tbResList Print — NCL Niclosamide (Niclocide)

Filters: qv=13, qv2=%, rfv=%

Product

NCL Niclosamide (Niclocide)
Description: <p><b>Niclosamide</b> (brand: <b>Niclocide</b>; NIC) — salicylanilide anthelmintic (tapeworm drug) being investigated for <b>drug repurposing</b> in oncology due to multi-pathway signaling inhibition and mitochondrial/energy-stress effects. Sources: Rx/essential-medicines antiparasitic; multiple repurposing reviews.</p>
<p><b>Primary mechanisms (conceptual rank):</b><br>
1) Mitochondrial energy disruption (uncoupling / ATP depletion; AMPK-linked energy stress)<br>
2) Wnt/β-catenin inhibition (LRP6/β-catenin axis; stemness/CSC phenotypes)<br>
3) STAT3 inhibition (anti-survival transcription)<br>
4) mTORC1 suppression (growth/anabolism ↓; autophagy context)<br>
5) NF-κB / Notch modulation (context-dependent; anti-inflammatory/anti-survival)</p>
<p><b>Bioavailability / PK relevance:</b> <b>Poor solubility and low/variable oral systemic exposure</b> are major constraints; formulation work (e.g., solution approaches) is used to improve reproducibility/systemic availability.</p>
<p><b>In-vitro vs oral exposure:</b> Many anticancer effects are observed at concentrations that can exceed typical systemic exposure from standard oral dosing (qualifier: <i>high concentration only</i> for direct tumor cytotoxicity in many models).</p>
<p><b>Clinical evidence status:</b> Approved antiparasitic; oncology remains <b>preclinical + early/small human repurposing studies</b> (no established oncology RCT approval/indication).</p>





<h3>Niclosamide (Niclocide) — Cancer vs Normal Cell Pathway Map</h3>
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Mitochondrial energy metabolism (OXPHOS uncoupling / ATP)</td>
<td>↓ ATP (primary; dose-dependent)</td>
<td>↓ ATP (high concentration only)</td>
<td>P/R</td>
<td>Energy stress → growth inhibition</td>
<td>Core pharmacology includes mitochondrial/energy disruption; can trigger downstream stress signaling.</td>
</tr>

<tr>
<td>2</td>
<td>Wnt/β-catenin (LRP6/β-catenin; CSC/stemness)</td>
<td>↓ (model-dependent)</td>
<td>↔</td>
<td>R/G</td>
<td>Reduced proliferation / stemness programs</td>
<td>Frequently highlighted in repurposing; relevant in Wnt-driven or CSC-enriched contexts.</td>
</tr>

<tr>
<td>3</td>
<td>STAT3</td>
<td>↓</td>
<td>↔</td>
<td>R/G</td>
<td>Anti-survival transcription blockade</td>
<td>Often positioned as a central anti-tumor axis and combination-sensitization mechanism.</td>
</tr>

<tr>
<td>4</td>
<td>mTORC1 / growth-anabolism</td>
<td>↓</td>
<td>↔ / ↓ (stress-dependent)</td>
<td>R/G</td>
<td>Reduced anabolic signaling</td>
<td>Frequently co-reported with Wnt/STAT3 inhibition; can couple to autophagy responses.</td>
</tr>

<tr>
<td>5</td>
<td>AMPK (energy-stress sensor)</td>
<td>↑ (context-dependent)</td>
<td>↑ (stress-dependent)</td>
<td>R</td>
<td>Catabolic shift / growth suppression</td>
<td>Often downstream of ATP depletion; can antagonize mTORC1 signaling.</td>
</tr>

<tr>
<td>6</td>
<td>NF-κB</td>
<td>↓ (context-dependent)</td>
<td>↓ (context-dependent)</td>
<td>R/G</td>
<td>Reduced inflammatory / survival programs</td>
<td>Not always dominant; varies by model and inflammatory dependence.</td>
</tr>

<tr>
<td>7</td>
<td>Notch</td>
<td>↓ (model-dependent)</td>
<td>↔</td>
<td>G</td>
<td>Differentiation / stemness modulation</td>
<td>Reported in repurposing literature; often secondary to broader stress/signaling effects.</td>
</tr>

<tr>
<td>8</td>
<td>ROS</td>
<td>↑ (dose-dependent)</td>
<td>↔ / ↑ (high concentration only)</td>
<td>P/R</td>
<td>Oxidative stress contribution</td>
<td>Can be downstream of mitochondrial disruption; may contribute to cytotoxicity or resistance depending on context.</td>
</tr>

<tr>
<td>9</td>
<td>NRF2 (protective vs resistance role)</td>
<td>↔ / ↑ (adaptive; context-dependent)</td>
<td>↔ / ↑ (adaptive)</td>
<td>R/G</td>
<td>Stress-response adjustment</td>
<td>Typically secondary; may reduce sensitivity if antioxidant adaptation dominates.</td>
</tr>

