tbResList Print — PL Piperlongumine

Filters: qv=134, qv2=%, rfv=%

Product

PL Piperlongumine
Description: <b>Piperlongumine</b> (also called Piplartine), an alkaloid from long pepper fruit<br>
-Piperlongumine is a bioactive alkaloid derived from the long pepper (Piper longum) <br>
– Piperlongumine has been shown to selectively increase ROS levels in cancer cells.<br>
-NLRP3 inhibitor?<br>
-TrxR inhibitor (major antioxidant system) to increase ROS in cancer cells<br>
-ic50 cancer cells maybe 2-10uM, normal cells maybe exceeding 20uM.<br>
<br>
Available from mcsformulas.com <br>
-(Long Pepper, 500mg/Capsule)- 1 capsule 3 times daily with food<br>
-Piperlongumine Pro Liposomal, 40 mg-take 1 capsule daily with plenty of water, after a meal<br>

<br>
-Note <a href="tbResList.php?qv=134&tsv=1109&wNotes=on&exSp=open">half-life</a> 30–60 minutes<br>
<a href="tbResList.php?qv=134&tsv=792&wNotes=on&exSp=open">BioAv</a> poor aqueous solubility and bioavailability
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- induce
<a href="tbResList.php?qv=134&tsv=275&wNotes=on">ROS</a> production in cancer cells likely at any dose. Effect on normal cells is inconclusive.<br>
- ROS↑ related:
<a href="tbResList.php?qv=134&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=134&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=134&tsv=459&wNotes=on">UPR↑</a>,
<!--<a href="tbResList.php?qv=134&tsv=356&wNotes=on">GRP78↑</a>,-->
<!--<a href="tbResList.php?qv=134&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>, ,-->
<a href="tbResList.php?qv=134&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=134&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=134&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=134&tsv=239&wNotes=on">cl-PARP↑</a>,
<!--<a href="tbResList.php?qv=134&wNotes=on&word=HSP">HSP↓</a>, -->
<a href="tbResList.php?qv=134&wNotes=on&word=Prx">Prx</a>,<!-- mitochondrial antioxidant enzyme-->

<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Lowers some AntiOxidant markers/ defense in Cancer Cells:
<a href="tbResList.php?qv=134&tsv=226&wNotes=on&word=NRF2"> but mostly raises NRF2 </a>(raises antiO defense),
<a href="tbResList.php?qv=134&word=Trx&wNotes=on">TrxR↓</a>(*important),<!-- major antioxidant system -->
<!--<a href="tbResList.php?qv=134&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>,-->
<a href="tbResList.php?qv=134&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=134&tsv=46&wNotes=on">Catalase↓</a>
<a href="tbResList.php?qv=134&tsv=597&wNotes=on">HO1↓</a>
<a href="tbResList.php?qv=134&wNotes=on&word=GPx">GPx↓</a>
<br>

