</tr>

<tr>
<td>3</td>
<td>PI3K/AKT/mTOR survival axis</td>
<td>PI3K/AKT ↓ (reported; model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth/survival modulation</td>
<td>Modulation of survival pathways is observed in various cancer‐cell studies, but effects vary by cell type and context.</td>
</tr>

<tr>
<td>4</td>
<td>Cell cycle control (Cyclins/CDKs)</td>
<td>Cell-cycle arrest ↑ (G1/S or G2/M; reported)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Often reported as reduced proliferation and cell cycle arrest following upstream signaling changes.</td>
</tr>

<tr>
<td>5</td>
<td>Intrinsic apoptosis (mitochondrial/caspase linked)</td>
<td>Apoptosis ↑; caspase activation ↑ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Execution of cell death</td>
<td>Observed in many in vitro models, usually downstream of signaling modulation and stress pathways.</td>
</tr>

<tr>
<td>6</td>
<td>MAPK re-wiring (ERK / JNK / p38)</td>
<td>MAPK modulation (context-dependent)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Stress/mitogenic signaling adjustment</td>
<td>MAPK effects vary by assay and cell type; avoid fixed up/down arrows without a specific citation.</td>
</tr>

<tr>
<td>7</td>
<td>Invasion / metastasis programs (MMPs/EMT)</td>
<td>MMPs ↓; migration/invasion ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Downstream phenotype changes reported in some models; linked to NF-κB/MAPK modulation.</td>
</tr>

<tr>
<td>8</td>
<td>Angiogenesis signaling (VEGF & related)</td>
<td>Angiogenic outputs ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Later phenotype outcomes; direction is often model-dependent.</td>
</tr>

<tr>
<td>9</td>
<td>Reactive oxygen species modulation</td>
<td>Redox buffering; ROS direction variable</td>
<td>↔</td>
<td>P, R, G</td>
<td>Redox modulation (context-dependent)</td>
<td>Naringin is classically antioxidant; ROS changes in cancer models vary and are not reliably pro-oxidant under typical conditions.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability / metabolism constraint</td>
<td>Systemic exposure limited; rapid metabolism/conjugation</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>Naringin’s glycoside form is hydrolyzed to naringenin; phase II conjugates circulate. Native systemic levels are often low compared with in vitro effective concentrations.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid biochemical/signaling interactions)</li>
<li><b>R</b>: 30 min–3 hr (acute signaling and transcription modulation)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 1,   antiOx↓, 1,   CYP1A1↑, 1,   CYP1A1↓, 1,   GSH↓, 1,   lipid-P↓, 1,   ROS↑, 6,   ROS↝, 1,   SOD↑, 1,  

Mitochondria & Bioenergetics

EGF↓, 1,   e-Raf↓, 1,  

Core Metabolism/Glycolysis

GLO-I↓, 1,   LDL↓, 1,  

Cell Death

p‑Akt↓, 2,   Akt↓, 4,   Apoptosis↑, 2,   Bak↑, 1,   BAX↑, 2,   Bcl-2↓, 1,   Casp↑, 1,   Casp3↑, 2,   Casp8↑, 1,   MAPK↓, 1,   MAPK↑, 1,   Mcl-1↓, 1,   p27↑, 1,   p38↓, 1,   survivin↓, 2,  

Transcription & Epigenetics

tumCV↓, 2,  

Protein Folding & ER Stress

CHOP↑, 1,   p‑eIF2α↑, 1,   ER Stress↑, 1,  

Autophagy & Lysosomes

TumAuto↑, 1,  

DNA Damage & Repair

P53↑, 1,   PARP1↑, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,   P21↑, 1,   P21↓, 1,   TumCCA↑, 5,  

Proliferation, Differentiation & Cell State

EMT↓, 2,   ERK↓, 1,   GSK‐3β↓, 1,   p‑GSK‐3β↓, 1,   mTOR↓, 2,   p‑mTOR↓, 1,   NOTCH↓, 1,   PI3K↓, 4,   RAS↓, 1,   STAT↓, 1,   STAT3↓, 1,   TumCG↓, 1,   Wnt↓, 1,  

Migration

AntiAg↑, 1,   E-cadherin↓, 1,   MMP2↓, 3,   MMP9↓, 2,   Snail↓, 1,   TGF-β↓, 1,   TIMP1↑, 1,   TIMP2↑, 1,   Treg lymp↓, 1,   TumCMig↓, 1,   TumCP↓, 2,   Twist↓, 1,   uPA↓, 1,   VCAM-1↓, 1,   Vim↓, 1,   β-catenin/ZEB1↓, 1,   β-catenin/ZEB1↑, 1,   p‑β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 2,   EGFR↓, 1,   VEGF↓, 2,  

Barriers & Transport

P-gp↓, 2,  

Immune & Inflammatory Signaling

COX2↓, 2,   CRP↓, 1,   IL10↑, 1,   IL1β↓, 1,   IL6↓, 1,   INF-γ↓, 1,   Inflam↓, 1,   JAK↓, 1,   NF-kB↓, 2,   TNF-α↓, 2,  

Synaptic & Neurotransmission

AChE↓, 2,  

Hormonal & Nuclear Receptors

CYP19↓, 2,  

Drug Metabolism & Resistance

BioAv↑, 3,   BioAv↝, 1,   BioAv↓, 2,   BioEnh↑, 2,   ChemoSen↑, 2,   Dose∅, 1,   eff↑, 2,   Half-Life∅, 1,   P450↓, 1,  

