tbResList Print — PBG Propolis -bee glue

Filters: qv=137, qv2=%, rfv=%

Product

PBG Propolis -bee glue
Features: Compound
Description: <b>Brazilian Green Propolis</b> often considered best<br>
• Derived from Baccharis dracunulifolia, this type is rich in artepillin C.<br>
• It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties.<br>
-Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin)<br>
-most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters<br>
-One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE)<br>
-caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes
-content highly variable based on location and extraction<br>
Two main factors of interest:<br>
1. affects interstitual fluild pH<br>
2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS<br>
<br>
- Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP))<br>
- caffeic acid major source<br>
<br>
Propolis is chemically diverse (300+ compounds reported) and composition depends on botanical/geographic source.<br>
Antibacterial activity is documented in classic literature (often stronger against Gram+).<br>
CAPE from propolis has reported preferential tumor cytotoxicity in early landmark work (often cited in antimicrobial paper references)<br>

<br>
<a href="https://pubmed.ncbi.nlm.nih.gov/37864895/"> Do not combine with 2DG </a> <br>
<br>
Pathways:<br>
-Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells.<br>
-Propolis has been shown to inhibit NF‑κB activation.<br>
-Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases).<br>
-Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles.<br>


<br>
-Note <a href="tbResList.php?qv=137&tsv=1109&wNotes=on&exSp=open">half-life</a> no standard, high variablity of content.<br>
<a href="tbResList.php?qv=137&tsv=792&wNotes=on&exSp=open">BioAv</a> poor water solubility, and low oral bioavailability.
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- high concentration may induce
<a href="tbResList.php?qv=137&tsv=275&wNotes=on">ROS</a> production, while low concentrations mya low it. This may apply to both normal and cancer cells.
<a href="https://nestronics.ca/dbx/tbResEdit.php?rid=3251">Normal Cells Example.</a> (Also not sure if high level are acheivable in vivo due to bioavailability)<br>
- ROS↑ related:
<a href="tbResList.php?qv=137&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=137&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=137&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?qv=137&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=137&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?qv=137&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=137&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=137&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=137&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=137&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=137&wNotes=on&word=Prx">Prx</a>,<!-- mitochondrial antioxidant enzyme-->

<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
<!--
- Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=137&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?qv=137&word=Trx&wNotes=on">TrxR↓**</a>,<!-- major antioxidant system -->
<a href="tbResList.php?qv=137&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>,
<a href="tbResList.php?qv=137&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=137&tsv=46&wNotes=on">Catalase↓</a>
<a href="tbResList.php?qv=137&tsv=597&wNotes=on">HO1↓</a>
<a href="tbResList.php?qv=137&wNotes=on&word=GPx">GPx↓</a>
-->