- Very little indication of raising
<a href="tbResList.php?qv=134&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<!--<a href="tbResList.php?qv=134&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,-->
<!--<a href="tbResList.php?qv=134&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,-->
<!--<a href="tbResList.php?qv=134&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,-->
<a href="tbResList.php?qv=134&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<!--<a href="tbResList.php?qv=134&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,-->
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=134&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=134&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=134&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=134&tsv=235&wNotes=on&word=p38">conversely p38↑</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=134&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>,
<a href="tbResList.php?qv=134&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=134&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=134&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=134&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=134&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=134&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=134&tsv=96&wNotes=on">EMT↓</a>,
<!--<a href="tbResList.php?qv=134&tsv=204&wNotes=on">MMPs↓</a>,-->
<a href="tbResList.php?qv=134&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=134&tsv=203&wNotes=on">MMP9↓</a>,
<!--<a href="tbResList.php?qv=134&tsv=308&wNotes=on">TIMP2</a>,-->
<!--<a href="tbResList.php?qv=134&tsv=415&wNotes=on">IGF-1↓</a>,-->
<!--<a href="tbResList.php?qv=134&tsv=428&wNotes=on">uPA↓</a>, -->
<a href="tbResList.php?qv=134&tsv=334&wNotes=on">VEGF↓</a>,
<!--<a href="tbResList.php?qv=134&tsv=1284&wNotes=on">ROCK1↓</a>, -->
<!--<a href="tbResList.php?qv=134&tsv=110&wNotes=on">FAK↓</a>, -->
<!--<a href="tbResList.php?qv=134&tsv=273&wNotes=on">RhoA↓</a>, -->
<a href="tbResList.php?qv=134&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?qv=134&tsv=79&wNotes=on">CXCR4↓</a>,
<!--<a href="tbResList.php?qv=134&tsv=1247&wNotes=on">SDF1↓</a>,-->
<!--<a href="tbResList.php?qv=134&tsv=304&wNotes=on">TGF-β↓</a>,-->
<!--<a href="tbResList.php?qv=134&tsv=719&wNotes=on">α-SMA↓</a>,-->
<a href="tbResList.php?qv=134&tsv=105&wNotes=on">ERK↓</a>
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=134&tsv=140&wNotes=on">HDAC↓</a>(few reports),
<a href="tbResList.php?qv=134&tsv=85&wNotes=on">DNMT1↓</a>,
<a href="tbResList.php?qv=134&tsv=86&wNotes=on">DNMT3A↓</a>,
<a href="tbResList.php?qv=134&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=134&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=134&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=134&tsv=506&wNotes=on">Sp proteins↓</a>,
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=134&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=134&tsv=73&wNotes=on">cyclin D1↓</a>,
<!--<a href="tbResList.php?qv=134&tsv=378&wNotes=on">cyclin E↓</a>,-->
<a href="tbResList.php?qv=134&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=134&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?qv=134&tsv=895&wNotes=on">CDK6↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=134&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=134&tsv=324&wNotes=on">TumCI↓</a>,
<!--<a href="tbResList.php?qv=134&tsv=110&wNotes=on">FAK↓</a>,-->
<a href="tbResList.php?qv=134&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=134&tsv=96&wNotes=on">EMT↓</a>,
<!--<a href="tbResList.php?qv=134&tsv=1117&wNotes=on">TOP1↓</a>,-->
<!--<a href="tbResList.php?qv=134&tsv=657&wNotes=on">TET1↓</a>,-->
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- small indication of inhibiting
<a href="tbResList.php?qv=134&tsv=129&wNotes=on">glycolysis</a>
<!--/<a href="tbResList.php?qv=134&tsv=947&wNotes=on">Warburg Effect</a> and
<a href="tbResList.php?qv=134&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> -->:
<a href="tbResList.php?qv=134&tsv=143&wNotes=on">HIF-1α↓</a>,
<!--<a href="tbResList.php?qv=134&tsv=772&wNotes=on">PKM2↓</a>, -->
<a href="tbResList.php?qv=134&tsv=35&wNotes=on">cMyc↓</a>,
<!--<a href="tbResList.php?qv=134&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>, -->
<a href="tbResList.php?qv=134&tsv=906&wNotes=on">LDH↓</a>,
<!--<a href="tbResList.php?qv=134&tsv=175&wNotes=on&word=LDH">LDHA↓</a>, -->
<a href="tbResList.php?qv=134&tsv=773&wNotes=on">HK2↓</a>,
<!--
<a href="tbResList.php?qv=134&wNotes=on&word=PFK">PFKs↓</a>,
<a href="tbResList.php?qv=134&wNotes=on&word=PDK">PDKs↓</a>,
<a href="tbResList.php?qv=134&tsv=847&wNotes=on">ECAR↓</a>,
<a href="tbResList.php?qv=134&tsv=230&wNotes=on">OXPHOS↓</a>,
<a href="tbResList.php?qv=134&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=134&tsv=1278&wNotes=on">Glucose↓</a>,
<a href="tbResList.php?qv=134&tsv=623&wNotes=on">GlucoseCon↓</a>
-->
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=134&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=134&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=134&tsv=143&wNotes=on">HIF-1α↓</a>,
<!--<a href="tbResList.php?qv=134&wNotes=on&word=NOTCH">Notch↓</a>,-->
<!--<a href="tbResList.php?qv=134&wNotes=on&word=FGF">FGF↓</a>,-->
<!--<a href="tbResList.php?qv=134&tsv=361&wNotes=on">PDGF↓</a>,-->
<a href="tbResList.php?qv=134&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<!--<a href="tbResList.php?qv=134&&wNotes=on&word=ITG">Integrins↓</a>, -->
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓,
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=134&tsv=795&wNotes=on">CSC↓</a>,
<a href="tbResList.php?qv=134&tsv=524&wNotes=on">CK2↓</a>,
<a href="tbResList.php?qv=134&tsv=141&wNotes=on">Hh↓</a>,
<a href="tbResList.php?qv=134&tsv=434&wNotes=on">GLi↓</a>,
<a href="tbResList.php?qv=134&tsv=124&wNotes=on">GLi1↓</a>,
<a href="tbResList.php?qv=134&tsv=677&wNotes=on">CD133↓</a>,
<a href="tbResList.php?qv=134&tsv=655&wNotes=on">CD24↓</a>,
<a href="tbResList.php?qv=134&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=134&tsv=357&wNotes=on">n-myc↓</a>,
<a href="tbResList.php?qv=134&tsv=656&wNotes=on">sox2↓</a>,
<a href="tbResList.php?qv=134&tsv=222&wNotes=on">notch2↓</a>,
<a href="tbResList.php?qv=134&tsv=1024&wNotes=on">nestin↓</a>,
<a href="tbResList.php?qv=134&tsv=508&wNotes=on">OCT4↓</a>,
<br>
-->