Clinical Biomarkers

CRP↓, 1,   EGFR↓, 1,   GutMicro↝, 1,   GutMicro↑, 1,   IL6↓, 1,  

Functional Outcomes

AntiCan↑, 3,   AntiCan↓, 1,   AntiTum↑, 2,   cardioP↑, 1,   chemoP↑, 1,   hepatoP↑, 1,   neuroP↑, 1,   OS↑, 1,   toxicity∅, 1,   TumVol↓, 1,   TumW↓, 1,  
Total Targets: 111

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↓, 1,  

Core Metabolism/Glycolysis

CREB↑, 1,  

Cell Death

Apoptosis↓, 1,   Bax:Bcl2↓, 1,   Casp3↓, 1,  

Transcription & Epigenetics

other↓, 2,  

Proliferation, Differentiation & Cell State

neuroG↑, 1,  

Angiogenesis & Vasculature

VEGF↑, 1,  

Immune & Inflammatory Signaling

Inflam↓, 1,  

Synaptic & Neurotransmission

AChE↓, 1,   BDNF↑, 3,  

Drug Metabolism & Resistance

BioAv↝, 1,   BioEnh↑, 1,   eff↑, 1,  

Functional Outcomes

cognitive↑, 1,   memory↑, 1,   Mood↑, 1,   motorD↑, 2,   neuroP↑, 1,  
Total Targets: 19

Research papers

Year Title Authors PMID Link Flag
2025The Effect of Naringin on Cognitive-Behavioral Functions, CREB/BDNF Signaling, Cholinergic Activity, and Neuronal Density in the Hippocampus of an MSG-Induced Obesity Rat ModelBahareh Alijanihttps://link.springer.com/article/10.1007/s12640-025-00733-70
2024Effect of 2-Week Naringin Supplementation on Neurogenesis and BDNF Levels in Ischemia–Reperfusion Model of RatsEsen YilmazPMC10924031https://pmc.ncbi.nlm.nih.gov/articles/PMC10924031/0
2024Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeuticsDeena Elsorihttps://pmc.ncbi.nlm.nih.gov/articles/PMC11217354/0
2024Naringeninhttps://go.drugbank.com/drugs/DB034670
2023Naringin: Nanotechnological Strategies for Potential Pharmaceutical ApplicationsSoledad Ravettihttps://www.mdpi.com/1999-4923/15/3/8630
2023A Narrative Review on Naringin and Naringenin as a Possible Bioenhancer in Various Drug-Delivery FormulationsPradeepti Ganeshhttps://www.tandfonline.com/doi/full/10.4155/tde-2023-00860
2022Naringenin suppresses epithelial ovarian cancer by inhibiting proliferation and modulating gut microbiotaCaiji Linhttps://www.sciencedirect.com/science/article/pii/S09447113220049010
2022Naringenin: A potential flavonoid phytochemical for cancer therapyMahzad Motallebihttps://www.sciencedirect.com/science/article/abs/pii/S00243205220045200
2022Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: An update on bioavailability, pharmacokinetics, and mechanismsYang Yanghttps://www.sciencedirect.com/science/article/abs/pii/S09552863220003890
2021Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancerDina M El-KershPMC8007834https://pmc.ncbi.nlm.nih.gov/articles/PMC8007834/0
2021A Systematic Review of the Preventive and Therapeutic Effects of Naringin Against Human MalignanciesMaryam Ghanbari-MovahedPMC8039459https://pmc.ncbi.nlm.nih.gov/articles/PMC8039459/0
2021Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative reviewZahra Memarianihttps://www.sciencedirect.com/science/article/abs/pii/S10436618203157230
2020Naringenin sensitizes lung cancer NCI-H23 cells to radiation by downregulation of akt expression and metastasis while promoting apoptosisTaranga Jyoti Baruahhttps://phcog.com/article/view/2020/16/70/229-2350
2020Naringin induces endoplasmic reticulum stress-mediated apoptosis, inhibits β-catenin pathway and arrests cell cycle in cervical cancer cellsRuyin Lin32343512https://pubmed.ncbi.nlm.nih.gov/32343512/0
2019Bioenhancing effects of naringin on atorvastatinVenkatesh SamaPMC8957237https://pmc.ncbi.nlm.nih.gov/articles/PMC8957237/0
2018Naringenin Attenuated Prostate Cancer Invasion via Reversal of Epithelial-to-Mesenchymal Transition and Inhibited uPA ActivityKuei-Yang Han30504386https://pubmed.ncbi.nlm.nih.gov/30504386/0
2013Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathwayHongzhong Lihttps://www.sciencedirect.com/science/article/abs/pii/S03784274130020630
2012Polyphenols as acetylcholinesterase inhibitors: Structural specificity and impact on human diseaseLuisa Bivar Roseirohttps://www.researchgate.net/publication/236022012_Polyphenols_as_acetylcholinesterase_inhibitors_Structural_specificity_and_impact_on_human_disease0
2012Naringin treatment improves functional recovery by increasing BDNF and VEGF expression, inhibiting neuronal apoptosis after spinal cord injuryWei Rong22453521https://pubmed.ncbi.nlm.nih.gov/22453521/0
2011Bioenhancers from mother nature and their applicability in modern medicineGurpreet Kaur RandhawaPMC3657948https://pmc.ncbi.nlm.nih.gov/articles/PMC3657948/0
2000Intake of flavonoids and lung cancerL Le Marchand10639518https://pubmed.ncbi.nlm.nih.gov/10639518/0
2021Food-derived Acetylcholinesterase Inhibitors as Potential Agents against Alzheimer’s DiseaseRotimi E. Alukohttps://iadns.onlinelibrary.wiley.com/doi/10.2991/efood.k.210318.0010