<br>

- Raises
<a href="tbResList.php?qv=137&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=137&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=137&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=137&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=137&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=137&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=137&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=137&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=137&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<!-- <a href="tbResList.php?qv=137&tsv=235&wNotes=on&word=p38↓">p38↓</a>, -->Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=137&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>,
<!-- <a href="tbResList.php?qv=137&tsv=978&wNotes=on&word=IL-1β↓">IL-1β↓</a>, -->
<a href="tbResList.php?qv=137&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=137&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=137&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=137&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=137&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=137&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=137&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=137&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=137&tsv=203&wNotes=on">MMP9↓</a>,
<!-- <a href="tbResList.php?qv=137&tsv=308&wNotes=on">TIMP2</a>, -->
<a href="tbResList.php?qv=137&tsv=415&wNotes=on">IGF-1↓</a>,
<a href="tbResList.php?qv=137&tsv=428&wNotes=on">uPA↓</a>,
<a href="tbResList.php?qv=137&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=137&tsv=1284&wNotes=on">ROCK1↓</a>,
<a href="tbResList.php?qv=137&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=137&tsv=273&wNotes=on">RhoA↓</a>,
<a href="tbResList.php?qv=137&tsv=214&wNotes=on">NF-κB↓</a>,
<!-- <a href="tbResList.php?qv=137&tsv=79&wNotes=on">CXCR4↓</a>, -->
<!-- <a href="tbResList.php?qv=137&tsv=1247&wNotes=on">SDF1↓</a>, -->
<a href="tbResList.php?qv=137&tsv=304&wNotes=on">TGF-β↓</a>,
<a href="tbResList.php?qv=137&tsv=719&wNotes=on">α-SMA↓</a>,
<a href="tbResList.php?qv=137&tsv=105&wNotes=on">ERK↓</a>
<!-- <a href="tbResList.php?qv=137&tsv=1178&wNotes=on">MARK4↓</a> --><!-- contributing to tumor growth, invasion, and metastasis-->
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=137&tsv=140&wNotes=on">HDAC↓</a>,
<!-- <a href="tbResList.php?qv=137&wNotes=on&word=DNMT">DNMTs↓</a>, -->
<!-- <a href="tbResList.php?qv=137&tsv=108&wNotes=on">EZH2↓</a>, -->
<a href="tbResList.php?qv=137&tsv=236&wNotes=on">P53↑</a>,
<!-- <a href="tbResList.php?qv=137&wNotes=on&word=HSP">HSP↓</a>, -->
<!-- <a href="tbResList.php?qv=137&tsv=506&wNotes=on">Sp proteins↓</a>, -->
<!-- <a href="tbResList.php?qv=137&wNotes=on&word=TET">TET↑</a> -->
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=137&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=137&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=137&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?qv=137&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=137&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?qv=137&tsv=895&wNotes=on">CDK6↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=137&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=137&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=137&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>, <!-- encourages invasion, proliferation, EMT, and angiogenesis -->
<a href="tbResList.php?qv=137&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=137&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=137&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=137&wNotes=on&word=TOP">TOP1↓</a>,
<a href="tbResList.php?qv=137&tsv=657&wNotes=on">TET1</a>,
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=137&tsv=129&wNotes=on">glycolysis</a>
/<a href="tbResList.php?qv=137&tsv=947&wNotes=on">Warburg Effect</a> and
<a href="tbResList.php?qv=137&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=137&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=137&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?qv=137&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=137&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=137&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?qv=137&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=137&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=137&wNotes=on&word=PFK">PFKs↓</a>,
<a href="tbResList.php?qv=137&wNotes=on&word=PDK">PDKs↓</a>,
<!-- <a href="tbResList.php?qv=137&tsv=847&wNotes=on">ECAR↓</a>, -->
<!-- <a href="tbResList.php?qv=137&tsv=230&wNotes=on">OXPHOS↓</a>, -->
<a href="tbResList.php?qv=137&tsv=356&wNotes=on">GRP78↑</a>,
<!-- <a href="tbResList.php?qv=137&tsv=1278&wNotes=on">Glucose↓</a>, -->
<a href="tbResList.php?qv=137&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=137&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=137&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=137&tsv=143&wNotes=on">HIF-1α↓</a>,
<!-- <a href="tbResList.php?qv=137&wNotes=on&word=NOTCH">Notch↓</a>, -->
<!-- <a href="tbResList.php?qv=137&wNotes=on&word=FGF">FGF↓</a>, -->
<!-- <a href="tbResList.php?qv=137&wNotes=on&word=PDGF">PDGF↓</a>, -->
<!-- <a href="tbResList.php?qv=137&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>, -->
<!-- <a href="tbResList.php?qv=137&&wNotes=on&word=ITG">Integrins↓</a>, -->
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
<!--
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=137&tsv=795&wNotes=on">CSC↓</a>,
<a href="tbResList.php?qv=137&tsv=524&wNotes=on">CK2↓</a>,
<a href="tbResList.php?qv=137&tsv=141&wNotes=on">Hh↓</a>,
<a href="tbResList.php?qv=137&tsv=434&wNotes=on">GLi↓</a>,
<a href="tbResList.php?qv=137&tsv=124&wNotes=on">GLi1↓</a>,
<a href="tbResList.php?qv=137&tsv=677&wNotes=on">CD133↓</a>,
<a href="tbResList.php?qv=137&tsv=655&wNotes=on">CD24↓</a>,
<a href="tbResList.php?qv=137&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=137&tsv=357&wNotes=on">n-myc↓</a>,
<a href="tbResList.php?qv=137&tsv=656&wNotes=on">sox2↓</a>,
<a href="tbResList.php?qv=137&wNotes=on&word=NOTCH">Notch2↓</a>,
<a href="tbResList.php?qv=137&tsv=1024&wNotes=on">nestin↓</a>,
<a href="tbResList.php?qv=137&tsv=508&wNotes=on">OCT4↓</a>,
<br>
-->
<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=137&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=137&tsv=4&wNotes=on">AKT↓</a>,
<!--<a href="tbResList.php?qv=137&wNotes=on&word=JAK">JAK↓</a>, -->
<a href="tbResList.php?qv=137&wNotes=on&word=STAT">STAT↓</a>,
<!--<a href="tbResList.php?qv=137&tsv=377&wNotes=on">Wnt↓</a>, -->
<a href="tbResList.php?qv=137&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=137&tsv=9&wNotes=on">AMPK</a>,
<!--<a href="tbResList.php?qv=137&tsv=475&wNotes=on">α↓</a>, -->
<a href="tbResList.php?qv=137&tsv=105&wNotes=on">ERK↓</a>,
<!--<a href="tbResList.php?qv=137&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=137&tsv=168&wNotes=on">JNK</a>,
<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=137&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=137&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=137&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=137&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=137&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=137&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=137&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=137&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=137&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=137&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=137&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a>
<br>
<br>