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=134&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=134&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=134&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=134&wNotes=on&word=STAT">STAT↓</a>,
<!--<a href="tbResList.php?qv=134&tsv=377&wNotes=on">Wnt↓</a>, -->
<a href="tbResList.php?qv=134&tsv=342&wNotes=on">β-catenin↓</a>,
<!--<a href="tbResList.php?qv=134&tsv=9&wNotes=on">AMPK</a>, -->
<!--<a href="tbResList.php?qv=134&tsv=475&wNotes=on">α↓</a>, -->
<a href="tbResList.php?qv=134&tsv=105&wNotes=on">ERK↓</a>,
<!--<a href="tbResList.php?qv=134&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=134&tsv=168&wNotes=on">JNK</a>,

<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=134&tsv=1106&wNotes=on">chemo-sensitization</a>,
<!--<a href="tbResList.php?qv=134&tsv=1171&wNotes=on">chemoProtective</a>, -->
<a href="tbResList.php?qv=134&tsv=1107&wNotes=on">RadioSensitizer</a>,
<!--<a href="tbResList.php?qv=134&tsv=1185&wNotes=on">RadioProtective</a>, -->
<a href="tbResList.php?qv=134&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=134&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=134&tsv=557&wNotes=on">Cognitive</a>,
<!--<a href="tbResList.php?qv=134&tsv=1175&wNotes=on">Renoprotection</a>, -->
<a href="tbResList.php?qv=134&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=134&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=134&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a>
<br>