<tr>
<td>10</td>
<td>Autophagy</td>
<td>↑ or ↓ (context-dependent)</td>
<td>↔ / ↑ (stress-dependent)</td>
<td>R/G</td>
<td>Stress adaptation vs cell-death coupling</td>
<td>Often described as a stress-response phenotype; can be cytostatic or pro-death depending on tumor context.</td>
</tr>

<tr>
<td>11</td>
<td>Ca²⁺ signaling</td>
<td>↔ (stress-related)</td>
<td>↔</td>
<td>P/R</td>
<td>No primary axis</td>
<td>Not a canonical primary target; include only if a specific model shows ER/mitochondrial Ca²⁺ disruption.</td>
</tr>

<tr>
<td>12</td>
<td>Clinical Translation Constraint</td>
<td>↓ (constraint)</td>
<td>↓ (constraint)</td>
<td>—</td>
<td>Exposure variability + formulation dependence</td>
<td>Poor solubility/low systemic exposure and high variability with oral dosing drive repurposing limitations; solution/formulation approaches aim to increase systemic availability.</td>
</tr>
</table>

<p><b>TSF legend:</b> P: 0–30 min; R: 30 min–3 hr; G: &gt;3 hr</p>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

ROS↑, 2,  

Mitochondria & Bioenergetics

ETC↑, 1,   MEK↓, 1,   mitResp↓, 1,  

Core Metabolism/Glycolysis

AMPK↑, 1,   cMyc↓, 2,   Glycolysis↓, 1,   NADH:NAD↓, 1,   TCA↑, 1,   Warburg↓, 1,  

Cell Death

Apoptosis↑, 3,   Bcl-xL↓, 1,   DR5↑, 1,   JNK↑, 1,   Myc↓, 1,  

Transcription & Epigenetics

cJun↓, 1,   tumCV↓, 1,  

DNA Damage & Repair

P53↑, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 2,   E2Fs↓, 2,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

ALDH1A1↓, 1,   cFos↓, 1,   CSCs↓, 1,   Diff↑, 1,   EMT↓, 1,   ERK↓, 1,   LRP6↓, 2,   mTOR↓, 2,   mTORC1↓, 1,   NOTCH↓, 3,   RAS↓, 1,   STAT3↓, 4,   TumCG↓, 4,   Wnt↓, 2,   Wnt/(β-catenin)↓, 2,  

Migration

KRAS↓, 1,   MMP9↓, 1,   TumCMig↓, 1,   TumCP↓, 2,   β-catenin/ZEB1↓, 2,  

Angiogenesis & Vasculature

EGFR↓, 1,   HIF-1↓, 1,   Hif1a↓, 1,   VEGF↓, 1,  

Immune & Inflammatory Signaling

IL6↓, 1,   JAK1↓, 1,   NF-kB↓, 2,   PD-1↓, 1,   PD-L1↓, 1,  

Cellular Microenvironment

pH↓, 1,  

Protein Aggregation

PP2A↑, 1,  

Drug Metabolism & Resistance

BioAv↝, 4,   BioAv↑, 2,   ChemoSen↑, 2,   Dose↝, 2,   Dose↑, 1,   eff↑, 2,   Half-Life↓, 1,   RadioS↑, 2,  

Clinical Biomarkers

EGFR↓, 1,   IL6↓, 1,   KRAS↓, 1,   Myc↓, 1,   PD-L1↓, 1,  

Functional Outcomes

toxicity↓, 3,  
Total Targets: 66

Pathway results for Effect on Normal Cells

Total Targets: 0

Research papers

Year Title Authors PMID Link Flag
2025Clinical safety and pharmacokinetics of a novel oral niclosamide formulation compared with marketed niclosamide chewing tablets in healthy volunteers: A three-part randomized, double-blind, placebo-controlled trialNiklas WaltherPMC11856320https://pmc.ncbi.nlm.nih.gov/articles/PMC11856320/0
2022The magic bullet: NiclosamideHaowen Jianghttps://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.1004978/full0
2020Niclosamide inhibits ovarian carcinoma growth by interrupting cellular bioenergeticsFugen ShangguanPMC7150452https://pmc.ncbi.nlm.nih.gov/articles/PMC7150452/0
2017Niclosamide enhances the antitumor effects of radiation by inhibiting the hypoxia-inducible factor-1α/vascular endothelial growth factor signaling pathway in human lung cancer cellsMei XiangPMC5530112https://pmc.ncbi.nlm.nih.gov/articles/PMC5530112/0
2017Niclosamide: Beyond an antihelminthic drugWei ChenPMC5628105https://pmc.ncbi.nlm.nih.gov/articles/PMC5628105/0
2015Niclosamide suppresses migration of hepatocellular carcinoma cells and downregulates matrix metalloproteinase-9 expressionMINORU TOMIZAWAPMC4665752https://pmc.ncbi.nlm.nih.gov/articles/PMC4665752/0
2014Inhibition of Wnt/β-catenin pathway by niclosamide: a therapeutic target for ovarian cancerRebecca C Arend24736023https://pubmed.ncbi.nlm.nih.gov/24736023/0
2010Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling PathwayXiaomei RenPMC4007964https://pmc.ncbi.nlm.nih.gov/articles/PMC4007964/0