<!-- Propolis (Bee glue) — Time-Scale Flagged Pathway Table (web-page ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>ROS / redox stress (context-selective)</td>
<td>Often ↑ ROS / oxidative stress susceptibility (P→R→G)</td>
<td>Often antioxidant / cytoprotective in inflammatory stress contexts (R→G)</td>
<td>P, R, G</td>
<td>Stress amplifier / selectivity gate</td>
<td>Net ROS direction is highly context- and extract-dependent; propolis chemistry varies by geography/plant source and can shift redox behavior.</td>
</tr>

<tr>
<td>2</td>
<td>NF-κB inflammatory transcription</td>
<td>↓ NF-κB activity (R→G)</td>
<td>Anti-inflammatory signaling in immune/tissue contexts (R→G)</td>
<td>R, G</td>
<td>Anti-inflammatory / anti-survival transcription</td>
<td>A common “hub” claim across propolis literature; contributes to reduced cytokine/pro-survival programs.</td>
</tr>

<tr>
<td>3</td>
<td>Intrinsic apoptosis (mitochondria → caspases)</td>
<td>↑ apoptosis; ↑ caspase activation (G)</td>
<td>↔ (usually less activation)</td>
<td>G</td>
<td>Cell death execution</td>
<td>Often downstream of sustained stress signaling and/or survival pathway suppression.</td>
</tr>

<tr>
<td>4</td>
<td>MAPK re-wiring (ERK / p38 / JNK)</td>
<td>Stress MAPK shifts; JNK/p38 often ↑ with stress (P→R); ERK variable</td>
<td>↔ / context-dependent</td>
<td>P, R, G</td>
<td>Signal reprogramming</td>
<td>MAPK directions depend on extract composition, dose, and tumor type; best described as “re-wiring” rather than fixed arrows for ERK.</td>
</tr>

<tr>
<td>5</td>
<td>PI3K → AKT (± mTOR)</td>
<td>↓ PI3K/AKT survival signaling (R→G)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth/survival suppression</td>
<td>Often reported alongside reduced proliferation and increased apoptosis susceptibility.</td>
</tr>

<tr>
<td>6</td>
<td>Nrf2 / antioxidant response (HO-1, GSH enzymes)</td>
<td>Context-dependent (may be ↓ in tumor-stress settings; may be ↑ as adaptation)</td>
<td>Often ↑ protective antioxidant response under stress</td>
<td>R, G</td>
<td>Adaptive buffering</td>
<td>Nrf2 direction is not universal; avoid absolute “Nrf2 always ↑/↓” statements for propolis.</td>
</tr>

<tr>
<td>7</td>
<td>Angiogenesis (VEGF and related factors)</td>
<td>↓ angiogenic signaling outputs (G)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Usually shows up in later gene-expression / phenotype assays rather than early signaling.</td>
</tr>

<tr>
<td>8</td>
<td>EMT / invasion / migration (MMPs, EMT markers)</td>
<td>↓ EMT / ↓ migration & invasion programs (G)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Often measured as reduced MMP activity and reduced migration/invasion phenotypes; timing tends to be later.</td>
</tr>

<tr>
<td>9</td>
<td>Antimicrobial / microbiome-relevant effects</td>
<td>Indirect (may reduce infection-driven inflammation)</td>
<td>Direct antimicrobial activity (context)</td>
<td>R, G</td>
<td>Host-protective / anti-infective</td>
<td>Propolis has documented antibacterial activity (stronger vs many Gram+ than Gram− in classic reports), which can matter for inflammation-linked biology.</td>
</tr>