<table>
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>Transformation-linked oxidative stress dependence</td>
<td>↑ ROS</td>
<td>Cancer-selective stress overload</td>
<td>Landmark study: piperlongumine selectively kills cells with a cancer genotype by elevating ROS; antioxidant rescue blocks killing</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/21753854/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>GSTP1 redox buffering (glutathione S-transferase π)</td>
<td>↓ GSTP1 function / ↑ ROS</td>
<td>Disables antioxidant buffering</td>
<td>Biochemical/structural work describing GSTP1 as a piperlongumine target and linking PL exposure to increased ROS and decreased GSH</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC5217671/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>ER stress / UPR via PRDX4 (Peroxiredoxin 4)</td>
<td>↓ PRDX4 activity / ↑ ER stress</td>
<td>Proteotoxic stress, preferential glioma killing</td>
<td>Piperlongumine inactivates PRDX4, exacerbates ER stress, increases ROS, and preferentially kills high-grade glioma cells</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/24879047/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial disruption + stress MAPK (JNK)</td>
<td>↓ ΔΨm / ↑ JNK</td>
<td>Mitochondrial apoptosis signaling</td>
<td>Example mechanistic paper: piperlongumine induces ROS-mediated mitochondrial disruption and activates JNK associated with apoptosis</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/29543494/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>DNA damage response</td>
<td>↑ DNA damage</td>
<td>Checkpoint activation, death signaling</td>
<td>Piperlongumine elevates ROS and causes DNA damage in pancreatic cancer models; antioxidant reverses DNA damage and killing</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/25530945/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>STAT3 signaling</td>
<td>↓ STAT3 activity (↓ pSTAT3 / ↓ STAT3 function)</td>
<td>Reduced survival &amp; stem-like growth</td>
<td>Drug-repositioning study identifies piperlongumine as a direct STAT3 inhibitor; shows reduced STAT3 activation and mammosphere inhibition</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/24681959/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB DNA binding / ↓ nuclear translocation</td>
<td>Reduced inflammatory &amp; anti-apoptotic transcription</td>
<td>Piperlongumine down-regulates NF-κB DNA-binding activity and decreases nuclear translocation of p50/p65 in prostate cancer cells</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/24151226/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>PI3K–AKT–mTOR pathway</td>
<td>↓ PI3K/AKT/mTOR signaling</td>
<td>Growth suppression; promotes apoptosis/autophagy</td>
<td>Paper explicitly reporting piperlongumine induces apoptosis and autophagy through inhibition of PI3K/Akt/mTOR in lung cancer cells</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/26246196/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>p38 signaling (stress kinase)</td>
<td>↑ p38 signaling</td>
<td>Stress response; autophagy involvement</td>
<td>Mechanistic study showing piperlongumine induces autophagy by targeting p38 signaling</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/24091667/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>10</td>
<td>Cell cycle regulation</td>
<td>↑ G2/M arrest</td>
<td>Proliferation block</td>
<td>Demonstrates piperlongumine induces G2/M cell-cycle arrest in MCF-7 cells (cell cycle distribution shift shown)</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/31739520/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>11</td>
<td>EMT / migration / invasion</td>
<td>↓ EMT / ↓ migration &amp; invasion</td>
<td>Anti-metastatic phenotype</td>
<td>Reports piperlongumine inhibits TGF-β–induced EMT and reduces migration/invasion in cancer cells</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/28734931/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>12</td>
<td>Ferroptosis (iron-dependent oxidative death)</td>
<td>↑ ferroptosis</td>
<td>Non-apoptotic killing modality</td>
<td>Shows piperlongumine-induced cancer cell death is inhibited by ferroptosis inhibitors and iron chelation, supporting ferroptosis involvement</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/29393418/" target="_blank">(ref)</a></td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Catalase↓, 1,   Catalase∅, 1,   Ferroptosis↑, 2,   Ferroptosis↓, 1,   GPx↓, 1,   GPx1∅, 1,   GPx4↓, 1,   GSH↓, 18,   GSH?, 1,   GSSG↑, 3,   GSTP1/GSTπ↝, 1,   GSTP1/GSTπ↓, 2,   GSTs↓, 1,   H2O2↑, 3,   HO-1↑, 4,   Keap1↝, 1,   Keap1↓, 1,   lipid-P↑, 4,   MDA↑, 1,   MDA↓, 1,   NQO1↑, 1,   NRF2↑, 5,   NRF2↓, 1,   Prx4↓, 1,   Prx4↑, 1,   PrxII↓, 1,   ROS↑, 40,   ROS?, 1,   mt-ROS↑, 1,   SOD↑, 1,   SOD∅, 1,   SOD1↑, 2,   SOD2↑, 1,   Trx↓, 2,   Trx1↓, 1,   TrxR↓, 9,   TrxR1↓, 3,   TrxR1?, 1,  

Metal & Cofactor Biology

FTH1↓, 1,  

Mitochondria & Bioenergetics

mitResp↓, 1,   MMP↓, 3,   mtDam↑, 1,  

Core Metabolism/Glycolysis

cMyc↓, 4,   FBPase↑, 1,   GAPDH↓, 1,   Glycolysis↓, 3,   HK2↓, 2,   IDO1↓, 1,   LDH↓, 1,   NAD↑, 1,  

Cell Death

Akt↓, 5,   p‑Akt↓, 3,   Apoptosis↑, 10,   BAX↓, 1,   BAX↑, 2,   Bcl-2↓, 7,   Bcl-xL↓, 1,   BIM↑, 1,   cl‑Casp1↑, 1,   cl‑Casp1↓, 1,   proCasp3↓, 1,   cl‑Casp3↑, 1,   cl‑Casp3∅, 1,   Casp3↑, 5,   Casp7↑, 2,   Casp8↑, 1,   Casp9↑, 2,   cl‑Casp9↑, 1,   Cyt‑c↑, 2,   Ferroptosis↑, 2,   Ferroptosis↓, 1,   GSDMD↑, 1,   JNK↑, 4,   MAPK↑, 2,   Mcl-1↓, 1,   MDM2↓, 1,   p38↑, 6,   PUMA↑, 1,   Pyro↑, 1,   survivin↓, 4,   TumCD↑, 1,  

