tbResList Print — PACs Proanthocyanidins

Filters: qv=136, qv2=%, rfv=%

Product

PACs Proanthocyanidins
Description: <p><b>Proanthocyanidins (PACs; condensed tannins)</b> = oligomeric/polymeric flavan-3-ols (e.g., catechin/epicatechin units); abundant in grape seed, cocoa, cranberry, apple skin, pine bark. Degree of polymerization (DP) influences bioactivity and absorption.<br>
<b>Primary mechanisms (conceptual rank):</b><br>
1) Redox modulation → direct ROS scavenging + metal chelation (Fe²⁺/Cu²⁺).<br>
2) NRF2 activation → endogenous antioxidant enzymes (HO-1, NQO1, GCLC).<br>
3) Anti-inflammatory signaling → ↓ NF-κB / ↓ COX-2 / ↓ cytokines.<br>
4) Anti-proliferative / pro-apoptotic signaling in cancer (MAPK, PI3K/Akt modulation; dose-dependent).<br>
5) Anti-angiogenic / anti-metastatic effects (VEGF, MMPs; model-dependent).<br>
<b>PK / bioavailability:</b> monomers/low-DP oligomers absorbed; higher-DP polymers poorly absorbed but metabolized by gut microbiota to phenolic acids; plasma parent PAC levels modest vs many in-vitro studies.<br>
<b>In-vitro vs systemic exposure:</b> many cancer studies use ≥10–100 µM equivalents; achievable circulating levels typically lower and largely conjugated/metabolite-driven.<br>
<b>Clinical evidence status:</b> strongest human data in vascular/cardiometabolic endpoints; oncology evidence largely preclinical/adjunct.</p>


<b>Polyphenols</b> found in cranberry, blueberry, and grape seeds.<br>
<br>
Proanthocyanidin B2 (PB2) is a type of dimer flavonoid that is found in grape seed, pine bark, wine, and tea leaves [17]. PB2 has been shown to possess various bioactivities, including anti-oxidant, anti-inflammation, and anti-obesity activities, and it has also shown efficacy in the treatment of cancer, cardiovascular disease, type 2 diabetes, ulcerative colitis, as well as acute liver injury.
<a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC6525465/"> PKM2 is the target of proanthocyanidin B2 </a><br>
<br>
PB2 also suppressed glucose uptake and lactate levels via the direct inhibition of the key glycolytic enzyme, PKM2.<br>



<br>
<h3>Proanthocyanidins (PACs) — Cancer-Relevant Pathways</h3>
<table>
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>ROS tone / redox balance</td>
<td>↓ (low–mod dose); ↑ (high concentration only)</td>
<td>↓</td>
<td>P→R</td>
<td>Antioxidant; metal chelation</td>
<td>Catechol-rich structure scavenges radicals; pro-oxidant shift reported at high doses in tumors (model-dependent).</td>
</tr>

<tr>
<td>2</td>
<td>NRF2 axis</td>
<td>↑ (context-dependent)</td>
<td>↑</td>
<td>R→G</td>
<td>Endogenous antioxidant induction</td>
<td>↑ HO-1/NQO1; protective in normal tissue; may support tumor stress resistance (context-dependent).</td>
</tr>

<tr>
<td>3</td>
<td>NF-κB / inflammatory signaling</td>
<td>↓</td>
<td>↓</td>
<td>R→G</td>
<td>Anti-inflammatory</td>
<td>Reduces cytokines, COX-2; anti-tumor microenvironment effect plausible.</td>
</tr>

<tr>
<td>4</td>
<td>PI3K/Akt / MAPK pathways</td>
<td>↓ proliferation (model-dependent)</td>
<td>↔</td>
<td>R→G</td>
<td>Growth signaling attenuation</td>
<td>Observed in breast, colon, prostate models; dose and DP dependent.</td>
</tr>

<tr>
<td>5</td>
<td>Apoptosis (caspase activation)</td>
<td>↑ (dose-dependent)</td>
<td>↔ / ↓</td>
<td>R→G</td>
<td>Pro-apoptotic signaling</td>
<td>Mitochondrial depolarization reported; often supra-physiologic exposure.</td>
</tr>

<tr>
<td>6</td>
<td>Angiogenesis (VEGF)</td>
<td>↓ (preclinical)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic</td>
<td>↓ VEGF expression in models; human oncologic data limited.</td>
</tr>

<tr>
<td>7</td>
<td>Ferroptosis axis</td>
<td>↓ (anti-lipid-ROS bias)</td>
<td>↓</td>
<td>P→R</td>
<td>Lipid peroxidation inhibition</td>
<td>Strong antioxidant property may counter ferroptotic strategies (context-dependent).</td>
</tr>