<tr>
<td>10</td>
<td>Key bioactives (CAPE; flavonoids/phenolics)</td>
<td>CAPE-class compounds: tumor-selective cytotoxicity reported (G)</td>
<td>↔</td>
<td>G</td>
<td>“Active fraction” concept</td>
<td>Propolis is a mixture; effects may be driven by a few high-impact phenolics (e.g., CAPE) and vary by extract standardization.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (primary/physical–chemical effects; rapid signaling / phosphorylation shifts)</li>
<li><b>R</b>: 30 min–3 hr (redox signaling + acute stress-response signaling)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype-level outcomes)</li>
</ul>



Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 5,   antiOx↓, 1,   GPx↑, 1,   GSH↑, 1,   GSH↓, 1,   lipid-P↑, 2,   lipid-P↓, 1,   MDA↓, 1,   NRF2↓, 1,   ROS↑, 26,   ROS⇅, 2,   ROS↓, 5,   SOD↑, 1,   SOD↓, 1,  

Mitochondria & Bioenergetics

ATP↓, 2,   mt-ATP↓, 1,   EGF↓, 1,   MMP↓, 16,   MMP↝, 1,   mtDam↑, 5,   OCR↓, 1,  

Core Metabolism/Glycolysis

ACC↓, 1,   ALAT↓, 1,   AMPK↑, 1,   ANXA7↑, 2,   cMyc↓, 1,   FASN↓, 1,   GlucoseCon↓, 2,   GLUT2↓, 2,   Glycolysis↓, 6,   HK2↓, 8,   lactateProd↓, 2,   LDH↓, 4,   LDH↑, 1,   i-LDH↓, 1,   LDHA↓, 6,   PDK1↓, 2,   PDK3↑, 1,   PFK↓, 6,   PFK1↓, 1,   PKM2↓, 7,  

Cell Death

p‑Akt↓, 1,   Akt↓, 8,   Apoptosis↑, 9,   Apoptosis?, 2,   BAX↑, 9,   BAX↓, 2,   Bax:Bcl2↑, 2,   Bcl-2↓, 4,   Casp↑, 3,   Casp↓, 1,   Casp3↑, 8,   Casp3↓, 2,   cl‑Casp3↑, 2,   Casp8↑, 1,   cl‑Casp8↑, 2,   Casp9↑, 3,   Cyt‑c↑, 3,   Fas↑, 1,   Fas↓, 1,   hTERT/TERT↓, 2,   iNOS↓, 2,   iNOS↑, 1,   JNK↓, 1,   p‑JNK↑, 1,   MAPK↑, 1,   MAPK↓, 2,   p27↑, 3,   p‑p38↑, 1,   PUMA↑, 1,   Telomerase↓, 1,   TRAIL↑, 2,   TRAILR↑, 1,  

Transcription & Epigenetics

H3↓, 1,   other↑, 1,   pRB↓, 1,   tumCV↓, 4,  

Protein Folding & ER Stress

eIF2α↑, 1,   ER Stress↑, 4,   GRP78/BiP↑, 1,   PERK↑, 1,   UPR↑, 1,  

Autophagy & Lysosomes

LC3II↑, 3,   p62↓, 3,   TumAuto↑, 2,  

DNA Damage & Repair

DNAdam↑, 3,   P53↑, 8,   P53↝, 1,   cl‑PARP↑, 3,   PARP↓, 1,   PCNA↓, 2,   TP53↓, 2,  

Cell Cycle & Senescence

CDK1↓, 1,   p‑CDK1↓, 1,   CDK2↓, 3,   CDK4↑, 1,   CDK4↓, 2,   cycA1/CCNA1↓, 3,   CycB/CCNB1↓, 4,   cycD1/CCND1↓, 3,   cycE/CCNE↓, 1,   P21↑, 5,   P21↓, 2,   P21?, 1,   RB1↑, 1,   TumCCA↓, 1,   TumCCA↑, 9,  

Proliferation, Differentiation & Cell State

CSCs↓, 2,   EMT↓, 4,   ERK↑, 1,   ERK↓, 3,   p‑ERK↑, 1,   p‑ERK↓, 1,   FOXO1↑, 1,   FOXO3↓, 2,   GSK‐3β↓, 3,   HDAC↓, 2,   HDAC1↓, 1,   HDAC2↓, 1,   HDAC8↓, 1,   mTOR↓, 2,   NOTCH1↑, 1,   P70S6K↓, 1,   PI3K↓, 4,   PTEN↑, 1,   p‑PTEN↓, 1,   STAT↓, 1,   STAT3↓, 3,   TOP1↓, 1,  