Kinase & Signal Transduction

p‑HER2/EBBR2↓, 1,   Sp1/3/4↓, 5,  

Transcription & Epigenetics

other⇅, 1,   SETBP1↓, 1,   tumCV↓, 3,  

Protein Folding & ER Stress

CHOP↑, 5,   p‑eIF2α↑, 1,   ER Stress↑, 7,   p‑PERK↑, 1,   UPR↑, 1,   XBP-1↑, 1,  

DNA Damage & Repair

DNAdam↑, 6,   DNMT1↑, 1,   GADD45A↑, 1,   P53↑, 2,   cl‑PARP↑, 4,   cl‑PARP∅, 1,   PARP↑, 1,   PCNA↓, 2,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK2↓, 1,   CDK4↓, 2,   CycB/CCNB1↓, 1,   cycD1/CCND1↓, 4,   P21↑, 5,   p‑RB1↓, 1,   RB1↓, 1,   TumCCA↑, 15,  

Proliferation, Differentiation & Cell State

cFos↓, 1,   cMET↓, 3,   EMT↓, 3,   ERK↑, 1,   ERK↓, 1,   p‑ERK↓, 1,   FOXM1↓, 1,   p‑FOXO3↓, 1,   GSK‐3β↓, 1,   HDAC↓, 1,   mTOR↓, 5,   Nanog↓, 1,   OCT4↓, 1,   PI3K↓, 1,   PTEN↑, 1,   RAS↓, 1,   SOX2↓, 1,   STAT1↓, 1,   STAT3↓, 4,   STAT6↓, 1,   TOP2↓, 1,   TumCG↓, 4,  

Migration

AntiAg↑, 2,   AP-1↓, 1,   Ca+2↑, 1,   CLDN1↓, 1,   E-cadherin↑, 2,   F-actin↓, 1,   FOSB↑, 1,   Ki-67↓, 2,   MMP13↓, 1,   MMP2↓, 2,   MMP3↓, 1,   MMP9↓, 3,   N-cadherin↓, 2,   Slug↓, 3,   SMAD4↑, 1,   Snail↓, 1,   SOX4↑, 1,   TumCI↓, 6,   TumCMig↓, 6,   TumCP↓, 7,   TumMeta↓, 4,   Twist↓, 2,   TXNIP↑, 1,   Vim↓, 1,   Zeb1↓, 2,   ZO-1↓, 1,   β-catenin/ZEB1↓, 2,  

Angiogenesis & Vasculature

angioG↓, 2,   ATF4↑, 2,   ATF4↝, 1,   EGFR↓, 2,   EPR↓, 1,   HIF2a↓, 1,   NO↑, 2,   NO↓, 1,   VEGF↓, 1,  

Barriers & Transport

P-gp↓, 1,  

Immune & Inflammatory Signaling

ASC↑, 1,   COX2↓, 1,   CXCR4↓, 1,   ICAM-1↓, 1,   IKKα↑, 1,   IKKα↓, 2,   IL1β↓, 1,   IL6↓, 3,   IL8↓, 1,   Inflam↓, 4,   JAK1↓, 1,   JAK2↓, 1,   MCP1↓, 1,   NF-kB↓, 4,   NF-kB↑, 1,   PGE2↓, 1,  

Protein Aggregation

NLRP3↑, 1,   NLRP3↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,   CDK6↓, 2,  

Drug Metabolism & Resistance

BioAv↓, 4,   BioAv↑, 4,   BioEnh↑, 2,   ChemoSen↑, 5,   Dose↝, 2,   Dose↓, 1,   eff↓, 10,   eff↑, 14,   eff↝, 1,   Half-Life?, 1,   Half-Life↝, 1,   MDR1↓, 1,   MRP1↓, 1,   RadioS↑, 3,   selectivity↑, 19,  

Clinical Biomarkers

AR↓, 1,   EGFR↓, 2,   FOXM1↓, 1,   p‑HER2/EBBR2↓, 1,   IL6↓, 3,   Ki-67↓, 2,   LDH↓, 1,  

Functional Outcomes

AntiCan↑, 1,   AntiTum↑, 1,   cardioP↑, 1,   K17↓, 1,   memory↑, 1,   neuroP↑, 3,   OS↑, 1,   toxicity↑, 1,   toxicity∅, 1,   toxicity↓, 2,   TumW↓, 2,  
Total Targets: 221