<tr>
<td>8</td>
<td>Clinical Translation Constraint</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Bioavailability &amp; dose gap</td>
<td>High-DP PACs poorly absorbed; many in-vitro doses exceed realistic plasma exposure; adjunct role most plausible.</td>
</tr>

</table>

<p><b>TSF Legend:</b> P: 0–30 min | R: 30 min–3 hr | G: &gt;3 hr</p>




<br>
<h3>Proanthocyanidins (PACs) — Alzheimer’s Disease–Relevant Axes</h3>
<table>
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cells (neurons/glia)</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Lipid peroxidation / neuronal ROS</td>
<td>↓</td>
<td>P</td>
<td>Neuroprotective antioxidant</td>
<td>Reduces oxidative damage markers in models; aligns with AD oxidative stress hypothesis.</td>
</tr>

<tr>
<td>2</td>
<td>NRF2 activation</td>
<td>↑</td>
<td>R→G</td>
<td>Endogenous antioxidant upregulation</td>
<td>Supports neuronal resilience; mostly preclinical evidence.</td>
</tr>

<tr>
<td>3</td>
<td>Neuroinflammation (NF-κB)</td>
<td>↓</td>
<td>R→G</td>
<td>Microglial modulation</td>
<td>Reduced cytokine production in animal models.</td>
</tr>

<tr>
<td>4</td>
<td>Aβ aggregation / toxicity</td>
<td>↓ (preclinical)</td>
<td>G</td>
<td>Interference with amyloid aggregation</td>
<td>Reported inhibition of Aβ fibrillization in vitro; human data limited.</td>
</tr>

<tr>
<td>5</td>
<td>BDNF / synaptic plasticity</td>
<td>↑ (model-dependent)</td>
<td>G</td>
<td>Neurotrophic signaling</td>
<td>Observed in flavanol-rich cocoa/grape extract studies; translation to PAC isolates unclear.</td>
</tr>

<tr>
<td>6</td>
<td>Clinical Translation Constraint</td>
<td>—</td>
<td>—</td>
<td>Dietary-level evidence</td>
<td>Human trials mostly use flavanol-rich extracts; cognitive effects modest and stage-dependent.</td>
</tr>

</table>

<p><b>TSF Legend:</b> P: 0–30 min | R: 30 min–3 hr | G: &gt;3 hr</p>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

OXPHOS↑, 1,  

Core Metabolism/Glycolysis

GlucoseCon↓, 1,   Glycolysis↓, 1,   HK2↓, 1,   lactateProd↓, 1,   PFK↓, 1,   PKM2↓, 1,   p‑S6↓, 1,   p‑S6K↓, 1,  

Cell Death

p‑Akt↓, 1,   Apoptosis↑, 1,  

Protein Folding & ER Stress

HSP90↓, 1,  

Cell Cycle & Senescence

TumCCA↓, 1,  

Proliferation, Differentiation & Cell State

EMT↓, 1,  

Migration

E-cadherin↑, 1,   Fibronectin↓, 1,   N-cadherin↓, 1,   TumCI↓, 1,   TumCMig↓, 1,   TumCP↓, 1,   Vim↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 1,   VEGF↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   NF-kB↓, 1,   PGE2↓, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 1,  
Total Targets: 27

Pathway results for Effect on Normal Cells

Migration

MMP1↓, 1,   MMP2↓, 1,   MMP9↓, 2,   MMPs↓, 1,  

Angiogenesis & Vasculature

VEGF↓, 1,   p‑VEGFR2↓, 1,  

Immune & Inflammatory Signaling

NF-kB↓, 1,  
Total Targets: 7

Research papers

Year Title Authors PMID Link Flag
2012Grape seed proanthocyanidins inhibit angiogenesis via the downregulation of both vascular endothelial growth factor and angiopoietin signalingShuangsheng Huang22901561https://pubmed.ncbi.nlm.nih.gov/22901561/0
2011Grape Seed Proanthocyanidins Inhibit Melanoma Cell Invasiveness by Reduction of PGE2 Synthesis and Reversal of Epithelial-to-Mesenchymal TransitionMudit VaidPMC3124524https://pmc.ncbi.nlm.nih.gov/articles/PMC3124524/0
2019PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinomaJiao FengPMC6525465https://pmc.ncbi.nlm.nih.gov/articles/PMC6525465/0
2009Grape seed extract inhibits VEGF expression via reducing HIF-1α protein expressionJianming LuPMC2664452https://pmc.ncbi.nlm.nih.gov/articles/PMC2664452/0
2009Cranberry proanthocyanidins inhibit MMP production and activityV D La19641150https://pubmed.ncbi.nlm.nih.gov/19641150/0