Migration

Ca+2↑, 2,   i-Ca+2↑, 1,   CLDN2↓, 1,   E-cadherin↑, 2,   E-cadherin↓, 1,   p‑FAK↑, 1,   p‑FAK↓, 1,   FAK↓, 1,   Ki-67↓, 1,   MALAT1↓, 1,   MMP2↓, 2,   MMP9↓, 3,   MMP9↑, 1,   MMPs↓, 3,   PAK1↓, 2,   proline↓, 1,   Rho↓, 1,   ROCK1↓, 1,   TET1↑, 1,   TIMP1↓, 1,   TSP-1↑, 1,   TumCI↓, 3,   TumCMig↓, 6,   TumCP↓, 12,   TumMeta↓, 3,   uPA↓, 1,   Vim↓, 3,   α-tubulin↓, 1,   β-catenin/ZEB1↓, 3,  

Angiogenesis & Vasculature

angioG↑, 1,   angioG↓, 7,   eNOS↑, 1,   Hif1a↓, 5,   LOX1↓, 1,   NO↑, 1,   VEGF↓, 8,  

Barriers & Transport

BBB↑, 1,   GLUT1↓, 4,   GLUT3↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 4,   COX2↑, 1,   Igs↑, 1,   IL10↑, 2,   IL10↓, 2,   IL12↓, 1,   IL1β↓, 5,   IL1β↑, 1,   IL2↑, 2,   IL4↓, 1,   IL6↓, 5,   Inflam↓, 4,   IRAK4↓, 1,   NF-kB↓, 16,   NF-kB↑, 1,   NK cell↑, 1,   p65↓, 1,   p65↑, 1,   PD-L1↓, 1,   TLR4↓, 5,   TNF-α↓, 6,  

Cellular Microenvironment

pH↑, 3,  

Protein Aggregation

NLRP3↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,   CDK6↑, 1,   CDK6↓, 1,   ER(estro)↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 3,   BioAv↑, 1,   ChemoSen↑, 10,   ChemoSen↓, 1,   Dose?, 5,   Dose∅, 7,   Dose↑, 1,   Dose⇅, 1,   Dose↝, 1,   eff↓, 6,   eff↑, 25,   eff↝, 2,   eff∅, 1,   Half-Life↓, 1,   Half-Life↝, 2,   RadioS↑, 7,   selectivity↑, 7,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 1,   AR↓, 1,   AST↓, 1,   BG↓, 1,   BP↓, 1,   hTERT/TERT↓, 2,   IL6↓, 5,   Ki-67↓, 1,   LDH↓, 4,   LDH↑, 1,   i-LDH↓, 1,   PD-L1↓, 1,   TP53↓, 2,  

Functional Outcomes

AntiCan↑, 2,   chemoP↓, 1,   ChemoSideEff↓, 2,   cognitive↑, 1,   GFR↑, 1,   NDRG1↑, 1,   OS↑, 2,   radioP↑, 1,   RenoP↑, 1,   TumW↓, 1,  
Total Targets: 236

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 5,   Catalase↑, 5,   GPx↑, 3,   GPx↓, 1,   GSH↑, 5,   GSR↓, 1,   HO-1↑, 5,   hyperG↓, 1,   MDA↓, 6,   MPO↓, 1,   NRF2↑, 8,   NRF2↓, 1,   NRF2∅, 1,   Prx↑, 1,   ROS↓, 11,   ROS⇅, 1,   SOD↑, 6,  

Mitochondria & Bioenergetics

MMP↑, 1,   mtDam↓, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   Glycolysis↑, 1,  

Cell Death

BAX↓, 1,   Casp3↓, 2,   iNOS↓, 2,   JNK↓, 1,   MAPK↓, 2,  

Transcription & Epigenetics

cJun↓, 1,   p‑cJun↓, 1,  

Protein Folding & ER Stress

HSP70/HSPA5↑, 1,  

DNA Damage & Repair

DNAdam↓, 1,  

Proliferation, Differentiation & Cell State

cFos↓, 1,   ERK↓, 1,   IGF-1↓, 1,  

Migration

AP-1↓, 2,   Ca+2↓, 1,   MMP1↓, 1,   MMP2↓, 2,   MMP2↑, 1,   MMP9↓, 3,   TGF-β↑, 1,   TGF-β↓, 2,   VCAM-1↓, 1,   α-SMA↓, 2,  