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

GSH↑, 2,   GSSG∅, 1,   GSTA1↓, 1,   HO-1↑, 1,   lipid-P↓, 1,   NQO1↑, 1,   NRF2↑, 1,   NRF2⇅, 1,   Prx4∅, 1,   ROS∅, 2,   ROS↑, 1,   ROS↓, 1,   Trx↑, 1,   TrxR↑, 1,  

Core Metabolism/Glycolysis

SIRT1↑, 1,  

Cell Death

iNOS↓, 1,  

Transcription & Epigenetics

other↝, 1,  

Migration

MMP13↓, 1,   MMP3↑, 1,   VCAM-1↓, 1,   α-tubulin↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   Hif1a↓, 2,   NO↓, 1,   VEGF↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   ICAM-1↓, 1,   IL17↓, 1,   IL1β↓, 1,   IL22↓, 1,   IL6↓, 1,   Inflam↓, 4,   PGE2↓, 1,   TNF-α↓, 1,  

Protein Aggregation

Aβ↓, 1,   NLRP3↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 3,   BioAv↓, 1,   eff↑, 1,   eff↓, 1,   Half-Life↑, 1,  

Clinical Biomarkers

IL6↓, 1,  

Functional Outcomes

cognitive↑, 1,   hepatoP↑, 1,   neuroP↑, 2,   toxicity↓, 2,  
Total Targets: 46

Research papers

Year Title Authors PMID Link Flag
2025Piperlongumine overcomes osimertinib resistance via governing ubiquitination-modulated Sp1 turnoverRuirui Wanghttps://pmc.ncbi.nlm.nih.gov/articles/PMC11949057/0
2025Piperlongumine induces ROS accumulation to reverse resistance of 5-FU in human colorectal cancer via targeting TrxRJi Zhou40054719https://pubmed.ncbi.nlm.nih.gov/40054719/0
2024Piperlongumine based nanomedicine impairs glycolytic metabolism in triple negative breast cancer stem cells through modulation of GAPDH & FBP1Priya Singh38091824https://pubmed.ncbi.nlm.nih.gov/38091824/0
2024Synergistic Dual Targeting of Thioredoxin and Glutathione Systems Irrespective of p53 in Glioblastoma Stem CellsFatemeh Jamalihttps://www.mdpi.com/2076-3921/13/10/12010
2024Piperlongumine inhibits antioxidant enzymes, increases ROS levels, induces DNA damage and G2/M cell cycle arrest in breast cell linesAdrivanio Baranoski38279841https://pubmed.ncbi.nlm.nih.gov/38279841/0
2024The metabolites from traditional Chinese medicine targeting ferroptosis for cancer therapyYu Tanghttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1280779/full0
2024Piperlongumine and its derivatives against cancer: A recent update and future prospectiveShasank S. Swainhttps://onlinelibrary.wiley.com/doi/10.1002/ardp.202300768?af=R0
2024Piperlongumine inhibits esophageal squamous cell carcinoma in vitro and in vivo by triggering NRF2/ROS/TXNIP/NLRP3-dependent pyroptosisYue Cuihttps://www.sciencedirect.com/science/article/abs/pii/S00092797240002180
2023Piperlongumine: the amazing amide alkaloid from Piper in the treatment of breast cancerShatakshi Mitrahttps://link.springer.com/article/10.1007/s00210-023-02673-50
2023Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical EvidenceZohra Nausheen NizamiPMC10295724https://pmc.ncbi.nlm.nih.gov/articles/PMC10295724/0
2023Natural borneol serves as an adjuvant agent to promote the cellular uptake of piperlongumine for improving its antiglioma efficacyMenglu Wang36493999https://pubmed.ncbi.nlm.nih.gov/36493999/0
2023A strategy to improve the solubility and bioavailability of the insoluble drug piperlongumine through albumin nanoparticlesSen Niuhttps://www.pjps.pk/uploads/2023/03/1679394499.pdf0
2022Piperlongumine mitigates LPS-induced inflammation and lung injury via targeting MD2/TLR4Yelin Tanghttps://www.researchgate.net/publication/366043142_Piperlongumine_mitigates_LPS-induced_inflammation_and_lung_injury_via_targeting_MD2TLR40
2022Natural product piperlongumine inhibits proliferation of oral squamous carcinoma cells by inducing ferroptosis and inhibiting intracellular antioxidant capacityZi-Qian WangPMC10643964https://pmc.ncbi.nlm.nih.gov/articles/PMC10643964/0
2022Piperlongumine Is an NLRP3 Inhibitor With Anti-inflammatory ActivityJie ShiPMC8790537https://pmc.ncbi.nlm.nih.gov/articles/PMC8790537/0
2022Piperlongumine alleviates corneal allograft rejection via suppressing angiogenesis and inflammationXiangyu Fanhttps://pmc.ncbi.nlm.nih.gov/articles/PMC9802119/0
2022Piperlongumine Inhibits Thioredoxin Reductase 1 by Targeting Selenocysteine Residues and Sensitizes Cancer Cells to ErastinYijia YangPMC9030593https://pmc.ncbi.nlm.nih.gov/articles/PMC9030593/0
2021Piperlongumine Analogs Promote A549 Cell Apoptosis through Enhancing ROS GenerationAi-Ling SunPMC8198376https://pmc.ncbi.nlm.nih.gov/articles/PMC8198376/0
2021The Natural Alkaloid Piperlongumine Inhibits Metastatic Activity and Epithelial-to-Mesenchymal Transition of Triple-Negative Mammary Carcinoma CellsLeanne M Delaney33019824https://pubmed.ncbi.nlm.nih.gov/33019824/0
2021Overview of piperlongumine analogues and their therapeutic potentialPeng Zhuhttps://www.sciencedirect.com/science/article/abs/pii/S02235234210032020
2021Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer CellsFang-Ping KungPMC8428232https://pmc.ncbi.nlm.nih.gov/articles/PMC8428232/0
2021The promising potential of piperlongumine as an emerging therapeutics for cancerDey Paramahttps://www.explorationpub.com/uploads/Article/A100249/100249.pdf0
2020Application of longinamide in inhibiting the activation of NLRP3 inflammasomehttps://patents.google.com/patent/CN114073693A/en0
2020Piperlongumine Acts as an Immunosuppressant by Exerting Prooxidative Effects in Human T Cells Resulting in Diminished TH17 but Enhanced Treg DifferentiationJie LiangPMC7303365https://pmc.ncbi.nlm.nih.gov/articles/PMC7303365/0
2020Biological and physical approaches on the role of piplartine (piperlongumine) in cancerTiago Henriquehttps://www.nature.com/articles/s41598-020-78220-60
2020Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cellsLaxminarayan Rawathttps://www.sciencedirect.com/science/article/pii/S07533322203043520
2020Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammationSowjanya ThatikondaPMC6954241https://pmc.ncbi.nlm.nih.gov/articles/PMC6954241/0
2020The Synergistic Effect of Piperlongumine and Sanguinarine on the Non-Small Lung CancerMarta Hałas-WiśniewskaPMC7411589https://pmc.ncbi.nlm.nih.gov/articles/PMC7411589/0
2020Piperlonguminine and Piperine Analogues as TrxR Inhibitors that Promote ROS and Autophagy and Regulate p38 and Akt/mTOR SignalingPeng Zhu33026807https://pubmed.ncbi.nlm.nih.gov/33026807/0
2020Design, synthesis, and biological evaluation of a novel indoleamine 2,3-dioxigenase 1 (IDO1) and thioredoxin reductase (TrxR) dual inhibitorQing-Zhu Fan33113415https://pubmed.ncbi.nlm.nih.gov/33113415/0
2020Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agentSurya Kant Tripathhttps://www.sciencedirect.com/science/article/abs/pii/S10436618203078300
2019Piperlongumine Induces Reactive Oxygen Species (ROS)-dependent Downregulation of Specificity Protein Transcription FactorsKeshav KarkiPMC6357769https://pmc.ncbi.nlm.nih.gov/articles/PMC6357769/0
2019Piperlongumine, a Novel TrxR1 Inhibitor, Induces Apoptosis in Hepatocellular Carcinoma Cells by ROS-Mediated ER StressQianqian ZhangPMC6802400https://pmc.ncbi.nlm.nih.gov/articles/PMC6802400/0
2019Piperlongumine increases sensitivity of colorectal cancer cells to radiation: Involvement of ROS production via dual inhibition of glutathione and thioredoxin systemsHui Wang30790679https://pubmed.ncbi.nlm.nih.gov/30790679/0
2019Increased Expression of FosB through Reactive Oxygen Species Accumulation Functions as Pro-Apoptotic Protein in Piperlongumine Treated MCF7 Breast Cancer CellsJin-Ah ParkPMC6939652https://pmc.ncbi.nlm.nih.gov/articles/PMC6939652/0
2019Piperlongumine Induces Cell Cycle Arrest via Reactive Oxygen Species Accumulation and IKKβ Suppression in Human Breast Cancer CellsChang Hee Jeonghttps://www.researchgate.net/publication/337268185_Piperlongumine_Induces_Cell_Cycle_Arrest_via_Reactive_Oxygen_Species_Accumulation_and_IKKb_Suppression_in_Human_Breast_Cancer_Cells0