Angiogenesis & Vasculature

LOX1↓, 1,   NO↓, 4,  

Immune & Inflammatory Signaling

COX1↓, 1,   COX2↓, 4,   IFN-γ↑, 1,   IL10↑, 1,   IL10↓, 2,   IL1β↓, 4,   IL4↑, 1,   IL5↓, 1,   IL6↓, 4,   IL8↓, 2,   Inflam↓, 9,   MCP1↓, 1,   NF-kB↓, 7,   p65↓, 1,   PGE2↓, 2,   TLR4↓, 2,   TNF-α↓, 5,  

Synaptic & Neurotransmission

AChE↓, 1,   BDNF↑, 2,  

Drug Metabolism & Resistance

BioAv↓, 4,   BioAv↑, 1,   Dose?, 1,   Dose∅, 1,   Half-Life↓, 1,   selectivity↑, 1,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 1,   BG↓, 1,   HbA1c↓, 1,   IL6↓, 4,   NOS2↓, 1,  

Functional Outcomes

AntiCan↑, 1,   cardioP↑, 1,   cognitive↑, 1,   hepatoP↑, 2,   motorD↑, 1,   neuroP↑, 4,   Pain↓, 1,   toxicity↑, 1,   toxicity∅, 3,  

Infection & Microbiome

Sepsis↓, 1,  
Total Targets: 86

Research papers

Year Title Authors PMID Link Flag
2021Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancerSepideh Mirzaeihttps://www.sciencedirect.com/science/article/abs/pii/S10436618210034310
2023Chrysin a promising anticancer agent: recent perspectivesMuhammad Shahbazhttps://www.tandfonline.com/doi/full/10.1080/10942912.2023.2246678#abstract0
2020Chrysin Induced Cell Apoptosis and Inhibited Invasion Through Regulation of TET1 Expression in Gastric Cancer CellsXiaowei ZhongPMC7182457https://pmc.ncbi.nlm.nih.gov/articles/PMC7182457/0
2012Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosisEWELINA SZLISZKAPMC3582787https://pmc.ncbi.nlm.nih.gov/articles/PMC3582787/0
2025Mechanisms of Apoptosis and Cell Cycle Arrest Induced by Propolis in Cancer TherapyMatthew Benjaminhttps://www.researchgate.net/publication/392136063_Mechanisms_of_Apoptosis_and_Cell_Cycle_Arrest_Induced_by_Propolis_in_Cancer_Therapy0
2025Propolis as a promising functional ingredient: A comprehensive review on extraction, bioactive properties, bioavailability, and industrial applicationsMengyao Liuhttps://www.sciopen.com/article/10.26599/FSHW.2024.92502360
2024Propolis and its therapeutic effects on renal diseases: A reviewFatemeh SalamiPMC10897566https://pmc.ncbi.nlm.nih.gov/articles/PMC10897566/0
2024Protective effect of propolis in protecting against radiation-induced oxidative stress in the liver as a distant organOztekin Cikmanhttps://www.nature.com/articles/s41598-024-72344-90
2024Propolis: a natural compound with potential as an adjuvant in cancer therapy - a review of signaling pathwaysNassim Valivand39177837https://pubmed.ncbi.nlm.nih.gov/39177837/0
2024Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapyhttps://pmc.ncbi.nlm.nih.gov/articles/PMC11547968/0
2024In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathwayShaimaa E DiabPMC10825195https://pmc.ncbi.nlm.nih.gov/articles/PMC10825195/0
2023Caffeic acid phenethyl ester inhibits MDA-MB-231 cell proliferation in inflammatory microenvironment by suppressing glycolysis and lipid metabolismQian Wu37864895https://pubmed.ncbi.nlm.nih.gov/37864895/0
2023Propolis and Their Active Constituents for Chronic DiseasesVivek P ChavdaPMC9953602https://pmc.ncbi.nlm.nih.gov/articles/PMC9953602/0
2023Integration with Transcriptomic and Metabolomic Analyses Reveals the In Vitro Cytotoxic Mechanisms of Chinese Poplar Propolis by Triggering the Glucose Metabolism in Human Hepatocellular Carcinoma CellsYuyang GuoPMC10610315https://pmc.ncbi.nlm.nih.gov/articles/PMC10610315/0
2023Study on the effect of a triple cancer treatment of propolis, thermal cycling-hyperthermia, and low-intensity ultrasound on PANC-1 cellsYu-Yi KuoPMC10457055https://pmc.ncbi.nlm.nih.gov/articles/PMC10457055/0