2018Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosisYuki Yamaguchihttps://www.researchgate.net/publication/322834071_Piperlongumine_rapidly_induces_the_death_of_human_pancreatic_cancer_cells_mainly_through_the_induction_of_ferroptosis0
2018Piperlongumine activates Sirtuin1 and improves cognitive function in a murine model of Alzheimer’s diseaseJun Gohttps://www.sciencedirect.com/science/article/abs/pii/S17564646183004710
2017Piperlongumine suppresses bladder cancer invasion via inhibiting epithelial mesenchymal transition and F-actin reorganizationDi Liuhttps://www.sciencedirect.com/science/article/abs/pii/S0006291X173203990
2017Piperlongumine attenuates IL-1β-induced inflammatory response in chondrocytesYifeng Huhttps://www.alliedacademies.org/articles/piperlongumine-attenuates-il1betainduced-inflammatory-response-in-chondrocytes-9907.html0
2017Piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathwaysHongfei WangPMC5774427https://pmc.ncbi.nlm.nih.gov/articles/PMC5774427/0
2016Preformulation Studies on PiperlongumineAlhassan Aodahhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.01517070
2016Piperlongumine for enhancing oral bioavailability and cytotoxicity of docetaxel in triple negative breast cancerKetan Patelhttps://pmc.ncbi.nlm.nih.gov/articles/PMC4706797/0
2016Preparation of piperlongumine-loaded chitosan nanoparticles for safe and efficient cancer therapyJayachandran Venkatesanhttps://www.researchgate.net/publication/306126947_Preparation_of_piperlongumine-loaded_chitosan_nanoparticles_for_safe_and_efficient_cancer_therapy0
2016Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancerPeng Zou26963494https://pubmed.ncbi.nlm.nih.gov/26963494/0
2016Designing piperlongumine-directed anticancer agents by an electrophilicity-based prooxidant strategy: A mechanistic investigationWen-Jing Yan27233942https://pubmed.ncbi.nlm.nih.gov/27233942/0
2015Synthesis of Piperlongumine Analogues and Discovery of Nuclear Factor Erythroid 2‑Related Factor 2 (Nrf2) Activators as Potential Neuroprotective AgentsJianguo Fanghttps://www.academia.edu/21621417/Synthesis_of_Piperlongumine_Analogues_and_Discovery_of_Nuclear_Factor_Erythroid_2_Related_Factor_2_Nrf2_Activators_as_Potential_Neuroprotective_Agents0
2015Heme Oxygenase-1 Determines the Differential Response of Breast Cancer and Normal Cells to PiperlongumineHa-Na LeePMC4400307https://pmc.ncbi.nlm.nih.gov/articles/PMC4400307/0
2015Synthesis of Piperlongumine Analogues and Discovery of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Activators as Potential Neuroprotective Agents Shoujiao Penghttps://pubs.acs.org/doi/10.1021/acs.jmedchem.5b004100
2015Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOPYong ChenPMC4467445https://pmc.ncbi.nlm.nih.gov/articles/PMC4467445/0
2014Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cellsTae Hyong KimPMC4165421https://pmc.ncbi.nlm.nih.gov/articles/PMC4165421/0
2014Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancerJong-Lyel RohPMC4253430https://pmc.ncbi.nlm.nih.gov/articles/PMC4253430/0
2014Piperlongumine Inhibits Migration of Glioblastoma Cells via Activation of ROS-Dependent p38 and JNK Signaling PathwaysQian Rong LiuPMC4055624https://pmc.ncbi.nlm.nih.gov/articles/PMC4055624/0
2013Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activationJu Mei Liuhttps://www.sciencedirect.com/science/article/abs/pii/S0006291X130102920
2013Piperlongumine induces autophagy by targeting p38 signalingY Wanghttps://www.nature.com/articles/cddis20133580
2011Selective killing of cancer cells by a small molecule targeting the stress response to ROSLakshmi Rajhttps://www.nature.com/articles/nature101670