2023Propolis: A Detailed Insight of Its Anticancer Molecular MechanismsSuhib AltabbalPMC10059947https://pmc.ncbi.nlm.nih.gov/articles/PMC10059947/0
2022Portuguese Propolis Antitumoral Activity in Melanoma Involves ROS Production and Induction of ApoptosisRafaela Dias OliveiraPMC9182411https://pmc.ncbi.nlm.nih.gov/articles/PMC9182411/0
2022An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular MechanismsPerumal ElumalaiPMC9232326https://pmc.ncbi.nlm.nih.gov/articles/PMC9232326/0
2022Propolis: Its Role and Efficacy in Human Health and DiseasesNadzirah ZullkifleePMC9504311https://pmc.ncbi.nlm.nih.gov/articles/PMC9504311/0
2022The Potential Use of Propolis as an Adjunctive Therapy in Breast CancersDedy Hermansyah, MD, PhDhttps://journals.sagepub.com/doi/full/10.1177/153473542210968680
2022Lung response to propolis treatment during experimentally induced lung adenocarcinomaDoaa Solimanahttps://www.tandfonline.com/doi/full/10.1080/16583655.2023.22134110
2022Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against CancerNada OršolićPMC9499605https://pmc.ncbi.nlm.nih.gov/articles/PMC9499605/0
2022Allergic Inflammation: Effect of Propolis and Its FlavonoidsNada Oršolićhttps://www.mdpi.com/1420-3049/27/19/66940
2022The Antioxidant and Anti-Inflammatory Effects of Flavonoids from Propolis via Nrf2 and NF-κB PathwaysWenzhen XuPMC9407528https://pmc.ncbi.nlm.nih.gov/articles/PMC9407528/0
2022The Potential Use of Propolis as a Primary or an Adjunctive Therapy in Respiratory Tract-Related Diseases and Disorders: A Systematic Scoping ReviewFelix Zulhendrihttps://www.sciencedirect.com/science/article/pii/S07533322210138220
2021Can Propolis Be a Useful Adjuvant in Brain and Neurological Disorders and Injuries? A Systematic Scoping Review of the Latest Experimental EvidenceFelix ZulhendriPMC8470086https://pmc.ncbi.nlm.nih.gov/articles/PMC8470086/0
2021Chinese Poplar Propolis Inhibits MDA-MB-231 Cell Proliferation in an Inflammatory Microenvironment by Targeting Enzymes of the Glycolytic Pathwayhttps://pmc.ncbi.nlm.nih.gov/articles/PMC7899755/0
2021Propolis Extract and Its Bioactive Compounds—From Traditional to Modern Extraction TechnologiesJelena ŠuranPMC8156449https://pmc.ncbi.nlm.nih.gov/articles/PMC8156449/0
2021Propolis Increases Brain Derived Neurotrophic Factor Expression in the Prefrontal Cortex of Rat Stress ModelKuswati Kuswatihttps://www.atlantis-press.com/proceedings/iccvd-21/1259789670
2021Contribution of Green Propolis to the Antioxidant, Physical, and Sensory Properties of Fruity Jelly Candies Made with Sugars or FructansCristina Cedeño-PinosPMC8620292https://pmc.ncbi.nlm.nih.gov/articles/PMC8620292/0
2021Anticancer Activity of Propolis and Its CompoundsEwa FormaPMC8399583https://pmc.ncbi.nlm.nih.gov/articles/PMC8399583/0
2021Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical StudiesFrancisco Assis Nascimento PereiraPMC8623341https://pmc.ncbi.nlm.nih.gov/articles/PMC8623341/0
2020Antioxidant and anti-inflammatory effects of oral propolis in patients with breast cancer treated with chemotherapy: a Randomized controlled trialNazila Darvishihttps://www.sciencedirect.com/science/article/abs/pii/S22108033203005670
2020Brazilian red propolis extract enhances expression of antioxidant enzyme genes in vitro and in vivoSho Hotta32490727https://pubmed.ncbi.nlm.nih.gov/32490727/0
2020Protection against Ultraviolet A-Induced Skin Apoptosis and Carcinogenesis through the Oxidative Stress Reduction Effects of N-(4-bromophenethyl) Caffeamide, a Propolis DerivativeYueh-Hsiung KuoPMC7222364https://pmc.ncbi.nlm.nih.gov/articles/PMC7222364/0
2019Different propolis samples, phenolic content, and breast cancer cell lines: Variable cytotoxicity ranging from ineffective to potentMehmet Fatih Seyhan30589200https://pubmed.ncbi.nlm.nih.gov/30589200/0
2019Bioavailability and In Vivo Antioxidant Activity of a Standardized Polyphenol Mixture Extracted from Brown PropolisValeria CurtiPMC6429100https://pmc.ncbi.nlm.nih.gov/articles/PMC6429100/0
2019Body Fluid pH Balance in Metabolic Health and Possible Benefits of Dietary Alkaline FoodsWataru Aoihttps://iadns.onlinelibrary.wiley.com/doi/full/10.2991/efood.k.190924.0010
2019Evidence on the Health Benefits of Supplemental PropolisAndrea BraakhuisPMC6893770https://pmc.ncbi.nlm.nih.gov/articles/PMC6893770/0
2018Constituents of Propolis: Chrysin, Caffeic Acid, p-Coumaric Acid, and Ferulic Acid Induce PRODH/POX-Dependent Apoptosis in Human Tongue Squamous Cell Carcinoma Cell (CAL-27)Katarzyna Celińska-JanowiczPMC5897514https://pmc.ncbi.nlm.nih.gov/articles/PMC5897514/0
2017Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health BenefitsVisweswara Rao PasupuletiPMC5549483https://pmc.ncbi.nlm.nih.gov/articles/PMC5549483/0
2017The Neuroprotective Effects of Brazilian Green Propolis on Neurodegenerative Damage in Human Neuronal SH-SY5Y CellsJunjun NiPMC5317132https://pmc.ncbi.nlm.nih.gov/articles/PMC5317132/0
2017Propolis reversed cigarette smoke-induced emphysema through macrophage alternative activation independent of Nrf2Marina Valente Barrosohttps://www.sciencedirect.com/science/article/pii/S09680896173086960
2016Propolis Inhibits UVA-Induced Apoptosis of Human Keratinocyte HaCaT Cells by Scavenging ROSHan Bit KimPMC5080852https://pmc.ncbi.nlm.nih.gov/articles/PMC5080852/0
2015Brazilian green propolis water extract up-regulates the early expression level of HO-1 and accelerates Nrf2 after UVA irradiationYuichi Saitohttps://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/s12906-015-0945-40
2015Emerging Adjuvant Therapy for Cancer: Propolis and its ConstituentsSeema Patel25723108https://pubmed.ncbi.nlm.nih.gov/25723108/0
2014Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 CellsHongzhuan XuanPMC4055122https://pmc.ncbi.nlm.nih.gov/articles/PMC4055122/0
2014Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 CellsHongzhuan XuanPMC4055122https://pmc.ncbi.nlm.nih.gov/articles/PMC4055122/0
2014Importance of pH Homeostasis in Metabolic Health and Diseases: Crucial Role of Membrane Proton TransportWataru Aoihttps://onlinelibrary.wiley.com/doi/10.1155/2014/5989860
2013The immunomodulatory and anticancer properties of propolisGodfrey Chi-Fung Chan22707327https://pubmed.ncbi.nlm.nih.gov/22707327/0
2013Improvement of insulin resistance, blood pressure and interstitial pH in early developmental stage of insulin resistance in OLETF rats by intake of propolis extractsWataru Aoi23416075https://pubmed.ncbi.nlm.nih.gov/23416075/0
2011Antioxidant Properties and Phenolic Composition of Greek Propolis ExtractsV. Lagourihttps://www.tandfonline.com/doi/full/10.1080/10942912.2012.6545610
2011Ethanolic extract of Brazilian green propolis sensitizes prostate cancer cells to TRAIL-induced apoptosisEwelina Szliszka21286663https://pubmed.ncbi.nlm.nih.gov/21286663/0
209The cytotoxic effects of propolis on breast cancer cells involve PI3K/Akt and ERK1/2 pathways, mitochondrial membrane potential, and reactive oxygen species generationYahima Frión-Herrera29748880https://pubmed.ncbi.nlm.nih.gov/29748880/0